Supporting information for: Bexarotene cannot reduce amyloid beta plaques through inhibition of production of amyloid beta peptides: *In silico* and *in vitro* study

Pham Dinh Quoc Huy,^{1,2} Nguyen Quoc Thai,^{2,3,4} Zuzana Bednarikova,⁵ Huynh Quang Linh,⁴ Zuzana Gazova,⁵ and Mai Suan Li¹

¹Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland,

²Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam,

³Division of Theoretical Physics, Dong Thap University, 783 Pham Huu Lau Str., Ward 6, Cao Lanh City, Dong Thap, Vietnam,

⁴Biomedical Engineering Department, University of Technology - VNU HCM 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Vietnam,

⁵Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia

E-mail: masli@ifpan.edu.pl; gazova@saske.sk

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3C3CT -0.110215 4C4CA -0.071271 5C5CA -0.140981 6C6CA -0.384321 7C7CT 0.561644 8C8CA -0.24028 9C9CA 0.215507 10C10CA 0.072981 11H1HC 0.005864 12H2HC 0.005864 13H3HC 0.014390 14H4HC 0.01390 15H5HA 0.193910 16H6HA 0.193910 17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA -0.180451 23C15CA -0.130122 24H9HA 0.144582 25C16CA -0.130122 24H9HA 0.149271 27C17CA -0.130122 28C18CA -0.189451 31C19C 0.820182 33O2OH -0.635151 34H12HA 0.149271 35C20CT -0.322763 36H14HC 0.092808 37H15HC 0.092808 38H16HC 0.092808 39C21CT -0.423075
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5C5CA -0.140981 6C6CA -0.384321 7C7CT 0.51644 8C8CA -0.246028 9C9CA 0.215507 10C10CA 0.072981 11H1HC 0.005864 12H2HC 0.005864 13H3HC 0.014390 14H4HC 0.014390 15H5HA 0.193910 16H6HA 0.149062 17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA -0.130122 24H9HA 0.144582 25C16CA -0.15782 26H10HA 0.144582 25C16CA -0.130122 28C17CA -0.130122 29H11HA 0.144582 31C19C 0.80481 33O2OH -0.5515151 34H13HO 0.407750 35C20CT -0.322763 36H14HC 0.092808 37H16HC 0.092808 38H16HC 0.092808 39C21CT -0.423075
6C6CA -0.384321 7C7CT0.5616448C8CA -0.246028 9C9CA0.21550710C10CA0.07298111H1HC0.00586412H2HC0.00586413H3HC0.01439014H4HC0.01439015H5HA0.19391016H6HA0.14906217C11CD -0.053301 18C12CM -0.390605 19H7HA0.16523320H8HA0.16523321C13CA0.20443322C14CA -0.189451 23C15CA -0.130122 24H9HA0.14458225C16CA -0.130122 28C18CA -0.189451 29H11HA0.14458229H11HA0.14458231C19C0.82018232O1O -0.55151 34H13HO -0.423075 35C20CT -0.322763 36H14HC0.09280837H15HC0.09280838H16HC0.09280839C21CT -0.423075
7C7CT 0.561644 8C8CA -0.246028 9C9CA 0.215507 10C10CA 0.072981 11H1HC 0.005864 12H2HC 0.005864 13H3HC 0.014390 14H4HC 0.014390 15H5HA 0.193910 16H6HA 0.1439062 17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA 0.204433 22C14CA -0.189451 23C15CA -0.130122 24H9HA 0.144582 25C16CA -0.130122 24H9HA 0.144582 25C16CA -0.130122 26H10HA 0.149271 27C17CA -0.130122 28C18CA -0.189451 31C19C 0.820182 32O1O -0.55151 33O2OH -0.632163151 34H13HO 0.447750 35C20CT -0.322763 36H14HC 0.092808 37H15HC 0.092808 39C21CT -0.423075 40H17HC 0.092808
