## ELECTRONIC SUPPLEMENTARY INFORMATION

## An MS-CASPT2 Study of the Photodecomposition of 4-Methoxyphenyl Azide: Role of Internal Conversion and Intersystem Crossing

Daniel Aranda, Francisco J. Avila, Isabel López-Tocón, Juan F. Arenas, Juan C. Otero\*, and Juan Soto\*

Department of Physical Chemistry, Faculty of Science, University of Málaga, E-29071-Málaga, Spain

jc\_otero@uma.es

soto@uma.es



**Figure S1.** State average active orbitals included in the CAS-SCF wavefunction of 4methoxyphenyl azide. In parenthesis, mean occupation numbers of the state average orbitals.



**Figure S2.** Active orbitals included in the CAS-SCF wavefunction of 4-methoxyphenyl nitrene. In parenthesis, mean occupation numbers of the state average orbitals.



**Figure S3.** Active orbitals included in the CAS-SCF wavefunction of 4,4'dimethoxyazobenzene. In parenthesis, mean occupation numbers of the state average orbitals.



**Figure S4.** MS-CASPT2/ANO-RCC ( $C_s$  symmetry) potential energy curves of the ground and low-lying singlet and triplet excited states of 4-methoxyphenyl azide for dissociation into 4-methoxyphenyl nitrene and N<sub>2</sub>. Four state-average CAS-SCF wavefunction in each symmetry block. Blue solid line: singlet A'; red solid line: triplet A'; blue dotted line: singlet A"; red dotted line: triplet A". Inset: expanded view of the 2<sup>1</sup>A"/2<sup>1</sup>A' and 2<sup>1</sup>A'/2<sup>3</sup>A" crossings. Final *R*(N-N<sub>2</sub>) = 4.7 Å.



**Figure S5.** Active orbitals included in the CAS-SCF wavefunction of CI1. In parenthesis, mean occupation numbers of the state averaged orbitals.



**Figure S6.** Active orbitals included in the CAS-SCF wavefunction of CI2. In parenthesis, mean occupation numbers of the state average orbitals.



**Figure S7.** Active orbitals included in the CAS-SCF wavefunction of CI2. In parenthesis, mean occupation numbers of the state averaged orbitals.



**Figure S8.** Active orbitals included in the CAS-SCF wavefunction of CI3. In parenthesis, mean occupation numbers of the state average orbitals.



**Figure S9.** Active orbitals included in the CAS-SCF wavefunction of ISC1. In parenthesis, mean occupation numbers of the state average orbitals.



**Figure S10.** Active orbitals included in the CAS-SCF wavefunction of ISC2. In parenthesis, mean occupation numbers of the state average orbitals.



**Figure S11.** Active orbitals included in the CAS-SCF wavefunction of ISC3. In parenthesis, mean occupation numbers of the state average orbitals.



**Figure S12.** Multi-state Raman excitation profiles of (a) 4-methoxyphenyl azide; (b) triplet 4methoxyphenyl nitrene; (c)  $1^{1}$ A" 4-methoxyphenyl nitrene; (d)  $1^{1}$ A' 4-methoxyphenyl nitrene; (e) 4,4'-dimethoxyazobenzene.

## CAS-SCF Cartesian Coordinates in Angstroms of the Critical Points on the Potential Energy Surfaces of *p*-Methoxyphenyl Azide:

| <b>111</b> (D)                                                                                       | Ground State Minimum, 1 <sup>1</sup> A')                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N1                                                                                                   | 2.496888 0.0000000                                                                                                                                                                                                                                                                                                                                           | 0.8149510                                                                                                                                                                                  |
| C2                                                                                                   | 1.199553 0.0000000                                                                                                                                                                                                                                                                                                                                           | 0.2409398                                                                                                                                                                                  |
| C3                                                                                                   | 1.152921 0.000000                                                                                                                                                                                                                                                                                                                                            | -1.1568965                                                                                                                                                                                 |
| C4                                                                                                   | 0.013275 0.0000000                                                                                                                                                                                                                                                                                                                                           | 0.9544298                                                                                                                                                                                  |
| C5                                                                                                   | -0.059220 0.0000000                                                                                                                                                                                                                                                                                                                                          | -1.8147732                                                                                                                                                                                 |
| C6                                                                                                   | -1.218257 0.0000000                                                                                                                                                                                                                                                                                                                                          | 0.2891129                                                                                                                                                                                  |
| C7                                                                                                   | -1.258469 0.0000000                                                                                                                                                                                                                                                                                                                                          | -1.0944310                                                                                                                                                                                 |
| 08                                                                                                   | -2.389936 0.0000000                                                                                                                                                                                                                                                                                                                                          | -1.8340958                                                                                                                                                                                 |
| C9                                                                                                   | -3.630787 0.0000000                                                                                                                                                                                                                                                                                                                                          | -1.1977521                                                                                                                                                                                 |
| H10                                                                                                  | 2.072194 0.0000000                                                                                                                                                                                                                                                                                                                                           | -1.7076011                                                                                                                                                                                 |
| H11                                                                                                  | 0.014276 0.0000000                                                                                                                                                                                                                                                                                                                                           | 2.0272770                                                                                                                                                                                  |
| H12                                                                                                  | -0.101289 0.0000000                                                                                                                                                                                                                                                                                                                                          | -2.8856678                                                                                                                                                                                 |
| H13                                                                                                  | -2.115369 0.0000000                                                                                                                                                                                                                                                                                                                                          | 0.8720036                                                                                                                                                                                  |
| H14                                                                                                  | -4.375124 0.0000000                                                                                                                                                                                                                                                                                                                                          | -1.9779406                                                                                                                                                                                 |
| H15                                                                                                  | -3.763854 0.8841296                                                                                                                                                                                                                                                                                                                                          | -0.5839424                                                                                                                                                                                 |
| H16                                                                                                  | -3.763854 -0.8841296                                                                                                                                                                                                                                                                                                                                         | -0.5839424                                                                                                                                                                                 |
| N17                                                                                                  | 2.532838 0.0000000                                                                                                                                                                                                                                                                                                                                           | 2.0449088                                                                                                                                                                                  |
| N18                                                                                                  | 2.658747 0.0000000                                                                                                                                                                                                                                                                                                                                           | 3.1652800                                                                                                                                                                                  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |
