Electronic Supplementary Information for

Alcohol-solvothermal syntheses, crystal structures and photocatalytic properties of tin selenides with polyselenide ligands

Jingyu Han, Limei Zhang, Shufen Li, Wei Zheng, Dingxian Jia,* and Yaxian Yuan *

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

Table S1.	Selected Bond I	Lengths (Å) and Angles (d	leg) for 1
Sn(1)–Se(1)	2.9069(17)	Sn(1)–Se(2)	2.5409(19)
Sn(1)– $Se(3)$	2.6715(17)	Sn(1)– $Se(4)$	2.5340(17)
Sn(1)– $Se(5)$	2.5465(18)	Sn(2)– $Se(1)$	2.7203(17)
Sn(2)-Se(3)#1	2.5287(16)	Sn(2)– $Se(5)$	2.5732(16)
Sn(2)– $Se(6)$	2.7229(19)	Sn(2)– $Se(7)$	2.5529(17)
Sn(3)– $Se(1)$	2.7648(17)	Sn(3)– $Se(4)$	2.5565(17)
Sn(3)– $Se(7)$	2.5480(18)	Sn(3)– $Se(8)$	2.5243(19)
Sn(3)–Se(8)#2	2.7014(18)	Se(2)#1–Se(6)	2.331(2)
Mn(1)-N(1)	2.266(13)	Mn(1)-N(2)	2.240(13)
Mn(1)–N(3)	2.254(13)	Mn(1)-N(4)	2.261(11)
Mn(1)-N(5)	2.303(14)	Mn(1)–N(6)	2.275(13)
Se(1)-Sn(1)-Se(2)	81.40(5)	Se(1)-Sn(1)-Se(3)	175.08(5)
Se(1)-Sn(1)-Se(4)	87.87(5)	Se(1)-Sn(1)-Se(5)	83.25(5)
Se(2)-Sn(1)-Se(3)	103.32(6)	Se(2)-Sn(1)-Se(4)	122.11(7)
Se(2)-Sn(1)-Se(5)	114.21(6)	Se(3)-Sn(1)-Se(4)	88.42(5)
Se(3)-Sn(1)-Se(5)	95.90(6)	Se(4) - Sn(1) - Se(5)	120.70(6)
Se(1)-Sn(2)-Se(3)#1	99.42(6)	Se(1)-Sn(2)-Se(5)	86.62(5)
Se(1)-Sn(2)-Se(6)	165.77(5)	Se(1)-Sn(2)-Se(7)	88.66(6)
Se(3)#1-Sn(2)-Se(5)	120.01(6)	Se(3)#1-Sn(2)-Se(6)	91.70(6)
Se(3)#1-Sn(2)-Se(7)	112.66(6)	Se(5)-Sn(2)-Se(6)	80.11(5)
Se(5)-Sn(2)-Se(7)	127.19(6)	Se(6) - Sn(2) - Se(7)	95.26(7)
Se(1)-Sn(3)-Se(4)	90.58(5)	Se(1)-Sn(3)-Se(7)	87.79(6)
Se(1)-Sn(3)-Se(8)	90.50(6)	Se(1)-Sn(3)-Se(8)#2	176.91(6)
Se(4) - Sn(3) - Se(7)	111.38(7)	Se(4) - Sn(3) - Se(8)	119.19(7)
Se(4)-Sn(3)-Se(8)#2	91.87(6)	Se(7) - Sn(3) - Se(8)	129.41(7)

Se(7)–Sn(3)–Se(8)#2	89.57(6)	Se(8)-Sn(3)-Se(8)#2	89.94(6)
Sn(1)-Se(1)-Sn(2)	83.19(5)	Sn(1)-Se(1)-Sn(3)	83.63(5)
Sn(2)-Se(1)-Sn(3)	84.70(5)	Sn(1)-Se(3)-Sn(2)#3	98.44(6)
Sn(1)-Se(4)-Sn(3)	96.00(6)	Sn(1)-Se(5)-Sn(2)	93.80(5)
Sn(2)-Se(7)-Sn(3)	92.84(6)	Sn(3)-Se(8)-Sn(3)#2	90.06(6)
Se(1)–Se(2)–Sn(6)#3	104.73(7)	Se(2)#1-Se(6)-Sn(2)	101.50(7)
N(1)-Mn(1)-N(2)	77.0(5)	N(1)-Mn(1)-N(3)	168.2(5)
N(1)-Mn(1)-N(4)	95.8(5)	N(1)-Mn(1)-N(5)	92.7(6)
N(1)-Mn(1)-N(6)	94.1(5)	N(2)-Mn(1)-N(3)	94.9(5)
N(2)-Mn(1)-N(4)	100.4(5)	N(2)-Mn(1)-N(5)	164.7(5)
N(2)-Mn(1)-N(6)	93.9(5)	N(3)-Mn(1)-N(4)	77.1(5)
N(3)-Mn(1)-N(5)	96.8(6)	N(3)-Mn(1)-N(6)	95.0(5)
N(4)-Mn(1)-N(5)	91.8(5)	N(4)-Mn(1)-N(6)	164.2(5)
N(5)-Mn(1)-N(6)	75.4(5)		
0 1 1 0 1	• • • •	· · · · ·	

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2, y+1/2, -z+1/2; #2 -x+1, -y+2, -z; #3 -x+1/2, y-1/2, -z+1/2.

I able S2	. Selected Bon	d Lengths (A) and Angles (d	eg) for 2
Sn(1)– $Se(1)$	2.765(8)	Sn(1)– $Se(2)$	2.559(8)
Sn(1)-Se(3)	2.546(8)	Sn(1)– $Se(4)$	2.687(9)
Sn(1)–Se(4)#1	2.524(9)	Sn(2)– $Se(1)$	2.911(8)
Sn(2)– $Se(2)$	2.540(8)	Sn(2)– $Se(5)$	2.555(8)
Sn(2)–Se(6)#2	2.663(7)	Sn(2)–Se(8)#2	2.523(8)
Sn(3)– $Se(1)$	2.714(7)	Sn(3)– $Se(3)$	2.561(8)
Sn(3)– $Se(5)$	2.587(7)	Sn(3)– $Se(6)$	2.541(7)
Sn(3)-Se(7)	2.717(8)	Se(7)-Se(8)	2.324(10)
Fe(1) - N(1)	2.233(19)	Fe(1) - N(2)	2.257(19)
Fe(1) - N(3)	2.230(19)	Fe(1) - N(4)	2.224(19)
Fe(1)–N(5)	2.272(2)	Fe(1)–N(6)	2.212(2)
Se(1)-Sn(1)-Se(2)	90.6(2)	Se(1)-Sn(1)-Se(3)	87.9(2)
Se(1)-Sn(1)-Se(4)	176.9(3)	Se(1)-Sn(1)-Se(4)#1	91.2(3)
Se(2)-Sn(1)-Se(3)	111.7(3)	Se(2)-Sn(1)-Se(4)	91.6(3)
Se(2)–Sn(1)–Se(4) #1	119.0(3)	Se(3) - Sn(1) - Se(4)	89.4(3)
Se(3)–Sn(1)–Se(4)#1	129.2(3)	Se(4) - Sn(1) - Se(4) # 1	89.6(3)
Se(1)-Sn(2)-Se(2)	87.7(2)	Se(1)-Sn(2)-Se(5)	83.0(2)
Se(1)-Sn(2)-Se(6)#2	174.5(2)	Se(1)-Sn(2)-Se(8)#2	81.7(2)
Se(2)-Sn(2)-Se(5)	121.0(3)	Se(2)-Sn(2)-Se(6)#2	88.0(3)
Se(2)–Sn(2)–Se(8)#2	122.3(3)	Se(5) - Sn(2) - Se(6) #2	96.3(3)
Se(5)–Sn(2)–Se(8)#2	113.7(3)	Se(8)#2–Sn(2)–Se(6)#2	103.5(2)
Se(1)-Sn(3)-Se(3)	88.7(2)	Se(1) - Sn(3) - Se(5)	86.4(2)
Se(1)-Sn(3)-Se(6)	99.7(3)	Se(1)-Sn(3)-Se(7)	165.6(3)
Se(3) - Sn(3) - Se(5)	127.9(3)	Se(3) - Sn(3) - Se(6)	112.4(3)
Se(3)-Sn(3)-Se(7)	95.1(3)	Se(5) - Sn(3) - Se(6)	119.6(3)

