A unique copper coordination structure with both mono- and bi-dentate ethylenediamine ligands

Supplementary Information

Jai Sharma,^{*a*†} Zhelong Jiang,^{*a*†} Ankita Bhutani,^{*a*} Piush Behera,^{*a*} and Daniel P. Shoemaker^{**a*}

^a Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. dpshoema@illinois.edu. [†] These authors contributed equally to this work. Table S1 Crystal data and refinement details for (ethylenediamine-N)-bis(ethylenediamine-N,N')-copper(II) bis(nitrate)

empirical formula	$C_6H_{24}CuN_8O_6$
formula weight	367.87
temperature (K)	99.96
crystal system	monoclinic
space group	$P2_1/c$
a (Å)	12.8262(5)
b (Å)	9.7712(4)
<i>c</i> (Å)	11.9065(5)
β (°)	94.8220(10)
volume (Å ³)	1486.93(10)
Ζ	4
ρ_{calc} (g/cm ³)	1.643
$\mu (\mathrm{mm}^{-1})$	1.511
F(000)	772.0
crystal size (mm ³)	0.319 imes 0.113 imes 0.093
radiation	Mo Kα ($\lambda = 0.71073$ Å)
2Θ range for data collection (°)	5.248 to 56.634
index ranges	$-17 \le h \le 17, -13 \le k \le 13, -15 \le l \le 15$
reflection collected	35107
independent reflections	$3700 [R_{int}=0.0362, R_{sigma}=0.0164]$
absorption correction	multi-scan (SADABS-2016/2; Bruker, 2016)
max. and min. transmission	0.7457 and 0.6107
data/restraints/parameters	3700/0/239
goodness-of-fit on F^2	1.092
final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0204, wR_2 = 0.0477$
final R indexes (all data)	$R_1 = 0.0235, wR_2 = 0.0489$
largest diff. peak/hole (e Å ³)	0.47/-0.34
omitted reflection	(202) (partially obscured by beamstop)
H-atom treatment	CH ₂ hydrogen atoms constrained with idealized riding contributors: C–H = 0.99 Å, U_{iso} (H) = 1.2 U_{eq} (C)

Table S2 Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for $[Cu(en-N)(en-N,N')_2](NO_3)_2$. The crystal has space group P2₁/c, with a = 12.8262(5) Å, b = 9.7712(4) Å, c = 11.9065(5) Å, and β = 94.8220(10) °. The data was collected at 99.96 K. Hydrogen atom coordinates are provided in Table S3.

Atom	x	у	Z	U(eq)
Cu(1)	0.77022(2)	0.07870(2)	0.25688(2)	0.00713(6)
N(1)	0.73723(9)	-0.01800(12)	0.08986(9)	0.0122(2)
N(2)	0.92029(8)	0.03499(11)	0.22635(9)	0.0093(2)
N(3)	0.76670(9)	-0.07708(11)	0.37197(9)	0.0101(2)
N(4)	0.61950(8)	0.10589(11)	0.28731(9)	0.0105(2)
N(5)	0.80017(9)	0.28290(11)	0.22735(11)	0.0146(2)
N(6)	0.70314(9)	0.64783(11)	0.26478(10)	0.0134(2)
C(1)	0.83916(10)	-0.05158(14)	0.04763(11)	0.0146(2)
C(2)	0.91836(10)	-0.08133(13)	0.14685(11)	0.0139(2)
C(3)	0.67263(10)	-0.05732(13)	0.43371(10)	0.0122(2)
C(4)	0.58395(10)	-0.01559(13)	0.34804(11)	0.0122(2)
C(5)	0.72527(9)	0.39334(12)	0.24597(10)	0.0105(2)
C(6)	0.77382(9)	0.53596(12)	0.24033(10)	0.0101(2)
O(1)	1.03807(7)	0.12595(9)	0.44802(8)	0.01368(18)
O(2)	1.00958(7)	0.20804(10)	0.61215(7)	0.01544(19)
O(3)	0.88349(7)	0.20377(10)	0.47803(8)	0.0186(2)
N(7)	0.97700(8)	0.17867(10)	0.51220(9)	0.0102(2)
O(4)	0.60586(7)	0.22205(10)	-0.00091(8)	0.0172(2)
O(5)	0.47413(7)	0.12980(11)	0.07470(8)	0.0178(2)
O(6)	0.45479(7)	0.20662(10)	-0.09722(8)	0.01535(19)
N(8)	0.51145(8)	0.18576(10)	-0.00768(9)	0.0104(2)

Table S3 Hydrogen atom coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $[Cu(en-N)(en-N,N')_2](NO_3)_2$ with space group P2₁/c, a = 12.8262(5) Å, b = 9.7712(4) Å, c = 11.9065(5) Å, and β = 94.8220(10) °. CH₂ hydrogens were constrained while NH₂ hydrogens were freely refined.

