Electrochemical Sensing of Free Radical Antioxidant Diphenylamine cation (DPAH \cdot^+) with Carbon Interlaced Nanoflake-Assembled Mg_xNi_{9-x}S₈ Microspheres

Raja Nehru,^{a,c} Raghavan Chinnambedu Murugesan,^b Sheng-Ming Chen,^{a*} and Raman Sarkar^{c,d*}

^aDepartment of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan

^bAston Institute of Photonic Technology, Aston university, Birmingham, B4 7ET, UK.

^CInstitute of Physics, Academia Sinica, Taipei 10617, Taiwan

^dCentre for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan.

Corresponding Author

*E-mail: smchen78@ms15.hinet.net,sankarndf@gmail.com.

Supporting information

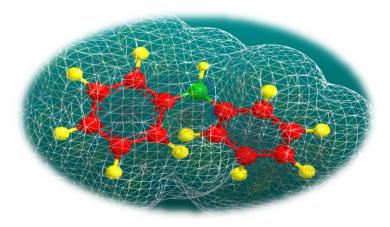


Fig.S1 The 3D structural view of diphenylamine (DPA).

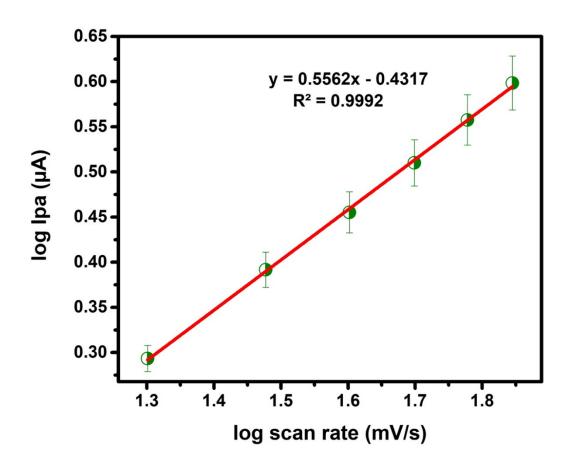
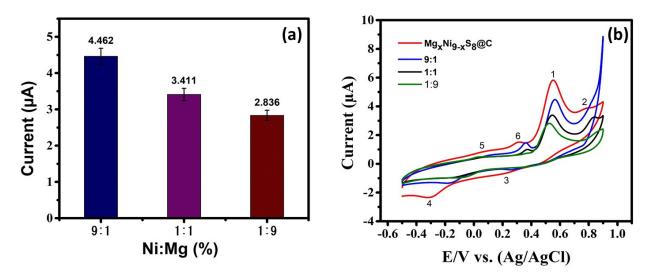
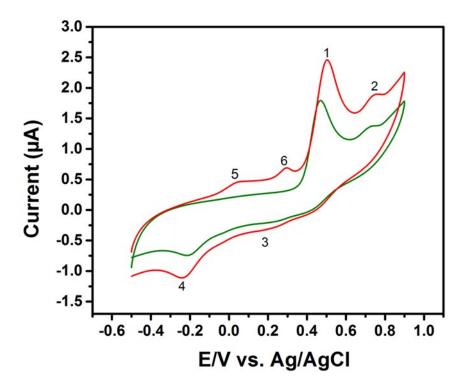




Fig.S2 Linear relation between log Ipa (μA) vs. log scan rate (mV/s).

Fig.S3 (a). Different molar ratio comparison of Ni and Mg in the presence of 100 μ M of DPA at the scan rate of 50mV/s. (b). Comparison of Mg_xNi_{9-x}S₈ and Mg_xNi_{9-x}S₈@C with different ratio of Ni and Mg in the presence of 100 μ M of DPA at the scan rate of 50 mV/s.

Fig.S4. The CV of Mg_xNi_{9-x}S₈@C in the presence of DPA at the scan rate of 30mV/s.

sample	Added(µM)	Found(µM)	Recovery (%)
Fruit extract (pear)	0.5	0.48	96
	0.6	0.59	98.3
	0.7	0.698	99.8

Table *S1* Determination of spiked DPA in fruit extract samples using $Mg_xNi_{9-x}S_8$ modified electrode

*Standard addition method