 Table S2. Selected Bond Lengths (Å) and Angles (deg) for 2

Se(5)-Sn(3)-Se(7)	80.3(2)	Se(6) - Sn(3) - Se(7)	91.7(3)
Sn(1)-Se(1)-Sn(2)	83.7(2)	Sn(1)-Se(1)-Sn(3)	84.7(2)
Sn(2)-Se(1)-Sn(3)	83.5(2)	Sn(1)-Se(2)-Sn(2)	96.0(3)
Sn(1)-Se(3)-Sn(3)	92.6(2)	Sn(1)-Se(4)-Sn(4)#1	90.4(3)
Sn(2)-Se(5)-Sn(3)	93.6(2)	Sn(3)-Se(6)-Sn(2)#3	98.3(2)
Se(7)–Se(8)–Sn(2)#3	105.2(3)	Se(7)-Se(8)-Sn(3)	101.5(3)
N(1)-Fe(1)-N(2)	79.4(15)	N(1)-Fe(1)-N(3)	97.3(17)
N(1)-Fe(1)-N(4)	99.0(18)	N(1)-Fe(1)-N(5)	165(2)
N(1)-Fe(1)-N(6)	92.1(17)	N(2)-Fe(1)-N(3)	173.1(18)
N(2)-Fe(1)-N(4)	94.2(14)	N(2)-Fe(1)-N(5)	90(2)
N(2)-Fe(1)-N(6)	95(3)	N(3)-Fe(1)-N(4)	80.2(15)
N(3)-Fe(1)-N(5)	95(3)	N(3) - Fe(1) - N(6)	91(3)
N(4)-Fe(1)-N(5)	93(2)	N(4) - Fe(1) - N(6)	167(2)
N(5)-Fe(1)-N(6)	78.0(17)		
~ ^ ^			

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y + 1, -z; #2 - x + 2, y + 1/2, -z + 1/2; #3 - x + 2, y - 1/2, -z + 1/2.

1 able 55. 5	elected Bollu Le	liguis (A) allu Aligies (deg)	101 3
Sn(1)– $Se(1)$	2.910(2)	Sn(1)– $Se(2)$	2.543(2)
Sn(1)– $Se(3)$	2.668(2)	Sn(1)– $Se(4)$	2.532(2)
Sn(1)– $Se(5)$	2.552(2)	Sn(2)– $Se(1)$	2.7173(19)
Sn(2)– $Se(3)$	2.526(2)	Sn(2)– $Se(5)$	2.578(2)
Sn(2)– $Se(6)$	2.715(2)	Sn(2)– $Se(7)$	2.549(2)
Sn(3)– $Se(1)$	2.761(2)	Sn(3)– $Se(4)$	2.557(2)
Sn(3)– $Se(7)$	2.550(2)	Sn(3)-Se(8)	2.521(2)
Sn(3)–Se(8)#2	2.703(2)	Se(2)–Se(6)#3	2.330(3)
Zn(1)-N(1)	2.244(15)	Zn(1)-N(2)	2.208(15)
Zn(1)-N(3)	2.247(16)	Zn(1)-N(4)	2.176(14)
Zn(1)–N(5)	2.198(15)	Zn(1)–N(6)	2.167(15)
Se(1)-Sn(1)-Se(2)	81.37(6)	Se(1)-Sn(1)-Se(3)	174.91(7)
Se(1)- $Sn(1)$ - $Se(4)$	87.87(7)	Se(1)-Sn(1)-Se(5)	83.11(6)
Se(2) - Sn(1) - Se(3)	103.51(7)	Se(2)-Sn(1)-Se(4)	122.37(8)
Se(2) - Sn(1) - Se(5)	113.65(8)	Se(3)-Sn(1)-Se(4)	88.24(7)
Se(3) - Sn(1) - Se(5)	96.09(7)	Se(4) - Sn(1) - Se(5)	120.95(8)
Se(1)-Sn(2)-Se(3)#1	99.34(7)	Se(1)-Sn(2)-Se(5)	86.58(6)
Se(1) - Sn(2) - Se(6)	165.63(7)	Se(1)-Sn(2)-Se(7)	88.87(7)
Se(3)#1–Sn(2)–Se(5)	119.75(7)	Se(3)#1-Sn(2)-Se(6)	91.94(7)
Se(3)#1–Sn(2)–Se(7)	112.62(8)	Se(5)-Sn(2)-Se(6)	80.06(6)
Se(5) - Sn(2) - Se(7)	127.48(8)	Se(6) - Sn(2) - Se(7)	95.02(8)
Se(1)-Sn(3)-Se(4)	90.68(7)	Se(1)-Sn(3)-Se(7)	87.90(7)
Se(1)-Sn(3)-Se(8)	90.59(7)	Se(1)-Sn(3)-Se(8)#2	177.06(7)
Se(4) - Sn(3) - Se(7)	111.40(8)	Se(4) - Sn(3) - Se(8)	119.15(8)
Se(4)-Sn(3)-Se(8)#2	91.58(7)	Se(7) - Sn(3) - Se(8)	129.44(9)

Table S3. Selected Bond Lengths (Å) and Angles (deg) for 3

Se(7)-Sn(3)-Se(8)#2	89.52(7)	Se(8)–Sn(3)–Se(8)#2	89.95(7)
Sn(1)-Se(1)-Sn(2)	83.23(6)	Sn(1)-Se(1)-Sn(3)	83.57(6)
Sn(2)-Se(1)-Sn(3)	84.60(6)	Sn(1)-Se(3)-Sn(2)#3	98.42(7)
Sn(1)-Se(4)-Sn(3)	95.94(7)	Sn(1)-Se(5)-Sn(2)	93.60(6)
Sn(2)-Se(7)-Sn(3)	92.64(7)	Sn(3)-Se(8)-Sn(3)#2	90.05(7)
Se(6)#3–Se(2)–Sn(1)	104.46(8)	Se(2)#1–Se(6)–Sn(2)	101.54(8)
N(1)-Zn(1)-N(2)	79.0(6)	N(1)-Zn(1)-N(3)	92.8(6)
N(1)-Zn(1)-N(4)	168.0(7)	N(1)-Zn(1)-N(5)	95.0(6)
N(1)-Zn(1)-N(6)	91.0(6)	N(2)-Zn(1)-N(3)	92.1(6)
N(2)-Zn(1)-N(4)	92.7(6)	N(2)-Zn(1)-N(5)	94.2(6)
N(2)-Zn(1)-N(6)	167.2(6)	N(3)-Zn(1)-N(4)	78.8(6)
N(3)-Zn(1)-N(5)	170.7(6)	N(3)-Zn(1)-N(6)	96.4(6)
N(4)-Zn(1)-N(5)	94.2(6)	N(4)-Zn(1)-N(6)	98.3(5)
N(5)–Zn(1)–N(6)	78.6(6)		
Symmetry transformations	used to genera	te equivalent atoms: #1 -	-x+3/2, y-1/2, -

z+1/2; #2 -x+2, -y, -z; #3 -x+3/2, y+1/2, -z+1/2.