8 $C8$ CA -0.246028 9C9CA 0.215507 10C10CA 0.072981 11H1HC 0.005864 12H2HC 0.008864 13H3HC 0.014390 14H4HC 0.014390 15H5HA 0.19910 16H6HA 0.19910 17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA 0.204433 22C14CA -0.189451 23C15CA 0.144582 25C16CA -0.165782 26H10HA 0.144582 27C17CA -0.130122 28C18CA -0.189451 29H11HA 0.144582 31C19C 0.820182 33O2OH -0.635151 34H13HO 0.407750 35C20CT -0.322763 36H14HC 0.092808 38H16HC 0.092808 39C21CT -0.423075 40H17HC 0.080443
9C9CA 0.215507 10C10CA 0.072981 11H1HC 0.005864 12H2HC 0.005864 13H3HC 0.014390 14H4HC 0.014390 15H5HA 0.193910 16H6HA 0.193910 16H6HA 0.193910 17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA 0.204433 22C14CA -0.189451 23C15CA -0.130122 24H9HA 0.149271 27C17CA -0.130122 28C18CA -0.189451 29H11HA 0.149271 30H12HA 0.144582 31C19C 0.820182 33O2OH -0.655151 34H13HO 0.407750 35C20CT -0.322763 36H14HC 0.092808 37H15HC 0.092808 38H16HC 0.092808 39C21CT -0.423075 40H17HC 0.089443
10 $C10$ CA 0.072981 11H1HC 0.005864 12H2HC 0.005864 13H3HC 0.014390 14H4HC 0.014390 15H5HA 0.193910 16H6HA 0.193910 17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA 0.204433 22C14CA -0.130122 24H9HA 0.144582 25C16CA -0.130122 28C18CA -0.130122 28C18CA -0.130122 29H11HA 0.144582 31C19C 0.820182 33O2OH -0.635151 34H13HO 0.42775 35C20CT -0.322763 36H14HC 0.092808 37H15HC 0.092808 38H16HC 0.092808 39C21CT $C.423075$
11H1HC 0.005864 12H2HC 0.005864 13H3HC 0.014390 14H4HC 0.014390 15H5HA 0.193910 16H6HA 0.193910 17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA 0.204433 22C14CA -0.189451 23C15CA -0.130122 24H9HA 0.144582 25C16CA -0.130122 26H10HA 0.149271 27C17CA -0.130122 28C18CA -0.189451 29H11HA 0.149271 30H12HA 0.144582 31C19C 0.820182 33O2OH -0.635151 34H13HO 0.407750 35C20CT -0.322763 36H14HC 0.092808 37H15HC 0.092808 38H16HC 0.092808 39C21CT -0.423075
12H2HC 0.005864 13H3HC 0.014390 14H4HC 0.014390 15H5HA 0.19910 16H6HA 0.19902 17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA 0.204433 22C14CA -0.189451 23C15CA -0.165782 24H9HA 0.144582 25C16CA -0.189451 27C17CA -0.189451 28C18CA -0.189451 29H11HA 0.149271 30H12HA 0.144582 31C19C 0.82082 33O2OH -0.635151 34H13HO 0.407750 35C20CT -0.32263 38H16HC 0.092808 39C21CT -0.423075 40H17HC 0.092808
13H3HC 0.014390 14H4HC 0.014390 15H5HA 0.193910 16H6HA 0.193910 16H6HA 0.193910 17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA 0.204433 22C14CA -0.189451 23C15CA -0.169782 24H9HA 0.144582 25C16CA -0.189451 26H10HA 0.149271 27C17CA -0.189451 29H11HA 0.149271 30H12HA 0.144582 31C19C 0.820182 32O1O -0.541187 33O2OH -0.635151 34H13HO 0.407750 35C20CT -0.322763 36H14HC 0.092808 38H16HC 0.092808 39C21CT -0.423075 40H17HC 0.08443