| $\mathbf{M2}  (\mathbf{S}_2)$                                                                        | Excited State Minimum, 2'A')                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |
| N1                                                                                                   | 2.485976 0.000000                                                                                                                                                                                                                                                                                                                                            | 0.814358                                                                                                                                                                                   |
|                                                                                                      | 1 317160 0 00000                                                                                                                                                                                                                                                                                                                                             | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                    |
| C2                                                                                                   | 1.2277138 0.000000                                                                                                                                                                                                                                                                                                                                           | 0.244241                                                                                                                                                                                   |
| C2<br>C3                                                                                             | 1.21/138         0.000000           1.192731         0.000000                                                                                                                                                                                                                                                                                                | 0.244241                                                                                                                                                                                   |
| C2<br>C3<br>C4                                                                                       | 1.217138         0.000000           1.192731         0.000000           0.004198         0.000000                                                                                                                                                                                                                                                            | 0.244241<br>-1.180046<br>1.004959                                                                                                                                                          |
| C2<br>C3<br>C4<br>C5                                                                                 | 1.217138         0.00000           1.192731         0.000000           0.004198         0.000000           -0.062189         0.000000                                                                                                                                                                                                                        | 0.244241<br>-1.180046<br>1.004959<br>-1.860509                                                                                                                                             |
| C2<br>C3<br>C4<br>C5<br>C6                                                                           | 1.217138       0.00000         1.192731       0.000000         0.004198       0.000000         -0.062189       0.000000         -1.245474       0.000000                                                                                                                                                                                                     | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636                                                                                                                                 |
| C2<br>C3<br>C4<br>C5<br>C6<br>C7                                                                     | 1.217138       0.00000         1.192731       0.000000         0.004198       0.000000         -0.062189       0.000000         -1.245474       0.000000         -1.263230       0.000000                                                                                                                                                                    | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636<br>-1.105009                                                                                                                    |
| C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>08                                                               | 1.217138       0.00000         1.192731       0.00000         0.004198       0.000000         -0.062189       0.000000         -1.245474       0.000000         -2.394033       0.000000                                                                                                                                                                     | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636<br>-1.105009<br>-1.829533                                                                                                       |
| C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>08<br>C9                                                         | 1.217138       0.00000         1.192731       0.00000         0.004198       0.000000         -0.062189       0.000000         -1.245474       0.000000         -2.394033       0.000000         -3.643499       0.000000                                                                                                                                    | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636<br>-1.105009<br>-1.829533<br>-1.203817                                                                                          |
| C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>08<br>C9<br>H10                                                  | 1.217138       0.00000         1.192731       0.00000         0.004198       0.000000         -0.062189       0.000000         -1.245474       0.000000         -2.394033       0.000000         -3.643499       0.000000         2.118182       0.000000                                                                                                    | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636<br>-1.105009<br>-1.829533<br>-1.203817<br>-1.715010                                                                             |
| C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>08<br>C9<br>H10<br>H11                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636<br>-1.105009<br>-1.829533<br>-1.203817<br>-1.715010<br>2.074550                                                                 |
| C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>08<br>C9<br>H10<br>H11<br>H12                                    | 1.217138       0.00000         1.192731       0.00000         0.004198       0.000000         -0.062189       0.000000         -1.245474       0.000000         -2.394033       0.000000         -3.643499       0.000000         0.022567       0.000000         -0.119245       0.000000                                                                   | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636<br>-1.105009<br>-1.829533<br>-1.203817<br>-1.715010<br>2.074550<br>-2.927883                                                    |
| C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>08<br>C9<br>H10<br>H11<br>H12<br>H13                             | 1.217138       0.00000         1.192731       0.00000         0.004198       0.000000         -0.062189       0.000000         -1.245474       0.000000         -1.263230       0.000000         -2.394033       0.000000         2.118182       0.000000         0.022567       0.000000         -0.119245       0.000000         -2.151363       0.000000  | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636<br>-1.105009<br>-1.829533<br>-1.203817<br>-1.715010<br>2.074550<br>-2.927883<br>0.886372                                        |
| C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>08<br>C9<br>H10<br>H11<br>H12<br>H13<br>H14                      | 1.217138       0.00000         1.192731       0.00000         0.004198       0.000000         -0.062189       0.000000         -1.245474       0.000000         -1.263230       0.000000         -2.394033       0.000000         -3.643499       0.000000         0.022567       0.000000         -0.119245       0.000000         -2.151363       0.000000 | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636<br>-1.105009<br>-1.829533<br>-1.203817<br>-1.715010<br>2.074550<br>-2.927883<br>0.886372<br>-1.993531                           |
| C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>08<br>C9<br>H10<br>H11<br>H12<br>H13<br>H14<br>H15               | 1.217138 $0.00000$ $1.192731$ $0.00000$ $0.004198$ $0.000000$ $-0.062189$ $0.000000$ $-1.245474$ $0.000000$ $-1.263230$ $0.000000$ $-2.394033$ $0.000000$ $-3.643499$ $0.000000$ $2.118182$ $0.000000$ $0.022567$ $0.000000$ $-0.119245$ $0.000000$ $-2.151363$ $0.000000$ $-3.782428$ $0.884491$                                                            | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636<br>-1.105009<br>-1.829533<br>-1.203817<br>-1.715010<br>2.074550<br>-2.927883<br>0.886372<br>-1.993531<br>-0.593575              |
| C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>08<br>C9<br>H10<br>H11<br>H12<br>H13<br>H14<br>H15<br>H16        | 1.217138 $0.00000$ $1.192731$ $0.00000$ $0.004198$ $0.000000$ $-0.062189$ $0.000000$ $-1.245474$ $0.000000$ $-1.263230$ $0.000000$ $-2.394033$ $0.000000$ $-3.643499$ $0.000000$ $2.118182$ $0.000000$ $0.022567$ $0.000000$ $-0.119245$ $0.000000$ $-2.151363$ $0.000000$ $-3.782428$ $0.884491$ $-3.782428$ $-0.884491$                                    | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636<br>-1.105009<br>-1.829533<br>-1.203817<br>-1.715010<br>2.074550<br>-2.927883<br>0.886372<br>-1.993531<br>-0.593575<br>-0.593575 |
| C2<br>C3<br>C4<br>C5<br>C6<br>C7<br>08<br>C9<br>H10<br>H11<br>H12<br>H13<br>H14<br>H15<br>H16<br>N17 | 1.217138 $0.00000$ $1.192731$ $0.00000$ $0.004198$ $0.000000$ $-0.062189$ $0.000000$ $-1.245474$ $0.000000$ $-1.263230$ $0.000000$ $-2.394033$ $0.000000$ $-3.643499$ $0.000000$ $2.118182$ $0.000000$ $0.022567$ $0.000000$ $-0.119245$ $0.000000$ $-2.151363$ $0.000000$ $-3.782428$ $0.884491$ $-3.782428$ $0.884491$ $2.534456$ $0.000000$               | 0.244241<br>-1.180046<br>1.004959<br>-1.860509<br>0.321636<br>-1.105009<br>-1.829533<br>-1.203817<br>-1.715010<br>2.074550<br>-2.927883<br>0.886372<br>-1.993531<br>-0.593575<br>2.051281  |