Sn(1)– $Se(1)$	2.524(6)	Sn(1)– $Se(2)$	2.586(6)
Sn(1)– $Se(3)$	2.563(5)	Sn(1)– $Se(4)$	2.439(5)
Sn(2)–Se(1)	2.881(10)	Sn(2)– $Se(2)$	2.561(5)
Sn(2)–Se(5)	2.576(5)	Sn(2)–Se(6)#1	2.587(7)
Sn(2)–Se(8A)#1	2.627(9)	Sn(2)–Se(8B)#1	2.577(12)
Sn(3)–Se(1)	3.172(9)	Sn(3)–Se(3)	2.544(5)
Sn(3)–Se(5)	2.537(5)	Sn(3)–Se(6)	2.543(6)
Sn(3)–Se(7)	2.514(8)	Sn(4)– $Se(8A)$	2.597(10)
Se(7)–Se(8B)	2.387(15)	Se(8A)–Se(8B)	1.288(14)
Ni(1)-N(1)	2.15(4)	Ni(1)–N(2)	2.11(3)
Ni(1)–N(3)	2.18(4)	Ni(1)–N(4)	2.16(3)
Ni(1)–N(5)	2.15(4)	Ni(1)–N(6)	2.12(3)
Se(1)-Sn(1)-Se(2)	95.2(3)	Se(1)-Sn(1)-Se(3)	100.8(3)
Se(1)-Sn(1)-Se(4)	112.5(2)	Se(2)–Sn(1)–Se(3)	105.60(18)
Se(2)–Sn(1)–Se(4)	123.2(2)	Se(3)-Sn(1)-Se(4)	115.6(2)
Se(1)–Sn(2)–Se(2)	87.63(19)	Se(1)–Sn(2)–Se(5)	87.8(2)
Se(1)–Sn(2)–Se(6)#1	172.5(2)	Se(1)–Sn(2)–Se(8A)#1	92.5(3)
Se(1)-Sn(2)-Se(8B)#1	64.1(3)	Se(2)–Sn(2)–Se(5)	111.24(18)
Se(2)–Sn(2)–Se(6)#1	97.69(19)	Se(2)-Sn(2)-Se(8A)#1	130.3(3)
Se(2)-Sn(2)-Se(8B)#1	120.9(3)	Se(5)-Sn(2)-Se(6)#1	95.2(2)

Table S4. Selected Bond Lengths (Å) and Angles (deg) for 42524(6)8n(1)-8e(2)2586(6)

Se(5)–Sn(2)–Se(8B)#1	117.7(3)	Se(1)–Sn(3)–Se(3)	85.87(16)
Se(1)-Sn(3)-Se(5)	82.4(2)	Se(1)–Sn(3)–Se(6)	167.7(2)
Se(1)-Sn(3)-Se(7)	58.9(3)	Se(1)-Sn(3)-Se(8A)	91.4(3)
Se(3)–Sn(3)–Se(5)	112.12(18)	Se(3)–Sn(3)–Se(6)	106.3(2)
Se(3)–Sn(3)–Se(7)	114.3(3)	Se(3)–Sn(3)–Se(8A)	115.8(3)
Se(5)–Sn(3)–Se(6)	94.70(17)	Se(5)-Sn(3)-Se(7)	114.9(3)
Se(5)–Sn(3)–Se(8A)	131.1(3)	Se(6)–Sn(3)–Se(7)	112.5(3)
Se(6)-Sn(3)-Se(8A)	81.4(3)	Se(7)–Sn(3)–Se(8A)	33.1(3)
Sn(1)-Se(1)-Sn(2)	83.9(2)	Sn(1)-Se(1)-Sn(3)	79.4(2)
Sn(2)–Se(1)–Sn(3)	81.69(16)	Sn(1)- $Se(2)$ - $Sn(2)$	89.52(18)
Sn(1)-Se(3)-Sn(3)	91.93(16)	Sn(2)-Se(5)-Sn(3)	101.71(16)
Sn(2)#2-Se(6)-Sn(3)	94.3(2)	Sn(3)–Se(8A)–Sn(2)#2	92.1(3)
N(1)–Ni(1)–N(2)	84.0(14)	N(1)-Ni(1)-N(3)	94.4(15)
N(1)–Ni(1)–N(4)	89.3(14)	N(1)-Ni(1)-N(5)	89.4(15)
N(1)–Ni(1)–N(6)	170.4(15)	N(2)–Ni(1)–N(3)	177.6(16)
N(2)–Ni(1)–N(4)	93.7(14)	N(2)–Ni(1)–N(5)	92(2)
N(2)–Ni(1)–N(6)	88.1(14)	N(3)–Ni(1)–N(4)	84.6(13)
N(3)–Ni(1)–N(5)	89.8(19)	N(3)–Ni(1)–N(6)	93.7(15)
N(4)–Ni(1)–N(5)	174.1(18)	N(4)–Ni(1)–N(6)	96.6(11)
N(5)-Ni(1)-N(6)	85.5(12)		

Symmetry transformations used to generate equivalent atoms: #1) -x+1/2, y, z+1/2; #2) -x+1/2, y,

z-1/2.

Tab	le S5. Selected Bond Ler	ngths (Å) and Angles (de	g) for 5
Sn(1)– $Se(1)$	2.703(6)	Sn(1)– $Se(4)$	2.717(6)
Sn(1)– $Se(5)$	2.721(6)	Sn(1)– $Se(8)$	2.708(6)
Sn(1)– $Se(9)$	2.741(6)	Sn(1)-Se(12)	2.736(7)
Se(1)– $Se(2)$	2.315(9)	Se(2)- $Se(3)$	2.378(10)
Se(3)– $Se(4)$	2.349(9)	Se(5)– $Se(6)$	2.326(8)
Se(6) - Se(7)	2.310(11)	Se(7)– $Se(8)$	2.333(9)
Se(9)–Se(10)	2.336(9)	Se(10)–Se(11)	2.346(9)
Se(11) - Se(12)	2.352(9)	Mn(1)-N(1)	2.302(18)
Mn(1)-N(2)	2.308(16)	Mn(1) - N(3)	2.284(19)
Mn(1)-N(4)	2.276(17)	Mn(1) - N(5)	2.316(18)
Mn(1)-N(6)	2.300(17)		
Se(1)-Sn(1)-Se(4)	95.8(2)	Se(1)-Sn(1)-Se(5)	94.3(2)
Se(1)-Sn(1)-Se(8)	88.45(19)	Se(1)-Sn(1)-Se(9)	86.1(2)
Se(1)-Sn(1)-Se(12)	178.7(2)	Se(4) - Sn(1) - Se(5)	86.5(2)
Se(4) - Sn(1) - Se(8)	175.0(2)	Se(4) - Sn(1) - Se(9)	92.5(2)