14H4HC 0.014390 15H5HA 0.193910 16H6HA 0.193910 17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA 0.204433 22C14CA -0.189451 23C15CA -0.130122 24H9HA 0.144582 25C16CA -0.130122 24H9HA 0.144582 25C16CA -0.130122 28C18CA -0.130122 28C18CA -0.189451 29H11HA 0.149271 30H12HA 0.149271 33O2OH -0.635151 34H13HO 0.407750 35C20CT -0.322763 36H14HC 0.092808 37H15HC 0.092808 38H16HC 0.092808 39C21CT -0.423075 40H17HC 0.092433
15H5HA 0.193910 16H6HA 0.149062 17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA 0.204433 22C14CA -0.189451 23C15CA -0.130122 24H9HA 0.144582 25C16CA -0.165782 26H10HA 0.149271 27C17CA -0.130122 28C18CA -0.189451 29H11HA 0.149271 30H12HA 0.144582 31C19C 0.820182 32O1O -0.541187 33O2OH -0.635151 34H13HO 0.407750 35C20CT -0.322763 36H14HC 0.092808 39C21CT -0.423075 40H17HC 0.0928043
16 $H6$ HA 0.149062 17 $C11$ CD -0.053301 18 $C12$ CM -0.390605 19 $H7$ HA 0.165233 20 $H8$ HA 0.165233 21 $C13$ CA 0.204433 22 $C14$ CA -0.189451 23 $C15$ CA -0.130122 24 $H9$ HA 0.144582 25 $C16$ CA -0.165782 26 $H10$ HA 0.149271 27 $C17$ CA -0.130122 28 $C18$ CA -0.189451 29 $H11$ HA 0.149271 30 $H12$ HA 0.144582 31 $C19$ C 0.820182 32 $O1$ O -0.541187 33 $O2$ OH -0.655151 34 $H13$ HO 0.407750 35 $C20$ CT -0.322763 38 $H16$ HC 0.092808 39 $C21$ CT -0.423075 40 $H17$ HC 0.0928043
17C11CD -0.053301 18C12CM -0.390605 19H7HA 0.165233 20H8HA 0.165233 21C13CA 0.204433 22C14CA -0.189451 23C15CA -0.130122 24H9HA 0.144582 25C16CA -0.165782 26H10HA 0.149271 27C17CA -0.130122 28C18CA -0.189451 29H11HA 0.149271 30H12HA 0.144582 31C19C 0.820182 32O1O -0.541187 33O2OH -0.635151 34H13HO 0.07750 35C20CT -0.322763 36H14HC 0.092808 37H15HC 0.092808 38H16HC 0.092808 39C21CT -0.423075 40H17HC 0.080443
18 $C12$ CM -0.390605 19 $H7$ HA 0.165233 20 $H8$ HA 0.165233 21 $C13$ CA 0.204433 22 $C14$ CA -0.189451 23 $C15$ CA -0.130122 24 $H9$ HA 0.144582 25 $C16$ CA -0.165782 26 $H10$ HA 0.149271 27 $C17$ CA -0.130122 28 $C18$ CA -0.189451 29 $H11$ HA 0.149271 30 $H12$ HA 0.144582 31 $C19$ C 0.820182 32 $O1$ O -0.541187 33 $O2$ OH -0.635151 34 $H13$ HO 0.407750 35 $C20$ CT -0.322763 36 $H14$ HC 0.092808 37 $H15$ HC 0.092808 38 $H16$ HC 0.092403
19H7HA 0.165233 20H8HA 0.165233 21C13CA 0.204433 22C14CA -0.189451 23C15CA -0.130122 24H9HA 0.144582 25C16CA -0.165782 26H10HA 0.149271 27C17CA -0.130122 28C18CA -0.189451 29H11HA 0.149271 30H12HA 0.149271 31C19C 0.820182 32O1O -0.541187 33O2OH -0.635151 34H13HO 0.407750 35C20CT -0.322763 36H14HC 0.092808 37H15HC 0.092808 38H16HC 0.092808 39C21CT -0.423075 40H17HC 0.089443
