Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supplementary Information for:

Singlet-assisted diffusion-NMR (SAD-NMR): redefining the limits when measuring tortuosity in porous media

Monique C. Tourell¹, Ionut-Alexandru Pop^{1‡}, Lynda J. Brown¹, Richard C. D. Brown¹, Giuseppe Pileio¹*

¹Chemistry, University of Southampton, SO17 1BJ, Southampton, UK. ‡Current address: Concept Life Sciences, CT13 9ND, Sandwich, UK.

S1. Synthesis of water-soluble ¹³C₂ labelled perdeuterated naphthalene derivative 1 (labeled as I in the main paper)

S1.1 General Experimental

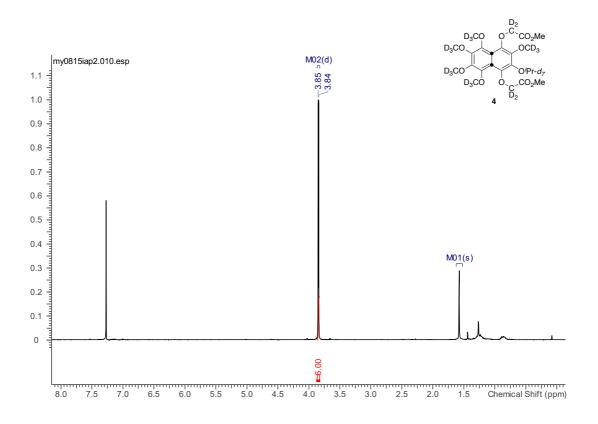
All air/moisture sensitive reactions were carried out under an inert atmosphere (N₂ or Ar), using oven or flame-dried glassware. THF (from Na/benzophenone) was distilled before use. All other solvents and reagents were used as received from standard chemical suppliers unless otherwise stated. TLC was performed on aluminium plates pre-coated with silica gel 60 with an F₂₅₄ indicator; visualised under UV light (254 nm) and/or by staining with KMnO₄ (10% aq.). Flash column chromatography was performed with Merck Kieselgel 60 silica gel. Fourier-transform infrared (FT-IR) spectra are reported in wavenumbers (cm⁻¹) and were collected on a Nicolet 380 spectrometer fitted with a Diamond platform, as solids or neat liquids. ¹H NMR

and 13 C NMR spectra were recorded in CDCl₃ solutions using Bruker DPX400, Bruker AVII-400 or AVIIIHD-400 (400 and 100 MHz respectively) spectrometers. Chemical shifts are reported in δ units using CHCl₃ (δ 7.27 ppm 1 H, δ 77.0 ppm 13 C) as internal standards. 2 H NMR spectra were recorded in CHCl₃ or H₂O solutions using a Bruker AVIIIHD-500 (76.8 MHz 2 H) spectrometer. Chemical shifts are reported in δ units using CDCl₃ as an internal standard (δ 7.27 ppm 2 H). Coupling constants (J) are reported in Hz and are rounded to the nearest 0.1 Hz. Matching coupling constants are corrected. High-resolution mass spectra (HRMS) were obtained using a MaXis (Bruker Daltonics, Bremen, Germany) mass spectrometer equipped with a Time of Flight (TOF) analyser. HRMS were recorded using positive ion electrospray ionisation (ESI $^{+}$).

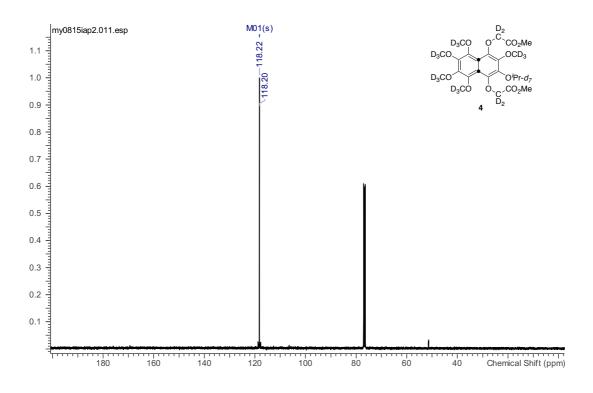
S1.2 Dimethyl-2,2'-((1,2,3,4,6-pentakis(methoxy- d_3)-7-(propan-2-yl- d_7)naphthalene-5,8-diyl)bis (oxy))diacetate-4a,8a- 13 C₂(4)