(1 (3)) 1

Se(4)–Sn(1)–Se(12)	82.9(2)	Se(5)–Sn(1)–Se(8)	95.8(2)
Se(5)-Sn(1)-Se(9)	178.9(2)	Se(5)-Sn(1)-Se(12)	85.5(2)
Se(8)-Sn(1)-Se(9)	85.2(2)	Se(8) - Sn(1) - Se(12)	92.8(2)
Se(9)-Sn(1)-Se(12)	94.1(2)	Se(1)-Se(2)-Sn(1)	100.7(3)
Se(3)-Se(4)-Sn(1)	102.3(3)	Se(5)-Se(6)-Sn(1)	103.1(3)
Se(7)-Se(8)-Sn(1)	100.5(3)	Se(9)-Se(10)-Sn(1)	101.7(3)
Se(11)-Se(12)-Sn(1)	102.0(3)	Se(1)-Se(2)-Se(3)	98.6(4)
Se(2)-Se(3)-Se(4)	99.1(3)	Se(5)-Se(6)-Se(7)	100.2(3)
Se(6) - Se(7) - Se(8)	101.7(3)	Se(9)-Se(10)-Se(11)	98.0(3)
Se(10)-Se(11)-Se(12)	98.7(3)	N(1)-Mn(1)-N(2)	75.8(11)
N(1)-Mn(1)-N(3)	93.6(14)	N(1)-Mn(1)-N(4)	94.3(13)
N(1)-Mn(1)-N(5)	93.9(12)	N(1)-Mn(1)-N(6)	165.7(13)
N(2)-Mn(1)-N(3)	94.3(12)	N(2)-Mn(1)-N(4)	168.1(12)
N(2)-Mn(1)-N(5)	94.0(13)	N(2)-Mn(1)-N(6)	93.2(11)
N(3)-Mn(1)-N(4)	79.5(12)	N(3)-Mn(1)-N(5)	169.9(13)
N(3)-Mn(1)-N(6)	96.2(12)	N(4)-Mn(1)-N(5)	93.3(14)
N(4)-Mn(1)-N(6)	97.6(12)	N(5)-Mn(1)-N(6)	77.7(6)
Se(8)-Sn(1)-Se(1)-Se(2)	-152.3(3)	Se(4)-Sn(1)-Se(1)-Se(2)	25.1(3)
Se(5)-Sn(1)-Se(1)-Se(2)	112.0(3)	Se(12)-Sn(1)-Se(1)-Se(2)	32(10)
Se(9)-Sn(1)-Se(1)-Se(2)	-67.0(3)	Sn(1)-Se(1)-Se(2)-Se(3)	-55.7(4)
Se(1)-Se(2)-Se(3)-Se(4)	67.6(4)	Se(2)-Se(3)-Se(4)-Sn(1)	-47.1(4)
Se(1)-Sn(1)-Se(4)-Se(3)	13.6(3)	Se(8)-Sn(1)-Se(4)-Se(3)	162(2)
Se(5)-Sn(1)-Se(4)-Se(3)	-80.3(3)	Se(12)-Sn(1)-Se(4)-Se(3)	-166.2(3)
Se(9)-Sn(1)-Se(4)-Se(3)	100.0(3)	Se(1)-Sn(1)-Se(5)-Se(6)	103.3(3)
Se(8)-Sn(1)-Se(5)-Se(6)	14.4(3)	Se(4)-Sn(1)-Se(5)-Se(6)	-161.2(3)
Se(12)-Sn(1)-Se(5)-Se(6)	-78.0(3)	Se(9)-Sn(1)-Se(5)-Se(6)	-144(13)
Sn(1)-Se(5)-Se(6)-Se(7)	-46.2(4)	Se(5)-Se(6)-Se(7)-Se(8)	64.9(4)
Se(6)-Se(7)-Se(8)-Sn(1)	-52.2(4)	Se(1)-Sn(1)-Se(8)-Se(7)	-72.7(3)
Se(4)-Sn(1)-Se(8)-Se(7)	139(2)	Se(5)-Sn(1)-Se(8)-Se(7)	21.4(3)
Se(12)-Sn(1)-Se(8)-Se(7)	107.2(3)	Se(9)-Sn(1)-Se(8)-Se(7)	-159.0(3)
Se(1)-Sn(1)-Se(9)-Se(10)	-159.6(3)	Se(8)-Sn(1)-Se(9)-Se(10)	-70.9(3)
Se(4)-Sn(1)-Se(9)-Se(10)	104.7(3)	Se(5)-Sn(1)-Se(9)-Se(10)	87(13)
Se(12)-Sn(1)-Se(9)-Se(10)	21.6(3)	Sn(1)-Se(9)-Se(10)-Se(11)	-54.4(3)
Se(9)-Se(10)-Se(11)-Se(12)	69.0(3)	Se(10)-Se(11)-Se(12)-Sn(1)	-51.6(3)
Se(1)-Sn(1)-Se(12)-Se(11)	-82(10)	Se(8)-Sn(1)-Se(12)-Se(11)	102.9(3)
Se(4)-Sn(1)-Se(12)-Se(11)	-74.5(3)	Se(5)-Sn(1)-Se(12)-Se(11)	-161.5(3)
Se(9)-Sn(1)-Se(12)-Se(11)	17.5(3)		

	Table S6. Selected Bond Ler	ngths (Å) and Angles ((deg) for 6
Sn(1)– $Se(1)$	2.972(13)	Sn(1)– $Se(2)$	2.255(11)
Sn(1)– $Se(4)$	2.678(10)	Sn(1)– $Se(5)$	2.727(10)
Sn(1)– $Se(8)$	2.981(12)	Sn(1)– $Se(9)$	2.601(11)
Sn(1)-Se(12)	2.760(10)	Se(2)- $Se(3)$	2.356(15)
Se(3)- $Se(4)$	2.478(14)	Se(5)– $Se(6)$	2.451(14)