|              |                                       |           | <b>a</b> <sup>1</sup> <b>a i a</b> <sup>3</sup> <b>a u i</b> |           |
|--------------|---------------------------------------|-----------|--------------------------------------------------------------|-----------|
| ISC1         | (Intersystem                          | Crossing  | $Minimum, 2^{+}A'/2^{-}A'')$                                 |           |
| N1           |                                       | 0.109002  | 2 0.000000                                                   | 0.052497  |
| C2           |                                       | 0.012060  | 0.00000                                                      | 1.348920  |
| C3           |                                       | 1.284522  | 0.00000                                                      | 2.047777  |
| C4           |                                       | -1.181582 | 0.00000                                                      | 2.141092  |
| C.5          |                                       | 1.327598  | 3 0.00000                                                    | 3,405038  |
| C6           |                                       | 1 009002  |                                                              | 2 520752  |
|              |                                       | -1.098002 | 0.000000                                                     | 3.329733  |
| C7           |                                       | 0.133/53  | 0.00000                                                      | 4.1/6952  |
| 08           |                                       | 0.313413  | 3 0.000000                                                   | 5.507602  |
| C9           |                                       | -0.794456 | 5 0.000000                                                   | 6.360949  |
| H1C          | )                                     | 2.181675  | 5 0.000000                                                   | 1.462781  |
| H11          | L                                     | -2.135683 | 3 0.000000                                                   | 1.665000  |
| н12          | 2                                     | 2,265821  | 0.00000                                                      | 3,922913  |
| н13          | }                                     | -2.008950 | 0.00000                                                      | 4.091081  |
| и1 /         |                                       | 0 404222  |                                                              | 7 365501  |
| П14<br>111 г | <u>.</u>                              | -0.404222 | 0.000000                                                     | 7.303301  |
| HIS          | )                                     | -1.403541 | -0.884/44                                                    | 0.21/023  |
| N17          | /                                     | -1.379205 | 0.000000                                                     | -0.517833 |
| N18          | }                                     | -2.389649 | 0.000000                                                     | -1.087849 |
|              |                                       |           |                                                              |           |
| TECO         | (Intorquetom                          | Crossing  | Minimum $2^{1}\Delta t / 1^{3}\Delta w$                      |           |
| 1502         | (Incersystem                          | CIUSSING  | MIIIIIIIIII, ZA/IA)                                          | 0 005160  |
| NI           |                                       | -0.0468/0 | 0.000000                                                     | -0.035160 |
| C2           |                                       | -0.067425 | 0.000000                                                     | 1.370368  |
| C3           |                                       | 1.230934  | l 0.000000                                                   | 1.981305  |
| C4           |                                       | -1.262484 | 4 0.000000                                                   | 2.150627  |
| C5           |                                       | 1.327482  | 0.00000                                                      | 3.419856  |
| C6           |                                       | -1.161130 | 0.00000                                                      | 3.582635  |
| C7           |                                       | 0.143862  | 2 0.00000                                                    | 4,195100  |
| 08           |                                       | 0.323997  | 7 0.00000                                                    | 5.525975  |
| CO           |                                       | 0 76604/  |                                                              | 6 300173  |
| 1110         | N N N N N N N N N N N N N N N N N N N | -0.700944 |                                                              | 1 260004  |
| HIU          | )                                     | 2.100346  | 0.00000                                                      | 1.300804  |
| HII          | <u>_</u>                              | -2.229192 | 0.000000                                                     | 1.693046  |
| H12          | 2                                     | 2.274838  | 3 0.000000                                                   | 3.914401  |
| H13          | 3                                     | -2.050271 | L 0.000000                                                   | 4.172201  |
| H14          | <u>l</u>                              | -0.356085 | 5 0.000000                                                   | 7.396097  |
| H15          | 5                                     | -1.379320 | -0.884620                                                    | 6.271566  |
| H16          | 5                                     | -1.379320 | +0.884620                                                    | 6.271566  |
| N17          | 7                                     | -1,160736 | 5 0.000000                                                   | -0.590386 |
| N18          | }                                     | -2.107511 | L 0.00000                                                    | -1.156899 |
|              |                                       |           |                                                              |           |
| ISC3         | (Intersystem                          | Crossing  | Minimum, $1^{1}A'/1^{3}A''$ )                                |           |
| N1           |                                       | 0.044289  | 0.00000                                                      | -0.004226 |
| C2           |                                       | -0.061996 | 5 0.000000                                                   | 1.392499  |
| C3           |                                       | 1.193011  | 0.00000                                                      | 2.033153  |
| C4           |                                       | -1.201802 | 0.00000                                                      | 2.181997  |
| C5           |                                       | 1 281888  |                                                              | 3 409457  |
| C5           |                                       | 1 1002/0  |                                                              | 2 500025  |
| 07           |                                       | -1.100340 |                                                              | 4 200120  |
| 07           |                                       | 0.12/923  | 0.00000                                                      | 4.200130  |
| 08           |                                       | 0.327710  | 0.000000                                                     | 5.540643  |
| C9           |                                       | -0.771167 | 0.000000                                                     | 6.396531  |
| H1C          | )                                     | 2.086664  | £ 0.000000                                                   | 1.439973  |
| H11          | L                                     | -2.177959 | 0.00000                                                      | 1.741203  |
| H12          | 2                                     | 2.239238  | 3 0.000000                                                   | 3.891562  |
| н13          | 3                                     | -2.015064 | 1 0.000000                                                   | 4.149162  |
| и1 /         | -                                     | _0 378054 |                                                              | 7 /01201  |
| п14<br>U1C   |                                       | 1 205010  |                                                              | 6 250020  |
|              | ,<br>1                                | -1.303010 |                                                              | 0.200030  |
| N17          |                                       | -1.55/602 |                                                              | -0.640866 |
| NIN          | 5                                     | -1.319412 |                                                              | -1.42/699 |

