Electronic Supplementary Information

Bulk crystal growth and characterization of bismuth ferritebased material Bi3FeO4(MoO4)2

Conggang Li,^a Zeliang Gao,^a Xiangxin Tian,^a Junjie Zhang,^{a,b} Dianxing Ju,^a Qian Wu,^a Weiqun Lu,^a Youxuan Sun^{*,a}, Deliang Cui^a and Xutang Tao^{*,a}

^aState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.

^bMaterials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd. Oak Ridge, TN 37831 United States.

1. Table S1. Crystal data and structure refinement for BFM.

2. Figure S1. The experimental patterns of powder XRD of the residue in the platinum pan after DSC/TGA.

3. Figure S2. Photographs of the as-grown $Bi_3FeO_4(MoO_4)_2$ crystals through spontaneous crystallization with MoO₃ flux.

4. Table S2. Bond Distances (Å) and Angles (deg.) for Bi₃FeO₄(MoO₄)₂ crystal.

5. Figure S3. (a)-(c) Photographs of the indentation morphologies of the $Bi_3FeO_4(MoO_4)_2$

crystal faces (100), (010) and (001), respectively, from which they are rhombic and regular.

6. Table S3. Observed Raman wavenumbers (cm⁻¹) and vibrational assignments for $Bi_3FeO_4(MoO_4)_2$ crystal.

Crystal	BFM
Empirical formula	$Bi_3FeO_4(MoO_4)_2$
$M_{ m r}$	1066.67
Crystal system	Monoclinic
Space group	<u>C2</u> /c (No. 15)
Temperature (K)	<u>296</u>
<i>a</i> , <i>b</i> , <i>c</i> (Å)	<u>16.927(12)</u> , 11.672(12), 5.263(4)
β (°)	<u>107.160(10)</u>
$V(\text{\AA}^3)$	993.6(15)
Ζ	4
Dcalcd, g/cm ³	7.131
$\mu \text{ (mm}^{-1}\text{)}$	56.88
F (000)	1820
Crystal size (mm)	0.10 imes 0.08 imes 0.07
R _{int}	0.092
R indices $[I \ge 2\sigma(I)]^a$	$R_1 = 0.0482$, wR_2 = 0.1203
R indices (all data)	$R_1 = 0.0584$, wR_2 = 0.1254
Extinction coeff	0.0067(4)
GOF on F^2	1.018
CCDC	1879545

 Table S1. Crystal data and structure refinement for BFM.

$${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, \ wR_{2} = \left\{ \sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \right\}^{1/2}$$

Figure S1. The experimental patterns of powder XRD of the residue in the platinum pan after DSC/TGA.

Figure S2. Photographs of the as-grown $Bi_3FeO_4(MoO_4)_2$ crystals through spontaneous

crystallization with MoO₃ flux.

Bi2—Bi1 ⁱ	3.649 (3)	Bi1—O6 ^{viii}	2.722 (12)
Bi2—O2 ⁱⁱ	2.235 (12)	Bi1—O5 ^{ix}	2.346 (14)
Bi2—O2	2.236 (14)	Bi1—O5 ^x	2.346 (14)
Bi2—O1 ⁱⁱⁱ	2.257 (14)	Mo1—O3	1.776 (13)
Bi2—O3 ⁱⁱⁱ	2.652 (12)	Mo1—O6	1.758 (13)
Bi2—O3	2.546 (14)	Mo1—O4	1.775 (14)
Bi2—O4 ^{iv}	2.683 (13)	Mo1—O5	1.825 (14)
Bi2—O5 ^v	2.519 (14)	Fe1—O2 ^{xi}	1.908 (13)
Bi1—O1 ^{vi}	2.202 (13)	Fe1—O2	1.908 (13)
Bi1—O1	2.202 (13)	Fe1—O1	1.920 (14)
Bi1—O6 ^{vii}	2.722 (12)	Fe1—O1 ^{xi}	1.920 (14)
O2—Bi2—Bi1 ⁱ	106.6 (4)	O1 ^{vi} —Bi1—O5 ^x	77.9 (5)
O2 ⁱⁱ —Bi2—Bi1 ⁱ	87.5 (4)	O6 ^{viii} —Bi1—Bi2 ⁱⁱ	88.2 (3)

Table S2. Bond Distances (Å) and Angles (deg.) for Bi₃FeO₄(MoO₄)₂ crystal.