Se(6)–Se(7)	2.417(16)	Se(7)–Se(8)	2.286(12)
Se(9)–Se(10)	2.367(14)	Se(10)–Se(11)	2.314(17)
Se(11)–Se(12)	2.214(14)	Fe(1) - N(1)	2.202(19)
Fe(1)-N(2)	2.293(19)	Fe(1)-N(3)	2.208(19)
Fe(1)-N(4)	2.337(16)	Fe(1) - N(5)	2.221(17)
Fe(1)-N(6)	2.317(19)		
Se(1)-Sn(1)-Se(4)	89.4(4)	Se(1)-Sn(1)-Se(5)	93.6(3)
Se(1)-Sn(1)-Se(8)	179.2(3)	Se(1)-Sn(1)-Se(9)	89.4(3)
Se(1)-Sn(1)-Se(12)	84.6(4)	Se(4)-Sn(1)-Se(5)	102.1(3)
Se(4)-Sn(1)-Se(8)	90.6(3)	Se(4)-Sn(1)-Se(9)	178.8(4)
Se(4) - Sn(1) - Se(12)	74.9(3)	Se(5)-Sn(1)-Se(8)	87.2(3)
Se(5)-Sn(1)-Se(9)	77.9(3)	Se(5)-Sn(1)-Se(12)	176.4(4)
Se(8)-Sn(1)-Se(9)	90.6(4)	Se(8) - Sn(1) - Se(12)	94.7(3)
Se(9)-Sn(1)-Se(12)	105.1(3)	Se(1)-Se(2)-Sn(1)	104.9(5)
Se(3)-Se(4)-Sn(1)	106.3(4)	Se(5)-Se(6)-Sn(1)	110.5(4)
Se(7)-Se(8)-Sn(1)	109.4(5)	Se(9)-Se(10)-Sn(1)	93.9(5)
Se(11)-Se(12)-Sn(1)	89.4(5)	Se(1)-Se(2)-Se(3)	98.8(5)
Se(2)-Se(3)-Se(4)	98.2(5)	Se(5)-Se(6)-Se(7)	101.6(6)
Se(6) - Se(7) - Se(8)	98.4(5)	Se(9)-Se(10)-Se(11)	97.9(6)
Se(10)-Se(11)-Se(12)	104.6(6)	N(1) - Fe(1) - N(2)	79.7(8)
N(1)-Fe(1)-N(3)	148.9(19)	N(1) - Fe(1) - N(4)	82.9(17)
N(1)-Fe(1)-N(5)	84.6(17)	N(1) - Fe(1) - N(6)	108.6(18)
N(2)-Fe(1)-N(3)	82.9(19)	N(2)-Fe(1)-N(4)	81.2(18)
N(2)-Fe(1)-N(5)	162.9(17)	N(2)-Fe(1)-N(6)	101.0(10)
N(3)-Fe(1)-N(4)	69.1(10)	N(3) - Fe(1) - N(5)	114.2(18)
N(3)-Fe(1)-N(6)	99.8(12)	N(4) - Fe(1) - N(5)	103.6(16)
N(4)-Fe(1)-N(6)	168.5(13)	N(5)-Fe(1)-N(6)	77.6(7)
Se(9)-Sn(1)-Se(1)-Se(2)	159.9(5)	Se(4)-Sn(1)-Se(1)-Se(2)	-20.0(5)
Se(5)-Sn(1)-Se(1)-Se(2)	82.1(5)	Se(12)-Sn(1)-Se(1)-Se(2)	-94.9(5)
Se(8)-Sn(1)-Se(1)-Se(2)	-110(27)	Sn(1)-Se(1)-Se(2)-Se(3)	53.0(6)
Se(1)-Se(2)-Se(3)-Se(4)	-65.8(6)	Se(2)-Se(3)-Se(4)-Sn(1)	51.9(5)
Se(9)-Sn(1)-Se(4)-Se(3)	-21(18)	Se(5)-Sn(1)-Se(4)-Se(3)	-112.1(5)
Se(12)-Sn(1)-Se(4)-Se(3)	65.9(5)	Se(1)-Sn(1)-Se(4)-Se(3)	-18.6(5)
Se(8)-Sn(1)-Se(4)-Se(3)	160.6(4)	Se(9)-Sn(1)-Se(5)-Se(6)	77.8(5)
Se(4)-Sn(1)-Se(5)-Se(6)	-103.4(5)	Se(12)-Sn(1)-Se(5)-Se(6)	-135(6)
Se(1)-Sn(1)-Se(5)-Se(6)	166.4(5)	Se(8)-Sn(1)-Se(5)-Se(6)	-13.4(5)
Sn(1)-Se(5)-Se(6)-Se(7)	44.3(6)	Se(5)-Se(6)-Se(7)-Se(8)	-57.3(7)
Se(6)-Se(7)-Se(8)-Sn(1)	50.0(7)	Se(9)-Sn(1)-Se(8)-Se(7)	-100.6(6)
Se(4)-Sn(1)-Se(8)-Se(7)	79.4(6)	Se(5)-Sn(1)-Se(8)-Se(7)	-22.7(6)
Se(12)-Sn(1)-Se(8)-Se(7)	154.3(5)	Se(1)-Sn(1)-Se(8)-Se(7)	170(27)
Se(4)-Sn(1)-Se(9)-Se(10)	69(18)	Se(5)-Sn(1)-Se(9)-Se(10)	159.7(5)
Se(12)-Sn(1)-Se(9)-Se(10)	-18.3(6)	Se(1)-Sn(1)-Se(9)-Se(10)	65.9(5)
Se(8)-Sn(1)-Se(9)-Se(10)	-113.3(5)	Sn(1)-Se(9)-Se(10)-Se(11)	49.2(6)
Se(9)-Se(10)-Se(11)-Se(12)	-77.5(7)	Se(10)-Se(11)-Se(12)-Sn(1)	55.0(6)

Se(9)-Sn(1)-Se(12)-Se(11)	-20.5(6)	Se(4)-Sn(1)-Se(12)-Se(11)	160.7(5)
Se(5)-Sn(1)-Se(12)-Se(11)	-167(6)	Se(1)-Sn(1)-Se(12)-Se(11)	-108.4(5)
Se(8)-Sn(1)-Se(12)-Se(11)	71.4(5)		

Table S7. Selected Bond Lengths (Å) and Angles (deg) for 7				
Sn(1)– $Se(1)$	2.725(7)	Sn(1)– $Se(4)$	2.707(7)	
Sn(1)– $Se(5)$	2.717(7)	Sn(1)– $Se(8)$	2.720(7)	
Sn(1)– $Se(9)$	2.680(8)	Sn(1)-Se(12)	2.675(7)	
Se(1)-Se(2)	2.329(10)	Se(2)–Se(3)	2.336(12)	
Se(3)-Se(4)	2.345(10)	Se(5)–Se(6)	2.311(11)	
Se(6)–Se(7)	2.319(12)	Se(7)–Se(8)	2.323(10)	
Se(9)–Se(10)	2.314(11)	Se(10)-Se(11)	2.322(13)	
Se(11)–Se(12)	2.311(10)	Zn(1)-N(1)	2.173(19)	
Zn(1)-N(2)	2.171(3)	Zn(1)-N(3)	2.222(3)	
Zn(1)-N(4)	2.252(4)	Zn(1)-N(5)	2.191(5)	
Zn(1)-N(6)	2.171(2)			
Se(1)-Sn(1)-Se(4)	95.4(2)	Se(1)-Sn(1)-Se(5)	178.3(3)	
Se(1)-Sn(1)-Se(8)	84.9(2)	Se(1)-Sn(1)-Se(9)	89.2(2)	
Se(1)-Sn(1)-Se(12)	93.8(2)	Se(4)- $Sn(1)$ - $Se(5)$	83.3(2)	
Se(4) - Sn(1) - Se(8)	91.7(2)	Se(4)-Sn(1)-Se(9)	174.5(3)	
Se(4)-Sn(1)-Se(12)	85.7(2)	Se(5)-Sn(1)-Se(8)	94.1(2)	
Se(5)-Sn(1)-Se(9)	92.2(3)	Se(5)-Sn(1)-Se(12)	87.2(2)	
Se(8) - Sn(1) - Se(9)	85.6(2)	Se(8) - Sn(1) - Se(12)	177.0(3)	
Se(9)-Sn(1)-Se(12)	97.1(2)	Se(1)- $Se(2)$ - $Sn(1)$	99.8(3)	
Se(3)-Se(4)-Sn(1)	102.3(3)	Se(5)- $Se(6)$ - $Sn(1)$	102.1(3)	
Se(7)-Se(8)-Sn(1)	100.8(3)	Se(9)-Se(10)-Sn(1)	99.9(3)	
Se(11)-Se(12)-Sn(1)	102.5(3)	Se(1)- $Se(2)$ - $Se(3)$	98.1(4)	
Se(2)-Se(3)-Se(4)	99.9(3)	Se(5)-Se(6)-Se(7)	98.8(4)	
Se(6)-Se(7)-Se(8)	97.9(4)	Se(9)-Se(10)-Se(11)	101.0(4)	
Se(10)-Se(11)-Se(12)	100.7(4)	N(1)-Zn(1)-N(2)	75.5(18)	
N(1)-Zn(1)-N(3)	168.6(12)	N(1)-Zn(1)-N(4)	96.1(12)	
N(1)-Zn(1)-N(5)	89.4(13)	N(1)-Zn(1)-N(6)	98.6(16)	
N(2)-Zn(1)-N(3)	95.9(19)	N(2)-Zn(1)-N(4)	95.7(16)	
N(2)-Zn(1)-N(5)	88.8(16)	N(2)-Zn(1)-N(6)	169(2)	
N(3)-Zn(1)-N(4)	77.0(14)	N(3)-Zn(1)-N(5)	98.0(15)	
N(3)-Zn(1)-N(6)	91.0(16)	N(4)-Zn(1)-N(5)	173.6(13)	
Se(12)-Sn(1)-Se(1)-Se(2)	-112.4(3)	Se(9)-Sn(1)-Se(1)-Se(2)	150.5(3)	
Se(4)-Sn(1)-Se(1)-Se(2)	-26.4(3)	Se(5)-Sn(1)-Se(1)-Se(2)	11(8)	
Se(8)-Sn(1)-Se(1)-Se(2)	64.9(3)	Sn(1)-Se(1)-Se(2)-Se(3)	56.8(4)	
Se(1)-Se(2)-Se(3)-Se(4)	-68.2(4)	Se(2)-Se(3)-Se(4)-Sn(1)	46.9(4)	
Se(12)-Sn(1)-Se(4)-Se(3)	81.5(3)	Se(9)-Sn(1)-Se(4)-Se(3)	-158(2)	
Se(5)-Sn(1)-Se(4)-Se(3)	169.1(4)	Se(8)-Sn(1)-Se(4)-Se(3)	-96.9(3)	
Se(1)-Sn(1)-Se(4)-Se(3)	-11.9(4)	Se(12)-Sn(1)-Se(5)-Se(6)	160.6(4)	
_Se(9)-Sn(1)-Se(5)-Se(6)	-102.4(4)	Se(4)-Sn(1)-Se(5)-Se(6)	74.6(4)	

