Electronic Supplementary Information

Phase behaviours of a cationic surfactant in deep eutectic solvents: from micelles to lyotropic liquid crystals

Qintang Li,*a Jiao Wang,^b Nana Lei,^b Minhao Yan,^a Xiao Chen^b and Xiu Yue*c,^d

^a State Key Laboratory for Environment-Friendly Energy Materials, School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China

^b Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China

^c Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China

^d Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China

Corresponding authors: Qintang Li E-mail: liqintangwind@sina.com Xiu Yue E-mail: yuexiu@ms.xjb.ac.cn

Fig. S1 POM images (a-d) and SAXS curves (e) of H₁ phases and in the 55 % CPBr/ChG system at different temperatures with corresponding PDDF curve at 120 °C.

Temperature / °C	D / nm	R / nm	d / nm	S / nm ²
50	5.37	2.14	1.09	0.566
70	5.22	2.08	1.06	0.582
90	5.15	2.05	1.05	0.591
110	4.99	1.99	1.01	0.609

Table S1 Structure parameters of H_1 phases in the 55 % CPBr/ChG system
at different temperatures

Fig. S2 Phase diagram of the CPBr/ChEG system.

Fig. S3 SAXS curves (a) and corresponding PPDF curves (b) of micelles in the CPBr/ChEG system at different concentrations at 50 °C. Open symbols for experimental curves and dash-dot lines for fitting curves.

Fig. S4 SAXS curves of CPBr/ChEG samples at 60 °C and different concentrations (a) and at 80% and different temperatures (b).

Fig. S5 Phase diagrams of the CPBr/water (a) and CPBr/EAN (b) system.

Fig. S6 SAXS curves (a) and corresponding PPDF curves (b) of micelles in the CPBr/EAN system at different concentrations at 50 °C. Open symbols for experimental curves and dash-dot lines for fitting curves.

Gordon parameter of DESs

The Gordon parameter G is calculated by S-1,

$$G = \gamma / \sqrt[3]{V_m} \quad (S-1)$$

where γ is the air-liquid interface tension and V_m is the molar volume.

The molar volume V_m is calculated using S-2,

$$V_m = M_r / \rho \qquad (S-2)$$

where ρ is the density and M_r is the relative molar mass of the liquid calculated from

$$M_r = x_{ChCl} M_{ChCl} + x_{HBD} M_{HBD}$$
 (S-3)

where x is the molar ration and M the relative molar mass of the two components.¹

 $(20 \text{ °C}, \gamma_{ChG}=55.8 \text{ mN/m}, \rho_{ChG}=1.18g/cm^3; \gamma_{ChEG}=49 \text{ mN/m}, \rho_{ChEG}=1.12g/cm^3)^2$

References

1. A. P. Abbott, R. C. Harris, K. S. Ryder, C. D'Agostino, L. F. Gladden and M. D.Mantle, *Green Chem.*, 2011, **13**, 82.

2. A. P. Abbott, R. C. Harris and K. S. Ryder, J. Phys. Chem. B, 2007, 111, 4910.