O2 ⁱⁱ —Bi2—O2	77.3 (3)	O6 ^{vii} —Bi1—Bi2 ⁱⁱ	136.4 (3)
O2—Bi2—O1 ⁱⁱⁱ	80.9 (5)	O6 ^{vii} —Bi1—Bi2 ⁱ	88.2 (3)
O2 ⁱⁱ —Bi2—O1 ⁱⁱⁱ	104.1 (5)	O6 ^{viii} —Bi1—Bi2 ⁱ	136.4 (3)
O2 ⁱⁱ —Bi2—O3 ⁱⁱⁱ	137.9 (4)	O6 ^{vii} —Bi1—O6 ^{viii}	124.3 (6)
O2—Bi2—O3	80.9 (5)	O5 ^{ix} —Bi1—Bi2 ⁱⁱ	108.6 (3)
O2—Bi2—O3 ⁱⁱⁱ	76.3 (5)	O5 ^x —Bi1—Bi2 ⁱ	108.6 (3)
O2 ⁱⁱ —Bi2—O3	78.6 (5)	O5 ^{ix} —Bi1—Bi2 ⁱ	43.2 (3)
O2—Bi2—O4 ^{iv}	126.1 (4)	O5 ^x —Bi1—Bi2 ⁱⁱ	43.2 (3)
O2 ⁱⁱ —Bi2—O4 ^{iv}	152.9 (5)	O5 ^{ix} —Bi1—O6 ^{vii}	94.2 (4)
O2 ⁱⁱ —Bi2—O5 ^v	77.4 (4)	O5 ^x —Bi1—O6 ^{viii}	94.2 (4)
O2—Bi2—O5 ^v	138.1 (4)	O5 ^{ix} —Bi1—O6 ^{viii}	100.7 (4)
O1 ⁱⁱⁱ —Bi2—Bi1 ⁱ	34.6 (3)	O5 ^x —Bi1—O6 ^{vii}	100.7 (4)
O1 ⁱⁱⁱ —Bi2—O3	160.5 (5)	O5 ^x —Bi1—O5 ^{ix}	147.9 (7)
O1 ⁱⁱⁱ —Bi2—O3 ⁱⁱⁱ	103.4 (4)	O3—Mo1—O5	110.5 (6)
O1 ⁱⁱⁱ —Bi2—O4 ^{iv}	70.7 (4)	O6—Mo1—O3	112.6 (6)
O1 ⁱⁱⁱ —Bi2—O5 ^v	73.7 (5)	O6—Mo1—O4	107.2 (6)
O3—Bi2—Bi1 ⁱ	162.4 (3)	O6—Mo1—O5	106.5 (7)
O3 ⁱⁱⁱ —Bi2—Bi1 ⁱ	131.5 (3)	O4—Mo1—O3	106.4 (7)
O3—Bi2—O3 ⁱⁱⁱ	65.2 (3)	O4—Mo1—O5	113.8 (7)
O3 ⁱⁱⁱ —Bi2—O4 ^{iv}	67.5 (4)	O2 ^{xi} —Fe1—O2	123.3 (8)
O3—Bi2—O4 ^{iv}	115.4 (4)	O2 ^{xi} —Fe1—O1 ^{xi}	106.8 (6)
O4 ^{iv} —Bi2—Bi1 ⁱ	73.4 (3)	O2—Fe1—O1	106.8 (6)
O5 ^v —Bi2—Bi1 ⁱ	39.6 (3)	O2 ^{xi} —Fe1—O1	101.9 (5)
O5 ^v —Bi2—O3	125.3 (4)	O2—Fe1—O1 ^{xi}	101.9 (5)
O5v—Bi2—O3 ⁱⁱⁱ	141.5 (4)	O1—Fe1—O1 ^{xi}	117.2 (8)