Se(8)-Sn(1)-Se(5)-Se(6)	-16.7(4)	Se(1)-Sn(1)-Se(5)-Se(6)	37(8)
Sn(1)-Se(5)-Se(6)-Se(7)	51.3(4)	Se(5)-Se(6)-Se(7)-Se(8)	-69.9(4)
Se(6)-Se(7)-Se(8)-Sn(1)	55.4(4)	Se(12)-Sn(1)-Se(8)-Se(7)	-138(4)
Se(9)-Sn(1)-Se(8)-Se(7)	69.1(3)	Se(4)-Sn(1)-Se(8)-Se(7)	-106.1(3)
Se(5)-Sn(1)-Se(8)-Se(7)	-22.7(4)	Se(1)-Sn(1)-Se(8)-Se(7)	158.7(3)
Se(12)-Sn(1)-Se(9)-Se(10)	-23.0(4)	Se(4)-Sn(1)-Se(9)-Se(10)	-144(2)
Se(5)-Sn(1)-Se(9)-Se(10)	-110.4(3)	Se(8)-Sn(1)-Se(9)-Se(10)	155.7(3)
Se(1)-Sn(1)-Se(9)-Se(10)	70.7(3)	Sn(1)-Se(9)-Se(10)-Se(11)	52.5(4)
Se(9)-Se(10)-Se(11)-Se(12)	-64.9(5)	Se(10)-Se(11)-Se(12)-Sn(1)	45.2(4)
Se(9)-Sn(1)-Se(12)-Se(11)	-13.1(4)	Se(4)-Sn(1)-Se(12)-Se(11)	162.1(4)
Se(5)-Sn(1)-Se(12)-Se(11)	78.7(4)	Se(8)-Sn(1)-Se(12)-Se(11)	-166(4)
Se(1)-Sn(1)-Se(12)-Se(11)	-102.8(4)		

Table 60	Salaatad	Dand	Longtha	(%)	and Anglas	(dag)	for	o
I able So.	Selected	Dona	Lenguis	(A)) and Angles	(deg)	101	O

	····· · · · · · · · · · · · · · · · ·		
Sn(1)–Se(1)	2.670(3)	Sn(1)–Se(2)	2.313(5)
Sn(1)– $Se(4)$	2.686(3)	Sn(1)– $Se(5)$	2.712(3)
Sn(1)–Se(8)	2.675(3)	Sn(1)–Se(9)	2.718(3)
Sn(1)–Se(12)	2.729(3)	Se(2)–Se(3)	2.323(5)
Se(3)- $Se(4)$	2.311(5)	Se(5)–Se(6)	2.313(4)
Se(6)–Se(7)	2.330(4)	Se(7)–Se(8)	2.323(4)
Se(9)–Se(10)	2.333(4)	Se(10)–Se(11)	2.329(4)
Se(11)–Se(12)	2.325(4)	Ni(1)–N(1)	2.149(15)
Ni(1)–N(2)	2.133(2)	Ni(1)–N(3)	2.085(17)
Ni(1)–N(4)	2.162(2)	Ni(1)–N(5)	2.101(2)
Ni(1)–N(6)	2.146(18)		
Se(1)-Sn(1)-Se(4)	96.78(10)	Se(1)-Sn(1)-Se(5)	88.69(9)
Se(1)-Sn(1)-Se(8)	175.15(11)	Se(1)-Sn(1)-Se(9)	92.36(10)
Se(1)-Sn(1)-Se(12)	85.67(10)	Se(4) - Sn(1) - Se(5)	93.25(9)
Se(4) - Sn(1) - Se(8)	85.40(10)	Se(4) - Sn(1) - Se(9)	86.81(9)
Se(4) - Sn(1) - Se(12)	177.33(11)	Se(5)-Sn(1)-Se(8)	95.52(9)
Se(5)-Sn(1)-Se(9)	178.93(11)	Se(5)-Sn(1)-Se(12)	85.71(9)
Se(8) - Sn(1) - Se(9)	83.41(10)	Se(8) - Sn(1) - Se(12)	92.25(11)
Se(9)-Sn(1)-Se(12)	94.18(9)	Se(1)- $Se(2)$ - $Sn(1)$	100.04(14)
Se(3)-Se(4)-Sn(1)	102.42(13)	Se(5)-Se(6)-Sn(1)	99.22(12)
Se(7)-Se(8)-Sn(1)	103.36(13)	Se(9)-Se(10)-Sn(1)	102.21(12)
Se(11)-Se(12)-Sn(1)	100.59(12)	Se(1)- $Se(2)$ - $Se(3)$	100.47(17)
Se(2)-Se(3)-Se(4)	100.32(15)	Se(5)-Se(6)-Se(7)	98.90(14)
Se(6)-Se(7)-Se(8)	99.82(14)	Se(9)-Se(10)-Se(11)	98.41(15)
Se(10)-Se(11)-Se(12)	97.89(14)	N(1)–Ni(1)–N(2)	82.2(7)
N(1)–Ni(1)–N(3)	92.4(6)	N(1)–Ni(1)–N(4)	91.4(7)
N(1)–Ni(1)–N(5)	92.2(7)	N(1)–Ni(1)–N(6)	172.5(7)
N(2)–Ni(1)–N(3)	91.8(8)	N(2)–Ni(1)–N(4)	170.8(8)
N(2)–Ni(1)–N(5)	92.8(8)	N(2)–Ni(1)–N(6)	93.0(8)
N(3)–Ni(1)–N(4)	81.8(8)	N(3)–Ni(1)–N(5)	173.9(8)