20H8HA 0.165233 21 $C13$ CA 0.204433 22 $C14$ CA -0.189451 23 $C15$ CA -0.130122 24 H9HA 0.144582 25 $C16$ CA -0.165782 26 H10HA 0.149271 27 $C17$ CA -0.130122 28 $C18$ CA -0.189451 29 H11HA 0.149271 30 H12HA 0.149271 31 $C19$ C 0.820182 31 $C19$ C 0.820182 32 01 0 -0.541187 33 02 $0H$ -0.635151 34 H13HO 0.407750 35 $C20$ CT -0.322763 36 H14HC 0.092808 37 H15HC 0.092808 38 H16HC 0.092808 39 $C21$ CT -0.423075 40 H17HC 0.082443
21 $C13$ CA 0.204433 22 $C14$ CA -0.189451 23 $C15$ CA -0.130122 24 $H9$ HA 0.144582 25 $C16$ CA -0.165782 26 $H10$ HA 0.149271 27 $C17$ CA -0.130122 28 $C18$ CA -0.189451 29 $H11$ HA 0.149271 30 $H12$ HA 0.149271 30 $H12$ HA 0.149271 31 $C19$ C 0.820182 31 $C19$ C 0.820182 32 $O1$ O -0.541187 33 $O2$ OH -0.635151 34 $H13$ HO 0.407750 35 $C20$ CT -0.322763 36 $H14$ HC 0.092808 37 $H15$ HC 0.092808 39 $C21$ CT -0.423075 40 $H17$ HC 0.089443
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
28 C18 CA -0.189451 29 H11 HA 0.149271 30 H12 HA 0.149271 30 H12 HA 0.144582 31 C19 C 0.820182 32 O1 O -0.541187 33 O2 OH -0.635151 34 H13 HO 0.407750 35 C20 CT -0.322763 36 H14 HC 0.092808 37 H15 HC 0.092808 38 H16 HC 0.092808 39 C21 CT -0.423075 40 H17 HC 0.089443
29 H11 HA 0.149271 30 H12 HA 0.149271 30 H12 HA 0.144582 31 C19 C 0.820182 32 O1 O -0.541187 33 O2 OH -0.635151 34 H13 HO 0.407750 35 C20 CT -0.322763 36 H14 HC 0.092808 37 H15 HC 0.092808 38 H16 HC 0.092808 39 C21 CT -0.423075 40 H17 HC 0.089443
30 H12 HA 0.144582 31 C19 C 0.820182 32 O1 O -0.541187 33 O2 OH -0.635151 34 H13 HO 0.407750 35 C20 CT -0.322763 36 H14 HC 0.092808 37 H15 HC 0.092808 38 H16 HC 0.092808 39 C21 CT -0.423075 40 H17 HC 0.089443
31 C19 C 0.820182 32 O1 O -0.541187 33 O2 OH -0.635151 34 H13 HO 0.407750 35 C20 CT -0.322763 36 H14 HC 0.092808 37 H15 HC 0.092808 38 H16 HC 0.092808 39 C21 CT -0.423075 40 H17 HC 0.089443
32 O1 O -0.541187 33 O2 OH -0.635151 34 H13 HO 0.407750 35 C20 CT -0.322763 36 H14 HC 0.092808 37 H15 HC 0.092808 38 H16 HC 0.092808 39 C21 CT -0.423075 40 H17 HC 0.089443
33 O2 OH -0.635151 34 H13 HO 0.407750 35 C20 CT -0.322763 36 H14 HC 0.092808 37 H15 HC 0.092808 38 H16 HC 0.092808 39 C21 CT -0.423075 40 H17 HC 0.089443
34 H13 HO 0.407750 35 C20 CT -0.322763 36 H14 HC 0.092808 37 H15 HC 0.092808 38 H16 HC 0.092808 39 C21 CT -0.423075 40 H17 HC 0.089443
35 C20 CT -0.322763 36 H14 HC 0.092808 37 H15 HC 0.092808 38 H16 HC 0.092808 39 C21 CT -0.423075 40 H17 HC 0.089443
36 H14 HC 0.092808 37 H15 HC 0.092808 38 H16 HC 0.092808 39 C21 CT -0.423075 40 H17 HC 0.089443
37 H15 HC 0.092808 38 H16 HC 0.092808 39 C21 CT -0.423075 40 H17 HC 0.089443
38 H16 HC 0.092808 39 C21 CT -0.423075 40 H17 HC 0.089443
39 C21 CT -0.423075 40 H17 HC 0.089443
40 H17 HC 0.089443
111/ 110 0.00745
41 H18 HC 0.089443
42 H19 HC 0.089443
43 C22 CT -0.423075
44 H20 HC 0.089443
45 H21 HC 0.089443
46 H22 HC 0.089443
47 C23 CT -0.430289
48 H23 HC 0.091479
49 H24 HC 0.091479
50 H25 HC 0.091479
51 C24 CT -0.430289
52 H26 HC 0.091479
53 H27 HC 0.091479
54 H28 HC 0.091479