O5v—Bi2—O4 ^{iv}	75.7 (4)	Bi2 ⁱⁱⁱ —O2—Bi2	113.0 (6)
Bi2 ⁱⁱ —Bi1—Bi2 ⁱ	84.42 (8)	Fe1—O2—Bi2	122.8 (6)
O1 ^{vi} —Bi1—Bi2 ⁱ	35.6 (4)	Fe1—O2—Bi2 ⁱⁱⁱ	123.0 (7)
O1—Bi1—Bi2 ⁱⁱ	35.6 (4)	Bi1—O1—Bi2 ⁱⁱ	109.8 (6)
O1—Bi1—Bi2 ⁱ	72.7 (4)	Fe1—O1—Bi2 ⁱⁱ	116.1 (6)
O1 ^{vi} —Bi1—Bi2 ⁱⁱ	72.7 (4)	Fe1—O1—Bi1	129.9 (7)
O1—Bi1—O1 ^{vi}	82.8 (7)	Bi2—O3—Bi2 ⁱⁱ	91.7 (4)
O1—Bi1—O6 ^{vii}	159.0 (4)	Mo1—O3—Bi2 ⁱⁱ	123.8 (7)
O1 ^{vi} —Bi1—O6 ^{viii}	159.0 (4)	Mo1—O3—Bi2	138.5 (6)
O1—Bi1—O6 ^{viii}	76.5 (4)	Mo1—O6—Bi1 ^{viii}	116.8 (6)
O1 ^{vi} —Bi1—O6 ^{vii}	76.5 (4)	Mo1—O4—Bi2 ^{xii}	127.8 (7)
O1—Bi1—O5 ^x	78.2 (5)	Bi1 ^x —O5—Bi2 ^{xiii}	97.1 (5)
O1—Bi1—O5 ^{ix}	77.9 (5)	Mo1—O5—Bi2 ^{xiii}	134.3 (7)
O1 ^{vi} —Bi1—O5 ^{ix}	78.2 (5)	Mo1—O5—Bi1 ^x	127.4 (7)
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+2$; (ii) x , $-y+1$, $z+1/2$; (iii) x , $-y+1$, $z-1/2$; (iv) $-x+1/2$,			
y-1/2, -z+1/2; (v) $-x+1/2, y-1/2, -z+3/2;$ (vi) $-x+1, y, -z+5/2;$ (vii) $x+1/2, -y+3/2, z+3/2;$			
(viii) $-x+1/2$, $-y+3/2$, $-z+1$; (ix) $x+1/2$, $-y+3/2$, $z+1/2$; (x) $-x+1/2$, $-y+3/2$, $-z+2$; (xi) $-x+1$,			
y, -z+3/2; (xii) $-x+1/2, y+1/2, -z+1/2;$ (xiii) $-x+1/2, y+1/2, -z+3/2.$			

Figure S3. (a)-(c) Photographs of the indentation morphologies of the $Bi_3FeO_4(MoO_4)_2$ crystal faces (100), (010) and (001), respectively, from which they are rhombic and regular. $_{5}$

Raman spectra (cm ⁻¹)	Assignments
< 100 (vw)	O-Bi-O and O-Mo-O bond bending
124.49 (vs)	Bi-O bands and Bi and Mo translation and libration
200-600 (w)	Bi-O bonds, Mo-O bonds and translations of Fe atoms
761.12 (m)	Mo-O bonds and Mo-O-Bi bridges
868.67 (vs)	MoO ₄ asymmetric stretching
870.41 (m)	MoO ₄ symmetric stretching

Table S3. Observed Raman wavenumbers (cm⁻¹) and vibrational assignments for the $Bi_3FeO_4(MoO_4)_2$ crystal.¹⁻³

In the table, vs: very strong; m: medium; w: weak

References

1. L. S. Cavalcante, J. C. Sczancoski, L. F. Lima, J. Espinosa, P. S. Pizani, J. A. Varela and E. Longo, *Cryst. Growth Des.* 2009, **9**, 1002–1012.

2. M. Maczka, A. Majchrowski and I. V. Kityk, Vib. Spectrosc. 2013, 64, 158-163.

3. C. Li, Z. Gao, X. Tian, Q. Wu, F. Liu, X. Du, D. Huang, Y. Sun, D. Cui and X. Tao, J. Alloy. Comp., 2019, 777, 59-66.