N(3)–Ni(1)–N(6)	93.6(6)	N(4)-Ni(1)-N(5)	94.1(8)
N(4)–Ni(1)–N(6)	94.0(8)	N(5)–Ni(1)–N(6)	82.2(7)
Se(8)-Sn(1)-Se(1)-Se(2)	-140.0(11)	Se(4)-Sn(1)-Se(1)-Se(2)	-23.54(14)
Se(5)-Sn(1)-Se(1)-Se(2)	69.58(14)	Se(9)-Sn(1)-Se(1)-Se(2)	-110.61(14)
Se(12)-Sn(1)-Se(1)-Se(2)	155.38(14)	Sn(1)-Se(1)-Se(2)-Se(3)	53.43(17)
Se(1)-Se(2)-Se(3)-Se(4)	-65.6(2)	Se(2)-Se(3)-Se(4)-Sn(1)	45.62(18)
Se(1)-Sn(1)-Se(4)-Se(3)	-13.09(15)	Se(8)-Sn(1)-Se(4)-Se(3)	162.56(15)
Se(5)-Sn(1)-Se(4)-Se(3)	-102.16(15)	Se(9)-Sn(1)-Se(4)-Se(3)	78.92(15)
Se(12)-Sn(1)-Se(4)-Se(3)	-169.3(19)	Se(1)-Sn(1)-Se(5)-Se(6)	150.11(12)
Se(8)-Sn(1)-Se(5)-Se(6)	-27.49(13)	Se(4)-Sn(1)-Se(5)-Se(6)	-113.17(12)
Se(9)-Sn(1)-Se(5)-Se(6)	-20(5)	Se(12)-Sn(1)-Se(5)-Se(6)	64.36(13)
Sn(1)-Se(5)-Se(6)-Se(7)	57.05(14)	Se(5)-Se(6)-Se(7)-Se(8)	-67.11(17)
Se(6)-Se(7)-Se(8)-Sn(1)	44.83(17)	Se(1)-Sn(1)-Se(8)-Se(7)	-160.6(10)
Se(4)-Sn(1)-Se(8)-Se(7)	82.56(14)	Se(5)-Sn(1)-Se(8)-Se(7)	-10.27(14)
Se(9)-Sn(1)-Se(8)-Se(7)	169.87(14)	Se(12)-Sn(1)-Se(8)-Se(7)	-96.18(14)
Se(1)-Sn(1)-Se(9)-Se(10)	-101.91(14)	Se(8)-Sn(1)-Se(9)-Se(10)	75.70(14)
Se(4)-Sn(1)-Se(9)-Se(10)	161.43(14)	Se(5)-Sn(1)-Se(9)-Se(10)	68(5)
Se(12)-Sn(1)-Se(9)-Se(10)	-16.09(15)	Sn(1)-Se(9)-Se(10)-Se(11)	50.84(15)
Se(9)-Se(10)-Se(11)-Se(12)	-69.96(17)	Se(10)-Se(11)-Se(12)-Sn(1)	56.10(16)
Se(1)-Sn(1)-Se(12)-Se(11)	68.68(14)	Se(8)-Sn(1)-Se(12)-Se(11)	-106.93(14)
Se(4)-Sn(1)-Se(12)-Se(11)	-135.0(19)	Se(5)-Sn(1)-Se(12)-Se(11)	157.69(14)
Se(9)-Sn(1)-Se(12)-Se(11)	-23.38(15)		

Table S9. Hydrogen Bond Lengths (Å) and Angles (deg) for 1–8

D–H···A	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)
1			
$N(1)-H(1A)\cdots Se(3)#1$	2.77	3.603(14)	154.3
$N(2)-H(2A)\cdots Se(7)#2$	2.73	3.606(12)	164.6
$N(2)-H(2B)\cdots Se(6)#1$	2.71	3.600(13)	173.3
$N(3)-H(3A)\cdots Se(8)$	2.96	3.639(12)	133.7
$N(3)-H(3B)\cdots Se(2)$	3.02	3.729(14)	137.0
$N(4)-H(4B)\cdots Se(5)#1$	2.75	3.482(12)	139.5
2			
$N(1)-H(1B)\cdots Se(5)#1$	0.90	2.75	3.44(4)
$N(2)-H(2A)\cdots Se(4)#2$	0.90	2.86	3.60(4)
$N(2)-H(2B)\cdots Se(8)#3$	0.90	2.93	3.66(4)
$N(3)-H(3A)\cdots Se(6)#4$	0.90	2.84	3.64(4)
$N(3)-H(3B)\cdots Se(6)\#5$	0.90	3.06	3.94(4)
$N(4)-H(4A)\cdots Se(3)#2$	0.90	2.65	3.54(5)
$N(4)-H(4B)\cdots Se(7)#1$	0.90	2.72	3.62(4)
3			
$N(4)-H(4A)\cdots Se(7)#1$	2.74	3.604(14)	160.5
$N(4)-H(4B)\cdots Se(6)#2$	2.71	3.591(16)	168.1

N(5)–H(5A)···Se(8)#3	2.90	3.642(15)	141.0
N(5)–H(5B)····Se(2)#3	2.96	3.683(14)	138.6
N(6)–H(6A)···Se(8)#4	3.15	3.879(16)	139.4
N(6)–H(6B)····Se(5)#2	2.73	3.492(13)	142.9
4			
N(2)-H(2A)Se(1)#1	2.97	3.78(4)	150.5
N(2)-H(2B)Se(6)#2	3.03	3.90(4)	164.4
N(8)-H(8A)Se(15)#3	2.94	3.82(3)	166.0
N(10)-H(10A)Se(6)#2	2.46	3.28(4)	151.5
N(10)-H(10B)Se(11)#4	2.90	3.76(4)	161.3
N(11)-H(11B)Se(11)#4	2.79	3.65(3)	160.9
5			
$N(1)-H(1A)\cdots Se(9)#1$	2.76	3.62(4)	160.5
$N(2)-H(2A)\cdots Se(12)$	2.90	3.65(3)	141.8
$N(3)-H(3A)\cdots$ Se(12)	2.94	3.66(3)	138.2
$N(4)-H(4A)\cdots Se(8)#1$	2.90	3.72(4)	152.3
$N(4)-H(4B)\cdots Se(1)#2$	3.03	3.92(3)	172.0
$N(5)-H(5A)\cdots Se(1)#1$	2.90	3.73(4)	153.1
$N(6)-H(6A)\cdots Se(4)$	2.81	3.61(3)	149.2
6			
N(1)-H(1B)Se(12)#1	2.65	3.50(3)	159.2
$N(2)-H(2B)\cdots Se(9)$	2.98	3.79(5)	150.0
$N(2)-H(2B)\cdots Se(1)$	2.93	3.54(4)	126.3
7			
$N(1)-H(1A)\cdots Se(8)#1$	2.97	3.86(3)	168.7
$N(1)-H(1B)\cdots$ Se(8)	3.07	3.84(4)	144.7
$N(2)-H(2B)\cdots Se(4)#2$	2.89	3.67(4)	146.4
$N(3)-H(3B)\cdots Se(12)#2$	3.01	3.82(3)	150.1
$N(4)-H(4A)\cdots Se(1)#3$	2.92	3.80(3)	168.0
$N(4)-H(4B)\cdots Se(9)$	2.97	3.72(4)	142.3
$N(5)-H(5A)\cdots Se(8)#1$	2.91	3.77(4)	160.8
$N(5)-H(5B)\cdots Se(5)#2$	2.92	3.64(3)	138.0
$N(6)-H(6A)\cdots Se(5)#4$	2.95	3.75(5)	148.9
$N(6)-H(6B)\cdots Se(8)$	3.00	3.79(6)	147.6
8			
$N(1)-H(1A)\cdots Se(1)#1$	2.90	3.708(17)	149.7
$N(1)-H(1B)\cdots Se(5)#2$	2.90	3.799(17)	175.3
N(2)-H(2A)Se(4)#3	2.98	3.774(18)	147.9
N(3)-H(3A)Se(8)#3	3.00	3.777(15)	146.0
N(3)-H(3B)Se(5)#2	2.97	3.786(15)	151.0
N(4)-H(4A)Se(5)#1	2.94	3.722(19)	145.5
N(5)-H(5A)Se(12)#1	2.88	3.69(2)	151.0
$N(6)-H(6A)\cdots Se(9)#3$	2.76	3.565(19)	149.4