Table S1: Atom name, atom type, and charge of bexarotene.

Table S2: Results for docking of bexarotene to equilibrium structures of receptor PPAR- γ . In each MD trajectory, a set of 100 structures of PPAR- γ , collected regularly at equilibration, were used to dock with bexarotene. Totally 400 docking attempts were made.

PPAR-γ						
Trajectory	Average of binding affinity over snapshots in each trajectory (kcal/mol)					
Traj 1	-9.09 +/- 0.81					
Traj 2	-8.71 +/- 0.80					
Traj 3	-9.17 +/- 0.79					
Traj 4	-8.75 +/- 1.02					
Average over all trajectories	-8.93 +/- 0.23					

Table S3	: The same as	s table S2 bu	t for receptor	RXR-α.	Totally	400 do	ocking a	attempts	were n	nade.

RXR-alpha								
Trajectory	Average of binding affinity over snapshots in each trajectory (kcal/mol)							
Traj 1	-9.07 +/- 1.60							
Traj 2	-8.29 +/- 1.54							
Traj 3	-8.99 +/- 1.70							
Traj 4	-9.39 +/- 1.64							
Average over all trajectories	-8.94 +/- 0.46							

Table S4 : Docking energy of bexarotene to β -secreatse. Results were obtained from 1500 docking attempts using snapshots collected at equibrium in 30 MD runs as targets (see the main text for more details).

Beta-secretase docking							
Mode	Trajectory	Average binding affinity (kcal/mol)					
	Traj 1	-7.72 +/- 0.45					
	Traj 2	-8.11 +/- 0.63					
	Traj 3	-9.00 +/- 0.81					
	Traj 4	-8.82 +/- 0.45					
	Traj 5	-8.78 +/- 0.95					
Mode 1	Traj 6	-8.80 +/- 0.75					
	Traj 7	-8.38 +/- 0.65					
	Traj 8	-9.12 +/- 0.81					
	Traj 9	-7.78 +/- 0.48					
	Traj 10	-7.94 +/- 0.46					
	Average over mode 1	-8.45 +/- 0.53					
	Traj 1	-7.86+/- 0.56					
	Traj 2	-7.70 +/- 0.41					
	Traj 3	-7.48 +/- 0.38					
	Traj 4	-7.89 +/- 0.58					
	Traj 5	-7.63 +/- 0.39					
Mode 2	Traj 6	-8.72 +/- 0.78					
	Traj 7	-7.71 +/- 0.58					
	Traj 8	-8.10 +/- 0.64					
	Traj 9	-7.77 +/- 0.49					
	Traj 10	-7.77 +/- 0.59					
	Average over mode 1	-7.86 +/- 0.34					
	Traj 1	-7.87 +/- 0.50					
	Traj 2	-7.72 +/- 0.40					
	Traj 3	-7.85 +/- 0.56					
	Traj 4	-7.75 +/- 0.40					
	Traj 5	-7.76 +/- 0.49					
Mode 3	Traj 6	-7.73 +/- 0.50					
	Traj 7	-8.00 +/- 0.51					
	Traj 8	-7.89 +/- 0.44					
	Traj 9	-7.54 +/- 0.43					
	Traj 10	-7.77 +/- 0.40					
	Average over mode 3	-7.79 +/- 0.12					
Average ov	-8.03 +/- 0.46						

Traj	ΔE_{vdW}	ΔE_{ele}	ΔG_{PB}	ΔG_{SUR}	-TΔS	ΔG_{bind}
1	-50.0	-19.3	35.5	-4.5	19.6	-18.7
2	-48.6	-14.9	30.3	-4.5	22.4	-15.3
3	-50.7	-17.6	36.0	-4.5	20.9	-15.9
4	-49.8	-14.4	36.5	-4.7	17.6	-14.8
Average	-49.8±0.9	-16.5±2.3	34.6±2.9	-4.6±0.1	20.1±1.4	-16.2±1.8

Table S5: Binding free energy of bexarotene to PPAR- γ . See Fig. 3 in the main text for evolution of RMSD and interaction energy.

