Supporting Information

Reversible high temperature dielectric switch in a 2Hperovskite compound: [Me₃NCH₂CH₃]CdCl₃

Dong-Sheng Sun, Yao-Zu Zhang, Ji-Xing Gao, Xiu-Ni Hua, Xiao-Gang

Chen, Guang-Quan Mei* and Wei-Qiang Liao*

IR analyses: The most intensive band at 956.69 cm⁻¹ is attributed to C-C in-plane stretching and 3024.38 cm⁻¹ is due to C-H stretching vibrations. At 1485.19 cm⁻¹, it can be assigned to C-N stretching vibrations. The quaternary ammonium salt has no characteristic absorption peak. When the methyl group is connected to the N cation, the stretching vibration frequency shifts to a high frequency.

Fig. S1 The IR spectrum of compound 1.

Fig. S2 The powder X-ray diffraction (PXRD) pattern of compound 1 at 293 K.

Fig. S3 The powder X-ray diffraction (PXRD) pattern of compound 1 at 363 K.

Fig. S4 Variable-temperature PXRD patterns of 1 measured in the heating mode.

Fig. S5 The TGA-DSC curves of compound 1 with heating rate 10 K min⁻¹.

Fig. S6 The photos of single crystal at temperatures of 293 K, 350 K, 360 K, 370 K, 380 K and 400 K.

Fig. S7 The ε' -switching of the polycrystalline sample of compound 1 at 1 MHz showing completely reversible behavior within 21 "ON"/"OFF" cycles.

Fig. S8 The temperature-dependent dielectric constant (ε') of the compound 1 measured in a frequency range of 5 to 1000 kHz.

Fig. S9 The dielectric loss (*tan* δ) of the compound 1 measured in a frequency range of 5 to 1000 kHz.

Fig. S10 The packing diagram structures of 1 at (a) 293 K and (b) 363 K.

	293 K	363 K
Empirical formula	[Me ₃ NCH ₂ CH ₃][CdCl ₃]	[Me ₃ NCH ₂ CH ₃][CdCl ₃]
Formula weight	306.93	306.93
Crystal system	orthorhombic	hexagonal
Space group	Pbca	P6 ₃ /mmc
<i>a</i> (Å)	16.0893(6)	9.5032(3)
b (Å)	6.8295(3)	9.5032(3)
<i>c</i> (Å)	18.8185(8)	6.8345(4)
α (deg)	90	90
β (deg)	90	90
γ (deg)	90	120
Volume (Å3), Z	2067.81(15), 8	534.54(5),2
Dcalcd / g cm-3	1.972	1.906
<i>F</i> (000)	1200.0	299.8
Goodness-of-fit on F2	1.030	1.008
Tmin/Tmax	0.403/0.568	0.579/0.415
<i>R</i> 1α(> 2σ)	0.0555	0.0423
<i>wR</i> ₂ [♭] (> 2σ)	0.1704	0.1219

 Table S1 Crystal Data and Structure Refinement Details of 1.

Table S2 Selected bond lengths [Å] and angles [°] for 1 at 293 K and 363 K.

Table 52 Selected bond lengths [7] and digles [] for T at 275 K and 505 K.							
	Cd1—Cl3	2.6338 (18)	Cd1—Cd1 ⁱ	3.4148 (1)			
	Cd1—Cl3 ⁱ	2.6522 (18)	Cd1—Cd1 ⁱⁱ	3.4148 (1)			
	Cd1—Cl2 ⁱ	2.6563 (18)	Cl1—Cd1 ⁱ	2.6579 (19)			
	Cd1—Cl1 ⁱⁱ	2.6579 (19)	Cl2—Cd1 ⁱⁱ	2.6563 (18)			
	Cd1—Cl1	2.6595 (19)	Cl3—Cd1 ⁱⁱ	2.6521 (18)			
	Cd1—Cl2	2.6775 (18)					
293 K							
	Cl3—Cd1—Cl3 ⁱ	96.90 (8)	Cl2 ⁱ —Cd1—Cl1	83.57 (6)			
	Cl3—Cd1—Cl2 ⁱ	179.71 (6)	Cl1 ⁱⁱ —Cd1—Cl1	179.60 (7)			
	$Cl3^{i}$ — $Cd1$ — $Cl2^{i}$	83.26 (6)	Cl3—Cd1—Cl2	83.20 (6)			
	Cl3—Cd1—Cl1 ⁱⁱ	82.94 (6)	Cl3 ⁱ —Cd1—Cl2	179.22 (6)			
	Cl3 ⁱ —Cd1—Cl1 ⁱⁱ	97.59 (6)	Cl2 ⁱ —Cd1—Cl2	96.65 (7)			
	Cl2 ⁱ —Cd1—Cl1 ⁱⁱ	96.81 (6)	Cl1 ⁱⁱ —Cd1—Cl2	83.20 (6)			
	Cl3—Cd1—Cl1	96.68 (6)	Cl1—Cd1—Cl2	96.66 (6)			
	Cl3 ⁱ —Cd1—Cl1	82.56 (6)					

	Cd1—Cl1 ^{vi}	2.6606 (11)	Cd1—Cl1 ^x	2.6606 (11)
	Cd1—Cl1 ^{vii}	2.6606 (11)	Cd1—Cd1 ^{xi}	3.4173 (2)
	Cd1—Cl1 ^{viii}	2.6606 (11)	Cd1—Cd1 ^{xii}	3.4173 (2)
	Cd1—Cl1 ^{ix}	2.6606 (11)	Cl1—Cd1 ^{xi}	2.6606 (11)
	Cd1—Cl1	2.6606 (11)		
363 K	Cl1 ^{vi} —Cd1—Cl1 ^{vii}	180.000 (18)	Cl1viii—Cd1—Cl1	96.81 (3)
	Cl1vi—Cd1—Cl1viii	83.19 (3)	Cl1 ^{ix} —Cd1—Cl1	83.19 (3)
	Cl1 ^{vii} —Cd1—Cl1 ^{viii}	96.81 (3)	Cl1 ^{vi} —Cd1—Cl1 ^x	83.19 (3)
	Cl1vi—Cd1—Cl1 ^{ix}	96.81 (3)	Cl1 ^{vii} —Cd1—Cl1 ^x	96.81 (3)
	Cl1 ^{vii} —Cd1—Cl1 ^{ix}	83.19 (3)	Cl1viii—Cd1—Cl1x	83.19 (3)
	Cl1 ^{viii} —Cd1—Cl1 ^{ix}	180.00 (5)	Cl1 ^{ix} —Cd1—Cl1 ^x	96.81 (3)
	Cl1 ^{vi} —Cd1—Cl1	96.81 (3)	Cl1—Cd1—Cl1 ^x	180.0
	Cl1vii—Cd1—Cl1	83.19 (3)		

Symmetry codes:

293 K (i) -x+1/2, y-1/2, z; (ii) -x+1/2, y+1/2, z.

363 K (i) x, y, -z+3/2; (ii) -y+1, x-y, z; (iii) -y+1, x-y, -z+3/2; (iv) -x+y+1, -x+1, -z+3/2; (v) -x+y+1, -x+1, z; (vi) x-y, x-1, -z; (vii) -x+y+2, -x+1, z; (viii) y+1, -x+y+1, -z; (ix) -y+1, x-y-1, z; (x) -x+2, -y, -z; (xi) -x+2, -y, z+1/2; (xii) -x+2, -y, z-1/2.