Atom	x	У	Z	U(eq)
H(1A)	0.7041(15)	0.0400(20)	0.0455(16)	0.027(5)
H(1B)	0.7011(15)	-0.0860(20)	0.0923(16)	0.026(5)
H(2A)	0.9493(14)	0.1051(19)	0.1968(15)	0.023(5)
H(2B)	0.9565(13)	0.0160(17)	0.2877(15)	0.016(4)
H(3A)	0.7611(13)	-0.1558(18)	0.3366(14)	0.017(4)
H(3B)	0.8189(15)	-0.0784(17)	0.4158(15)	0.019(4)
H(4A)	0.5821(14)	0.1197(19)	0.2243(16)	0.025(5)
H(4B)	0.6119(13)	0.1741(18)	0.3276(15)	0.020(4)
H(5A)	0.8201(15)	0.2910(20)	0.1613(17)	0.031(5)
H(5B)	0.8536(17)	0.2920(20)	0.2729(18)	0.035(5)
H(6A)	0.6575(15)	0.6594(19)	0.2078(16)	0.026(5)
H(6B)	0.6708(14)	0.6311(18)	0.3207(16)	0.020(4)
H(1C)	0.863583	0.026226	0.003481	0.018
H(1D)	0.831715	-0.132555	-0.002372	0.018
H(2C)	0.898778	-0.166268	0.185232	0.017
H(2D)	0.988626	-0.094449	0.119925	0.017
H(3C)	0.68532	0.014896	0.491569	0.015
H(3D)	0.654808	-0.143296	0.471702	0.015
H(4C)	0.566752	-0.091363	0.294463	0.015
H(4D)	0.520658	0.006929	0.386528	0.015
H(5C)	0.698334	0.380821	0.320808	0.013
H(5D)	0.665201	0.386599	0.188319	0.013
H(6C)	0.836501	0.540213	0.294738	0.012
H(6D)	0.797217	0.549815	0.164008	0.012

Table S4 Anisotropic displacement parameters (Å²) for [Cu(en-N)(en-N,N')₂](NO₃)₂.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu(1)	0.00669(8)	0.00657(8)	0.00830(8)	0.00022(5)	0.00159(5)	0.00123(5)
N(1)	0.0106(5)	0.0143(5)	0.0113(5)	-0.0018(4)	-0.0008(4)	0.0007(4)
N(2)	0.0082(5)	0.0104(5)	0.0093(5)	-0.0006(4)	0.0003(4)	0.0009(4)
N(3)	0.0096(5)	0.0093(5)	0.0114(5)	0.0007(4)	-0.0005(4)	0.0000(4)
N(4)	0.0100(5)	0.0112(5)	0.0103(5)	0.0001(4)	0.0018(4)	0.0018(4)
N(5)	0.0125(5)	0.0084(5)	0.0237(6)	0.0003(4)	0.0052(5)	0.0011(4)
N(6)	0.0137(5)	0.0093(5)	0.0175(6)	-0.0010(4)	0.0022(5)	0.0019(4)
C(1)	0.0149(6)	0.0181(6)	0.0109(6)	-0.0030(5)	0.0013(5)	0.0027(5)
C(2)	0.0125(6)	0.0141(6)	0.0153(6)	-0.0045(5)	0.0013(5)	0.0035(5)
C(3)	0.0129(6)	0.0134(6)	0.0106(6)	0.0016(4)	0.0022(4)	-0.0008(5)
C(4)	0.0097(6)	0.0132(6)	0.0138(6)	0.0002(5)	0.0024(4)	-0.0014(4)
C(5)	0.0110(5)	0.0077(5)	000131(6)	0.0003(4)	0.0025(4)	0.0010(4)
C(6)	0.0105(5)	0.0073(5)	0.0127(6)	-0.0001(4)	0.0017(4)	0.0002(4)
O(1)	0.0159(4)	0.0137(4)	0.0121(4)	-0.0022(3)	0.0055(3)	-0.0001(3)
O(2)	0.0169(5)	0.0199(5)	0.0092(4)	-0.0029(3)	-0.0009(3)	0.0047(4)
O(3)	0.0115(4)	0.0221(5)	0.0211(5)	-0.0009(4)	-0.0040(4)	0.0034(4)
N(7)	0.0121(5)	0.0079(4)	0.0108(5)	0.0015(4)	0.0014(4)	-0.0002(4)
O(4)	0.0104(4)	0.0195(5)	0.0213(5)	0.0063(4)	-0.0014(4)	-0.0027(4)
O(5)	0.0159(5)	0.0264(5)	0.0115(4)	0.0067(4)	0.0039(4)	-0.0003(4)
0(6)	0.0161(5)	0.0176(4)	0.0114(4)	0.0030(3)	-0.0043(3)	0.0001(4)
N(8)	0.0109(5)	0.0094(5)	0.0109(5)	0.0002(4)	0.0011(4)	0.0017(4)