Table S6: Binding free energy of bexarotene to RXR- α . See Fig. S1 in SI for the evolution of RMSD and interaction energy.

Traj	ΔE_{vdW}	ΔE_{ele}	ΔG_{PB}	ΔG_{SUR}	-ΤΔS	ΔG_{bind}
1	-52.6	-17.5	38.9	-4.5	20.9	-14.9
2	-55.8	-14.9	34.0	-4.4	20.4	-20.6
3	-53.0	-17.8	39.2	-4.5	17.9	-18.1
4	-52.9	-20.4	42.7	-4.5	21.0	-14.1
Average	-53.6±1.5	-17.6±2.3	38.7±3.6	-4.5±0.1	20.1±1.4	-16.9±3.0

Table S7. Decomposition of the interaction energy into 4 groups of bexarotene (Figure S4). For PPAR- γ (4EMA) and RXR- α (4K6I) the results were averaged over four MD trajectories, while for β -secreatase (1M4H) the average over 30 trajectories of 3 modes was made.

		$E_{ m elec}$	$E_{ m vdW}$	$E_{\rm elec} + E_{\rm vdW}$
	Group 1	-10.49	-6.22	-16.70
4EMA	Group 2	0.77	-10.79	-10.02
	Group 3	-1.86	-29.50	-31.36
	Group 4	-4.95	-3.28	-8.24
4K6I	Group 1	-10.01	-6.24	-16.25
	Group 2	-2.87	-12.54	-15.41
	Group 3	0.17	-30.94	-30.77
	Group 4	-4.94	-3.84	-8.78
1M4H	Group 1	-3.26	-2.46	-5.72
	Group 2	-2.03	-6.34	-8.38
	Group 3	0.21	-15.29	-15.08
	Group 4	-5.07	-2.39	-7.45

		ΔE_{vdW}	ΔE_{ele}	ΔG_{SUR}	ΔG_{PB}	$-T\Delta S$	ΔG_{bind}	Average
	Traj 1	-31.40	-13.05	-3.89	33.08	12.57	-2.70	
	Traj 2	-36.69	-12.14	-4.17	39.38	13.89	0.28	
	Traj 3	-39.79	-21.65	-4.50	45.40	16.56	-3.98	
	Traj 4	-31.44	-26.58	-4.01	42.17	16.43	-3.43	-3 57 + 6 88
Mode 1	Traj 5	-40.51	-20.88	-4.53	45.06	7.37	-13.50	-5.57 ± 0.00
Mode 1	Traj 6	-39.38	-19.69	-4.31	40.32	22.14	-0.92	
	Traj 7	-37.05	-5.60	-4.00	27.76	9.11	-9.78	
	Traj 8	-37.73	-27.11	-4.32	46.07	10.09	-13.00	
	Traj 9	-28.99	-12.38	-3.69	30.70	18.06	3.70	
	Traj 10	-27.86	-1.57	-3.59	23.36	17.24	7.59	
	Traj 1	-20.43	-6.09	-2.31	18.11	16.48	5.77	
	Traj 2	-21.63	-9.65	-2.44	19.95	21.74	7.97	
	Traj 3	-25.35	-7.95	-2.90	18.98	18.35	1.13	
	Traj 4	-29.00	-2.48	-3.10	17.00	19.36	1.78	-0.46 + 7.24
	Traj 5	-16.13	-3.07	-1.92	10.54	16.03	5.45	-0.40 ± 7.24
Mode 2	Traj 6	-44.93	-6.50	-4.47	22.89	15.75	-17.26	
	Traj 7	-25.58	-10.17	-2.98	21.54	12.75	-4.44	
	Traj 8	-25.59	-12.92	-2.88	22.72	17.98	-0.69	
	Traj 9	-18.81	-5.25	-2.26	15.66	11.33	0.66	
	Traj 10	-22.93	-16.37	-2.81	25.34	11.84	-4.93	
	Traj 1	-19.83	-6.73	-2.30	17.62	15.79	4.54	
Mode 3	Traj 2	-19.32	-9.06	-2.38	19.26	12.89	1.39	
	Traj 3	-19.93	-1.03	-2.53	9.63	16.62	2.76	
	Traj 4	-12.31	-3.84	-1.60	9.57	10.19	2.00	2 34 + 2 12
	Traj 5	-14.78	-5.82	-1.88	12.87	7.98	-1.63	2.37 ± 2.12
	Traj 6	-21.79	-9.38	-2.62	20.23	17.59	4.02	
	Traj 7	-25.33	-5.89	-2.88	20.84	17.39	4.14	
	Traj 8	-20.88	-9.70	-2.48	19.45	14.03	0.41	
	Traj 9	-13.30	-7.34	-1.49	14.76	12.30	4.93	
	Traj 10	-25.84	-9.63	-2.94	20.89	18.35	0.84	
Aver	age	-26.48 ± 8.78	-10.32 ± 6.95	-3.07 ± 0.92	24.37 ± 10.97	14.94 ± 3.82	-0.56 ± 6.20	