A solution of cyclobutenones **3a** and **3b** (1:1, 300 mg, 0.39 mmol) in THF (3 mL) was purged with N₂ atm and sonicated for 30 min, then heated under microwave irradiation in a sealed tube at 135 °C for 5 h. The reaction mixture was diluted with THF (15 mL), treated with KOH (94 mg, 1.68 mmol) and methyl bromoacetate-2,2- d_2 (0.18 mL, 1.91 mmol) and stirred at rt for 1 h. The mixture was filtered and the solvent removed *in vacuo*. Purification by column chromatography eluting with Et₂O:petroleum ether (20:80) afforded the title compound **4** as a white solid (250 mg, 0.46 mmol, 60%). R_f 0.41 (eluent EtOAc/hexane 1:1); mp 85–87 °C; FT-IR v_{max} 2983, 2937, 2856, 1764, 1743, 1588, 1446, 1382, 1351 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.85 (3H, s), 3.84 (3H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 118.22, 188.20 ppm; LRMS (ESI⁺) m/z 541.5 [M+H]⁺, 563.4 [M+Na]⁺; HRMS (ESI⁺) for C₂₂ ¹³C₂H₇D₂₆O₁₂ [M+H]⁺ calcd 541.3666, found 541.3673.

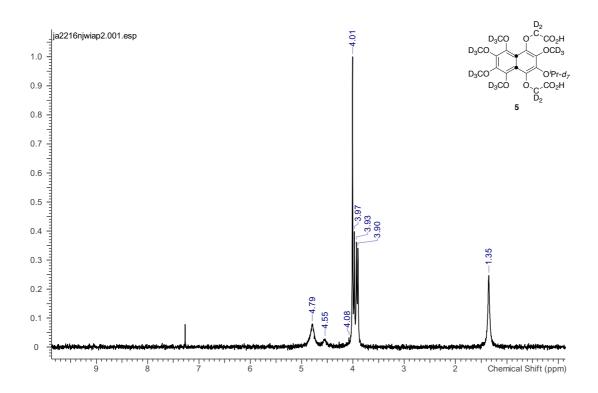
S1.3 2,2'-((1,2,3,4,6-Pentakis(methoxy- d_3)-7-(propan-2-yl- d_7)naphthalene-5,8-diyl)bis(oxy)) diacetic acid-4a,8a- 13 C₂ (5)

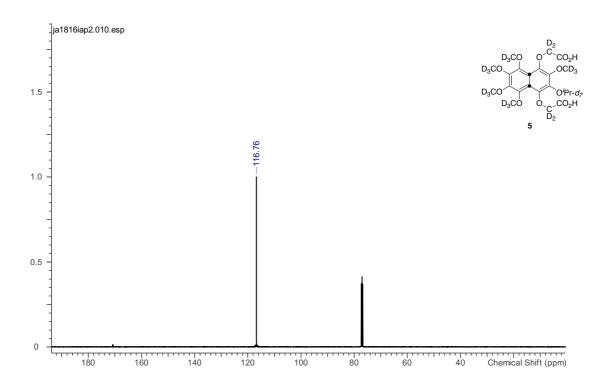

To a suspension of diester **4** (220 mg, 0.41 mmol) in MeOH (5 mL) was added KOH (114 mg, 2.04 mmol) in one portion and the reaction heated at 75 °C for 5 h, then concentrated *in vacuo*. The white residue was dissolved in H₂O (5 mL) and washed with EtOAc (3 x 5 mL) to remove any organic impurities. The aqueous phase was acidified to pH 2 with 1M HCl and extracted with EtOAc (3 x 5 mL). The combined organic phases were dried (Na₂SO₄) and concentrated *in vacuo* to afford the title compound **5** as white solid (190 mg, 0.37 mmol, 91%).

