Electronic Supplementary Information

A Theoretical Study on the Structures, Electronic and Magnetic Properties of New Boron Nitrogen Composite Nanosystems by Depositing Superhalogen Al₁₃ on the Surface of Nanosheet/Nanoribbons

Xiaopeng Shen, Guangtao Yu*, Chenghui Zhang, Ting Wang, Xuri Huang and Wei Chen*

Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China

*To whom correspondence should be addressed. Email: yugt@jlu.edu.cn (G.Y.), w_chen@jlu.edu.cn (W.C.)

In this work, when adsorbing the superhalogen Al_{13} on the surface of 2D BNML, twenty-one typical adsorption situations have been considered. The optimized geometries and relative energies for all these composite Al_{13} -BNML systems have been presented in Table S1 and Figure S1. For convenience, these new structures have been named according to the following rules:

(1) When the top site of Al atom (T_{Al}) in Al₁₃ cluster interacting with the top site of B atom (T_B) , top site of N atom (T_N) , bridge site over B–N bond (B_{B-N}) and hollow site of BN hexagon ring (H_{BN}) on the surface of BNML, four obtained composite systems are named as X-Al₁₃ (T_{Al}) @BNML (X= T_B , T_N , B_{B-N} and H_{BN}), in which Al₁₃ (T_{Al}) represents one single Al atom in Al₁₃ cluster is adsorbed on BNML.

(2) When the bridge of Al–Al bond (B_{Al-Al}) in Al₁₃ cluster interacting with the surface of BNML, eight Al₁₃-modified BNML systems are obtained, and they are named as X/X'-Al₁₃(B_{Al-Al})@BNML (X or X'= T_B, T_N, B_{B-N} and H_{BN}), including T_B/T_B-Al₁₃(B_{Al-Al})@BNML, T_N/T_N-Al₁₃(B_{Al-Al})@BNML, B_{B-N}/B_B-_N-Al₁₃(B_{Al-Al})@BNML, H_{BN}/H_{BN}-Al₁₃(B_{Al-Al})@BNML, T_B/T_N-Al₁₃(B_{Al-Al})@BNML, T_B/H_{BN}-Al₁₃(B_{Al-Al})@BNML, A_l)@BNML, T_N/H_{BN}-Al₁₃(B_{Al-Al})@BNML and T_B/H_{BN}-Al₁₃(B_{Al-Al})@BNML, respectively. Here, Al₁₃(B_{Al-Al}) represents Al–Al bond of Al₁₃ cluster, and X/X' means the adsorption sties on BNML for two Al atoms in Al–Al bond.

(3) When the three-membered ring (H_{Al}) in Al₁₃ cluster interacting with the surface of BNML, nine Al₁₃-modified BNML systems are obtained, and they are named as X/X'/X"-Al₁₃(H_{Al})@BNML- Y_{center} (X, X' or X"= T_B, T_N, B_{B-N}, H_{BN}; $Y_{center} = T_{Bcenter}$, $T_{Ncenter}$, $B_{B-Ncenter}$, $H_{BNcenter}$), including T_B/T_B/T_B-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, T_B/T_B/T_B-Al₁₃(H_{Al})@BNML- $B_{B-Ncenter}$, T_N/T_N/T_N-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, T_B/T_N/T_N-Al₁₃(H_{Al})@BNML- $H_{BNcenter}$, B_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, B_{B-N}/B_B-N/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, B_{B-N}/B_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, B_{B-N}/B_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, R_{B-N}/B_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, R_{B-N}/B_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, R_{B-N}/B_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, R_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, R_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, R_{B-N}/B_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, R_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, R_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, R_{B-N}/B_{B-N}/B_{B-N}/B_{B-N}-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, Respectively. Here, Al₁₃(H_{Al})@BNML- $T_{Ncenter}$ and T_B/T_B/T_N-Al₁₃(H_{Al})@BNML- $T_{Ncenter}$, Respectively. Here, Al₁₃(H_{Al}) means the three-membered ring of Al₁₃ cluster, X/X'/X" represents the adsorption sties on BNML for three Al atoms in the three-membered ring, and Y_{center} means that the center of the adsorbed three-membered ring in Al₁₃ cluster locating over the site on the BNML surface.

By comparison, we can find that adsorbing the superhalogen Al_{13} at the top of N atom (T_N) can obtain the most energetically stable configuration for the modified BNML systems (Table S1), which is named as T_N-Al₁₃(T_{Al})@BNML. In this work, therefore, we will mainly focus on the Al₁₃-modified BN nanosystems at the T_N site.

Table S1 The relative energies ΔE (meV) of different magnetic couplings to the ground state, the adsorption energy E_{ad} (eV), the total magnetic moment (M_{tot}) for the obtained composite Al₁₃-BNML systems. The NM and FM represent the nonmagnetic and ferromagnetic spin couplings, respectively.