Symmetry transformations used to generate equivalent atoms: For 1: #1) x+1, y, z; #2) -x+1, -y+2, -z. For 2: #1) x-1, y, z; #2) -x+1, -y+1, -z; #3) -x+2, y+1/2, -z+1/2; #4) -x+1, y+1/2, -z+1/2; #5) x-1, -y+3/2, z-1/2. For 3: #1) x, y+1, z+1; #2) -x+1, -y+1, -z+1; #3) -x+2, -y+1, -z+1; #4) x-1/2, -y+1/2, z+1/2. For 4: #1) x-1, y+1, z; #2) -x+1, y+1/2, -z+2; #3) -x+1, y-1/2, -z+1; #4) x-1, y, z. For 5: #1) x, y+1, z; #2) -x, -y+1, -z+2. For 6: #1) x, y-1, z. For 7: #1) -x+2, -y+1, -z+1; #2) x, y+1, z; #3) -x+2, -y+1, -z; #4) -x+1, -y+1, -z+1. For 8: #1) -x+1, -y+2, -z+1; #2) x, y, z+1; #3) - x+1, -y+1, -z+1.

Fig. S1. Simulated and experimental powder XRD patterns of compound 1, and experimental powder XRD pattern after photocatalysis for compound 1.

Fig. S2. Simulated and experimental powder XRD patterns of compound **2**, and experimental powder XRD pattern after photocatalysis for compound **2**.

Fig. S3. Simulated and experimental powder XRD patterns of compound 3.

Fig. S4. Simulated and experimental powder XRD patterns of compound 4.

Fig. S5. Simulated and experimental powder XRD patterns of compound **5**, and experimental powder XRD pattern after photocatalysis for compound **5**.

Fig. S6. Simulated and experimental powder XRD patterns of compound **6**, and experimental powder XRD pattern after photocatalysis for compound **6**.

Fig. S7. Simulated and experimental powder XRD patterns of compound 8.

Fig. S8. Crystal structures of the $[Mn(en)_3]^{2+}$ cation and the asymmetric unit $Sn_3Se_6(Se_2)$ in 1 with the labeling scheme, showing the coordination environment of each Sn atom.

Fig. S9. A view of the two-dimensional honeycomb $[Sn_3Se_6(Se_2)]_n^{2n-}$ layer in 1.

Fig. S10. Right: Packing diagram of **1** viewed perpendicular to the (111) plane, showing the $[Mn(en)_3]^{2+}$ cations stack in arrays in the nanochannels. Left: Packing diagram of **1** viewed along the *b* axis, showing the $[Mn(en)_3]^{2+}$ cations between the $[Sn_3Se_6(Se_2)]_n^{2n-}$ layers. Hydrogen atoms are omitted for clarity. Cyan octahedron: MnN₆.

Fig. S11. Position of the $[Mn(en)_3]^{2+}$ ions viewed along the $[Sn_2Se_6(Se_2)^{2-}]_n$ layer (a) and viewed in the direction perpendicular to the $[Sn_2Se_6(Se_2)^{2-}]_n$ layer (b) in **1**. The $[Mn(en)_3]^{2+}$ ions in Δ -conformation are located up the $[Sn_2Se_6(Se_2)^{2-}]_n$ layer, while the $[Mn(en)_3]^{2+}$ ions in Λ -conformation are located down the $[Sn_2Se_6(Se_2)^{2-}]_n$ layer.

Fig. S12. Crystal structure of the $[Ni(en)_3]^{2+}$ cation (top), and asymmetric $Sn_3Se_{7.5}$ unit of **4** with the labeling scheme, showing the coordination environment of each Sn atom (bottom).

Fig. S13. Sectional packing of **3**, showing the $[Ni(en)_3]^{2+}$ cations stacking in arrays between the zigzag $[Sn_3Se_{7.5}]_n^{2n-}$ chains. Hydrogen atoms are omitted for clarity. NiN₆ is shown in cyan octahedron and Se₂ group is shown in purple.

Fig. S14. A view of the layer formed by the $[Mn(en)_3]^{2+}$ and $[Sn(Se_4)_3]^{2-}$ moieties via N-H···Se hydrogen bonds.

Fig. S15. Packing diagram of **5** viewed along the *b* axis; showing that $[Mn(en)_3]^{2+}$ and $[Sn(Se_4)_3]^{2-}$ are in the same conformation in one $\{[Mn(en)_3]^{2+}/[Sn(Se_4)_3]^{2-}\}_n$ array.

Fig. S17. TG curve for compound 2.

Fig. S18. TG curve for compound 5.

Fig. S19. TG curve for compound 6.

Fig. S20. The XRD patterns of the residue for the compound **1**. Literature stick patterns for SnSe₂ (PDF No. 23-0602) and MnSe (PDF No. 11-0683) are showed.

Fig. S21. The XRD patterns of the residue for the compound **2**. Literature stick patterns for SnSe₂ (PDF No. 23-0602) and FeSe (PDF No. 85-0735) are showed.

Fig. S22. The XRD patterns of the residue for the compound **5**. Literature stick patterns for SnSe₂ (PDF No. 23-0602), and MnSe (PDF NO. 11-0683) are showed.

Fig. S23. The XRD patterns of the residue for the compound **6**. Literature stick patterns for $SnSe_2$ (PDF No. 23-0602) and Fe_3Se_4 (PDF No. 71-2250) are showed.

Fig. S24. Time dependent absorption spectra of MB solution with photodegradation catalyzed by 1 (a), 5 (b), SM1 (c), and SM5 (d).

Fig. S25. Time dependent absorption spectra of MB solution with photodegradation catalyzed by 2 (a), 6 (b), SF2 (c), and SF6 (d).

Fig. 26. The energy dispersive X-ray (EDX) spectra of the thermal decomposition residues **SM1** of compound **1** (a), and **SF2** of compound **2** (b).

Fig. S27. IR spectrum of compound 1.

Fig. S28. IR spectrum of compound 2.

Fig. S29. IR spectrum of compound 3.

Fig. S30. IR spectrum of compound 4.

Fig. S31. IR spectrum of compound 5.

Fig. S32. IR spectrum of compound 6.

Fig. S33. IR spectrum of compound 7.

Fig. S34. IR spectrum of compound 8.