Atom	Atom	Length (Å)
Cu(1)	N(1)	2.2102(11)
Cu(1)	N(2)	2.0340(10)
Cu(1)	N(3)	2.0511(10)
Cu(1)	N(4)	2.0142(11)
Cu(1)	N(5)	2.0676(11)
N(1)	C(1)	1.4765(17)
N(2)	C(2)	1.4780(16)
N(3)	C(3)	1.4773(16)
N(4)	C(4)	1.4816(16)
N(5)	C(5)	1.4739(16)
N(6)	C(6)	1.4649(16)
C(1)	C(2)	1.5199(17)
C(3)	C(4)	1.5184(17)
C(5)	C(6)	1.5301(16)
0(1)	N(7)	1.2504(14)
O(2)	N(7)	1.2607(14)
O(3)	N(7)	1.2579(14)
O(4)	N(8)	1.2579(14)
O(5)	N(8)	1.2527(14)
0(6)	N(8)	1.2554(14)

Table S5 Bond lengths for $[Cu(en-N)(en-N,N')_2](NO_3)_2$.

Table S6 Bond angles for $[Cu(en-N)(en-N,N')_2](NO_3)_2$.

Atom	Atom	Atom	Angle (°)
N(2)	Cu(1)	N(1)	82.06(4)
N(2)	Cu(1)	N(3)	92.17(4)
N(2)	Cu(1)	N(5)	88.86(4)
N(3)	Cu(1)	N(1)	105.70(4)
N(3)	Cu(1)	N(5)	147.63(5)
N(4)	Cu(1)	N(1)	95.98(4)
N(4)	Cu(1)	N(2)	175.46(4)
N(4)	Cu(1)	N(3)	84.40(4)
N(4)	Cu(1)	N(5)	95.63(4)
N(5)	Cu(1)	N(1)	106.49(5)
C(1)	N(1)	Cu(1)	107.06(8)
C(2)	N(2)	Cu(1)	108.10(7)
C(3)	N(3)	Cu(1)	107.47(7)
C(4)	N(4)	Cu(1)	108.75(8)
C(5)	N(5)	Cu(1)	123.25(8)
N(1)	C(1)	C(2)	109.32(10)
N(2)	C(2)	C(1)	108.96(10)
N(3)	C(3)	C(4)	107.32(10)
N(4)	C(4)	C(3)	107.40(10)
N(5)	C(5)	C(6)	112.79(10)
N(6)	C(6)	C(5)	114.20(10)
O(1)	N(7)	O(2)	119.72(10)
O(1)	N(7)	O(3)	120.79(10)
O(3)	N(7)	O(2)	119.49(10)
O(5)	N(8)	O(4)	120.13(10)
O(5)	N(8)	0(6)	120.26(10)
0(6)	N(8)	O(4)	119.61(10)

Table S7 Torsion angles for $[Cu(en-N)(en-N,N')_2](NO_3)_2$.

Α	В	С	D	Angle (°)
N(1)	C(1)	C(2)	N(2)	-53.67(14)
N(3)	C(3)	C(4)	N(4)	-54.81(13)
N(5)	C(5)	C(6)	N(6)	-176.73(10)
Cu(1)	N(1)	C(1)	C(2)	30.23(12)
Cu(1)	N(2)	C(2)	C(1)	49.58(11)
Cu(1)	N(3)	C(3)	C(4)	41.67(11)
Cu(1)	N(4)	C(4)	C(3)	40.52(11)
Cu(1)	N(5)	C(5)	C(6)	168.70(8)

Table S8 Hydrogen bonds for [Cu(en-N)(en-N,N')₂](NO₃)₂.