Table S8: Binding free energy ,by MMPBSA method, between beta-secretase and bexarotene. Snapshots from the last 100ns were used to estimate the binding free energy (kcal/mol).

Table S9: Binding free energy ,by MMPBSA method, between beta-secretase and ionized bexarotene. Snapshots from the last 100ns were used to estimate the binding free energy (kcal/mol). Results were obtained for mode 1.

Traj.	ΔE_{vdw}	ΔE_{ele}	ΔG_{PB}	ΔG_{SUR}	-TΔS	ΔG_{bind}
1	-33.76	105.44	-83.97	-3.93	12.18	-4.04
2	-34.69	98.87	-76.67	-3.90	9.50	-6.88
3	-33.99	37.73	-18.46	-4.42	15.10	-4.05
4	-34.94	119.94	-96.93	-3.93	11.77	-4.10
5	-36.20	132.87	-110.10	-3.95	13.56	-3.82
6	-35.57	118.60	-95.81	-3.96	21.65	+4.91
7	-31.39	90.19	-72.29	-3.78	21.15	+3.87
8	-35.33	103.51	-75.52	-4.10	6.93	-4.50
9	-31.79	82.45	-65.77	-3.89	10.77	-8.23
10	-38.18	98.21	-71.05	-4.05	9.41	-5.66
average	-34.58±2.01	98.78±26.11	-76.66±24.74	-3.99±0.18	13.20±4.88	-3.25±4.28

Figure S1: Structure of bexarotene which was optimized by Gaussian version 09 with the use of Hatree-Fock method and basis set 6-31G*.

Figure S2. Three best docking modes (1, 2 and 3) of bexarotene to β -secretase. These binding positions have been used as starting configurations for three independent sets of MD simulation.

Figure S3: Time dependence of RMSD and the interaction energy of RXR- α +bexarotene complex. The arrow indicates time when the complex reaches equilibrium

Figure S4. Bexarotene is divided into four groups denoted by different colors.

Figure S5. Per-residue interaction energies for PPAR-γ. Results were averaged over 4 MD runs.

Figure S6. Per-residue interaction energies for RXR-a. Results were averaged over 4 MD runs.

Figure S7: Time dependence of RMSD of β -secretase+bexarotene in the case where the MD simulation was performed using the configuration, obtained in Mode 1 (Fig. S2), as an initial configuration. The arrow indicates 100ns after which we have collected snapshots for estimating the binding free energy by the MM-PBSA method.

Figure S8: The same as in Figure S4 but for the case where the MD simulation was performed using the configuration, obtained in Mode 2 (Fig. S2), as an initial configuration.

Figure S9: The same as in Figure S4 but for the case where the MD simulation was performed using the configuration, obtained in Mode 3 (Fig. S2), as an initial configuration.

Figure S10: Three-dimensional structure of ionized bexarotene. The hydrogen atom from the carboxyl group is dissociated and bexarotene becomes negatively charged (-1).