Systems —	$\Delta E (meV)$		E (-10)	M _{tot}
	NM	FM	$- E_{ad}(eV)$	(μ_B)
Al ₁₃	108.8	0.0		1.0
BNML	0.0			0.0
T _B -Al ₁₃ (T _{Al})@BNML	90.3	0.0	-0.601	1.0
$T_N-Al_{13}(T_{Al})@BNML$	190.0	0.0	-0.851	1.0
$B_{B\text{-N}}\text{-}Al_{13}(T_{Al}) \textcircled{@}BNML$	111.9	0.0	-0.619	1.0
H _{BN} -Al ₁₃ (T _{Al})@BNML	143.4	0.0	-0.599	1.0
T_B/T_B - $Al_{13}(B_{Al-Al})$ @BNML	110.0	0.0	-0.649	1.0
T_N/T_N -Al ₁₃ (B _{Al-Al})@BNML	108.0	0.0	-0.715	1.0
$B_{B\text{-}N}\!/B_{B\text{-}N}\!-\!Al_{13}(B_{Al\text{-}Al}) \textcircled{@}BNML$	37.7	0.0	-0.672	1.0
$H_{BN}/H_{BN}\text{-}Al_{13}(B_{Al\text{-}Al}) \textcircled{@}BNML$	80.8	0.0	-0.699	1.0
T_B/T_N -Al ₁₃ (B _{Al-Al})@BNML	108.9	0.0	-0.672	1.0
T_B/H_{BN} -Al ₁₃ (B _{Al-Al})@BNML	46.5	0.0	-0.693	1.0
$T_{N}\!/H_{BN}\!\!-\!Al_{13}(B_{Al\text{-}Al})@BNML$	108.5	0.0	-0.708	1.0
T_B/H_{BN} -Al ₁₃ (B _{Al-Al})@BNML	106.8	0.0	-0.664	1.0
$T_B/T_B/T_B-Al_{13}(H_{Al}) @BNML-T_{Ncenter}$	99.5	0.0	-0.736	1.0
$T_B/T_B/T_B\text{-}Al_{13}(H_{Al}) \textcircled{0}BNML\text{-}B_{B\text{-}Ncenter}$	100.7	0.0	-0.759	1.0
$T_N/T_N/T_N-Al_{13}(H_{Al}) @BNML-T_{Bcenter}$	106.1	0.0	-0.770	1.0
$T_N/T_N/T_N-Al_{13}(H_{Al})@BNML-H_{BNcenter}$	99.9	0.0	-0.730	1.0
$B_{B\text{-}N}/B_{B\text{-}N}/B_{B\text{-}N}\text{-}Al_{13}(H_{Al}) \textcircled{0}BNML\text{-}T_{Ncenter}$	99.3	0.0	-0.718	1.0
$B_{B\text{-}N}\!/B_{B\text{-}N}\!/B_{B\text{-}N}\!-\!Al_{13}(H_{Al})\textcircled{@}BNML\text{-}H_{BNcenter}$	100.3	0.0	-0.753	1.0
$H_{BN}/H_{BN}/H_{BN}\text{-}Al_{13}(H_{A1}) \textcircled{@}BNML\text{-}T_{Bcenter}$	100.7	0.0	-0.760	1.0
$H_{BN}/H_{BN}/H_{BN}-Al_{13}(H_{A1})@BNML-T_{Ncenter}$	91.9	0.0	-0.761	1.0
$T_B/T_B/T_N\text{-}Al_{13}(H_{Al}) \textcircled{0}BNML\text{-}T_{Ncenter}$	100.8	0.0	-0.763	1.0

Figure S1. The geometries and relative energies of obtained composite Al_{13} -BNML systems. The brown, pink and blue balls represent Al, B and N atoms, respectively.

Figure S2. Starting from the initial structure T_N -Al₁₃(T_{Al})@BNML (a), *ab initio* molecular dynamics simulation is run for 2 ps, where increasing the temperature from 0 to 350 K within the first 1.4 ps, the composite configuration T_B/H_{BN} -Al₁₃(B_{Al} -Al)@BNML (b) can be obtained, while the composite configuration $T_B/T_B/T_N$ -Al₁₃(H_{Al})@BNML- $T_{Ncenter}$ (c) can be obtained, when keeping at 350 K for 0.6 ps. (d) Minimum-energy pathway for the Al₁₃ moving between two T_N sites on the BNML surface. The brown, pink and blue balls represent Al, B and N atoms, respectively.

Figure S3. The band structures and corresponding DOSs for $T_B/H_{BN}-Al_{13}(B_{Al}-A_{Al})@BNML$ (a), $T_B/T_B/T_N-Al_{13}(H_{Al})@BNML-T_{Ncenter}$ (b), $T_B-Al_{13}(T_{Al})@BNML$ (c), $T_N/T_N-Al_{13}(H_{Al})@BNML-T_{Bcenter}$ (d) and $H_{BN}/H_{BN}-Al_{13}(H_{Al})@BNML-T_{Ncenter}$ (e), respectively. (f) The calculated band structure using the HSE hybrid functional of $T_N-Al_{13}(T_{Al})@BNML$ system. E_g refers to the energy gap between the top valence band (TVB) and the bottom conduction band (BCB). The blue and red lines in the band structures denote the spin-up (\uparrow) and spin-down (\downarrow) channels, respectively. The Fermi-level is set as zero and indicated by the green dotted line. Note that the DOS around the Fermi-level for ($a \sim f$) is zoomed in to make it clearer.