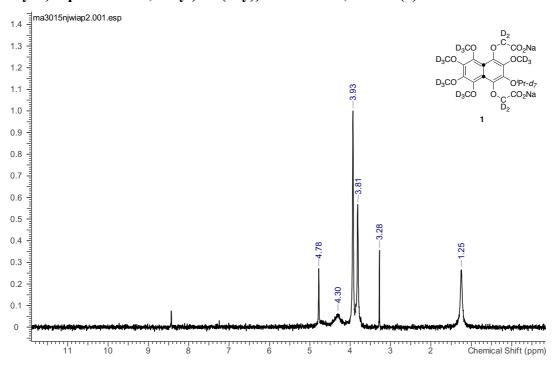
Mp 148–150 °C; FT-IR ν_{max} 3115, 1765, 1769, 1588, 1467, 1403, 1362, 1191, 1091 cm⁻¹; ²H NMR (76.8 MHz, CHCl₃) δ 4.79 (s, 4D), 4.55 (s, 1D), 4.01 (s, 6D), 3.97 (s, 3D), 3.93 (s, 3D), 3.90 (s, 3D), 1.35 (s, 6D) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 116.76 ppm; LRMS (ESI⁺) m/z 513.6 [M+H]⁺, 535.4 [M+Na]⁺; HRMS (ESI⁺) for $C_{20}^{13}C_2H_3D_{26}O_{12}$ [M+H]⁺ calcd 513.3353, found 513.3356.

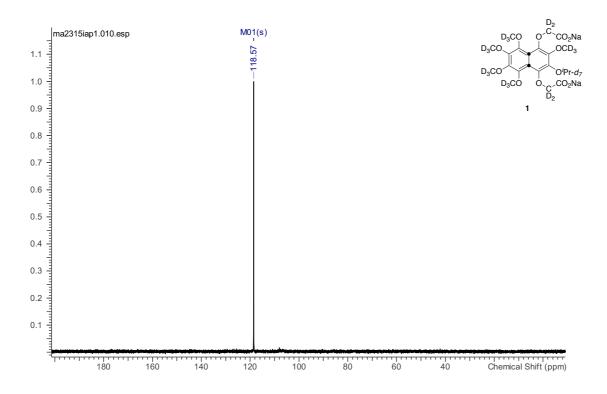

S1.4 Sodium-2,2'-((1,2,3,4,6-pentakis(methoxy- d_3)-7-(propan-2-yl- d_7)naphthalene-5,8-diyl)bis (oxy))diacetate-4a,8a- 13 C₂(1)

To neat diacid **5** (230 mg, 0.45 mmol) was added NaOH (0.92 mL of a 1M solution in H₂O, 0.92 mmol) turning the suspension from white to a pale pink colour. The reaction mixture was concentrated *in vacuo* to afford the title compound 1 as a pale pink solid (250 mg, 0.45 mmol, 100%). Mp >290 °C; FT-IR ν_{max} 3350, 1606, 1586, 1396, 1359, 1187, 1089, 1020, 969 cm⁻¹; ²H NMR (76.8 MHz, H₂O) 4.78 (s, 2D), 4.30 (s, 1D), 3.93 (s, 9D), 3.81 (s, 6D), 3.28 (s, 2D), 1.25 (s, 6D) ppm; ¹³C NMR (100 MHz, H₂O) δ 118.57 ppm.


S1.5 ¹H NMR (400 MHz, CDCl₃) Dimethyl-2,2'-((1,2,3,4,6-pentakis(methoxy- d_3)-7-(propan-2-yl- d_7)naphthalene-5,8-diyl)bis (oxy))diacetate-4a,8a-¹³C₂(4)


S1.6 13 C NMR (100 MHz, CDCl₃) Dimethyl-2,2'-((1,2,3,4,6-pentakis(methoxy- d_3)-7-(propan-2-yl- d_7)naphthalene-5,8-diyl)bis (oxy))diacetate-4a,8a- 13 C₂ (4)


S1.7 ²H NMR (76.8 MHz, CHCl₃) 2,2'-((1,2,3,4,6-Pentakis(methoxy- d_3)-7-(propan-2-yl- d_7)naphthalene-5,8-diyl)bis(oxy)) diacetic acid-4a,8a- 13 C₂ (5)


S1.8 13 C NMR (100 MHz, CDCl₃) 2,2'-((1,2,3,4,6-Pentakis(methoxy- d_3)-7-(propan-2-yl- d_7)naphthalene-5,8-diyl)bis(oxy)) diacetic acid-4a,8a- 13 C₂ (5)

S1.9 2 H NMR (76.8 MHz, H₂O) Sodium-2,2'-((1,2,3,4,6-pentakis(methoxy- d_3)-7-(propan-2-yl-7)naphthalene-5,8-diyl)bis (oxy))diacetate-4a,8a- 13 C₂(1)

S1.10 13 C NMR (100 MHz, H_2 O) Sodium-2,2'-((1,2,3,4,6-pentakis(methoxy- d_3)-7-(propan-2-yl- d_7)naphthalene-5,8-diyl)bis (oxy))diacetate-4a,8a- 13 C₂(1)