D	Н	Α	d(D–H) (Å)	d(H–A) (Å)	d(D–A) (Å)	D-H-A (°)
N(1)	H(1A)	O(4)	0.86(2)	2.22(2)	3.0336(15)	156.9(17)
N(1)	H(1B)	0(6) ⁱ	0.82(2)	2.32(2)	3.0833(15)	155.2(18)
N(2)	H(2A)	O(2) ⁱⁱ	0.867(19)	2.254(19)	3.1188(14)	174.6(17)
N(2)	H(2B)	O(1)	0.852(18)	2.358(17)	3.0607(14)	140.1(15)
N(2)	H(2B)	O(2) ⁱⁱⁱ	0.852(18)	2.514(17)	3.1392(14)	131.0(14)
N(3)	H(3A)	N(6) ^{iv}	0.877(18)	2.204(18)	3.0567(15)	164.0(15)
N(3)	H(3B)	O(1) ⁱⁱⁱ	0.814(19)	2.389(19)	3.1921(14)	169.0(16)
N(3)	H(3B)	O(2) ⁱⁱⁱ	0.814(19)	2.584(18)	3.1331(14)	126.1(15)
N(4)	H(4A)	O(5)	0.866(19)	2.165(19)	3.0242(14)	171.5(17)
N(4)	H(4B)	O(4) ^v	0.831(18)	2.288(18)	3.0478(15)	152.2(16)
N(4)	H(4B)	O(6) ^v	0.831(18)	2.555(18)	3.1934(14)	134.6(15)
N(5)	H(5A)	O(2) ⁱⁱ	0.85(2)	2.55(2)	3.1181(15)	125.4(16)
N(5)	H(5A)	O(3) ⁱⁱ	0.85(2)	2.39(2)	3.2411(16)	175.0(18)
N(5)	H(5B)	O(3)	0.84(2)	2.59(2)	3.1800(16)	128.3(17)
N(6)	H(6A)	0(6) ^{vi}	0.866(19)	2.281(19)	3.0703(15)	151.6(17)
N(6)	H(6B)	O(5) ^{vii}	0.830(19)	2.323(19)	3.0958(15)	155.2(16)
C(2)	H(2C)	O(2) ⁱⁱⁱ	0.99	2.63	3.1899(16)	116.3
C(3)	H(3D)	O(6) ^{viii}	0.99	2.59	3.5095(16)	154.3
C(4)	H(4C)	O(6) ⁱ	0.99	2.60	3.5214(16)	155.2

Symmetry codes:(i)1-x,-y,-z;(ii)x,1/2-y,-1/2+z;(iii)2-x,-y,1-z;(iv)x,-1+y,z;(v)x,1/2-y,1/2+z;y,1/2+z;(vi)1-x,1-y,-z;(vii)1-x,1/2+y,1/2-z;(viii)1-x,-1/2+y,1/2-z.

Fig. S1 FTIR spectrum of $[Cu(en-N)(en-N,N')_2](NO_3)_2$ crystals. It shows absorption peaks arising from NO_3^- , and the CH₂ and NH₂ groups in en. The background wiggling is due to interference effects from the KBr pellet method.

Wavenumber	Intensity ^a	Group Assignment
(cm^{-1})		
825	m	NO_3^- scissor ¹
882	W	$CH_2 \operatorname{rock}^2$
957	m	NH ₂ twist ²
975	m	NH ₂ twist ²
1046	S	NO ₃ ⁻ symmetric stretch ¹ , C-N stretch ²
1105	w	NH ₂ twist ²
1148	m	NH ₂ wag ²
1314	m	CH ₂ twist ^{2,3}
1335	m	NH ₂ wag ²
1385	S	NO ₃ ⁻ antisymmetric stretch ¹
1396	sh	$\rm NH_2~wag^{3,4}$ / $\rm CH_2~wag^2$
1474	m	CH ₂ scissor ²
1497	m	CH ₂ scissor ²
1583	S	NH ₂ scissor ^{2,4}
2815	w br	$CH_{\rm e}$ strateb ²
(2777 - 2848)	w, di	
2942	w br	$CH_{\rm e}$ stratch ²
(2878 - 2981)	vv, D1	
3216 & 3297	m br	NH- stratch ^{2,4}
(3110 - 3457)	III, DI	

Table S9 FTIR group assignment for [Cu(en-N)(en-N,N')₂](NO₃)₂ in Fig. S1.

a s = strong; m = medium; w = weak; sh = shoulder; br = broad.

References

- 1 P. M. Castro and P. W. Jagodzinski, Spectroc. Acta, Pt. A: Molec. Spectr., 1991, 47, 1707–1720.
- 2 Z. Gabelica, Spectroc. Acta, Pt. A: Molec. Spectr., 1976, 32, 337–344.
- 3 K. Krishnan and R. A. Plane, *Inorg. Chem.*, 1966, **5**, 852–857.
- 4 K. Nakamoto, in Applications in Coordination Chemistry, John Wiley & Sons, Ltd, 2008, ch. 1, pp. 1–273.