| CI1 (Conical                       | Intersection, $2^{1}A''$ | (/2 <sup>1</sup> A')                   |           |
|------------------------------------|--------------------------|----------------------------------------|-----------|
| N1                                 | 0 116642                 | -0 000004                              | 0 053027  |
| C2                                 | 0 015401                 |                                        | 1 352250  |
| C2                                 | 1 200426                 | -0.000001                              | 2 0/0/33  |
| CJ                                 | 1 170690                 | -0.000000                              | 2.049455  |
| C4<br>C5                           | -1.179009                | 0.000001                               | 2.140323  |
| 00                                 | 1 100000                 | 0.000001                               | 3.407092  |
| C6                                 | -1.100892                | 0.000001                               | 3.533843  |
| C7                                 | 0.133552                 | 0.000001                               | 4.1/8/55  |
| 08                                 | 0.316580                 | 0.000002                               | 5.511524  |
| C9                                 | -0.794522                | -0.000001                              | 6.366161  |
| H10                                | 2.188600                 | -0.000001                              | 1.461989  |
| H11                                | -2.135456                | 0.000001                               | 1.667525  |
| H12                                | 2.270576                 | 0.00003                                | 3.929544  |
| H13                                | -2.014355                | 0.000002                               | 4.094879  |
| H14                                | -0.401895                | -0.000003                              | 7.372171  |
| H15                                | -1.402697                | -0.887118                              | 6.221067  |
| H16                                | -1.402699                | 0.887116                               | 6.221071  |
| N17                                | -1.405592                | -0.000001                              | -0.525665 |
| N18                                | -2.397561                | 0.000001                               | -1.134977 |
|                                    |                          |                                        |           |
| CI2 (Conical                       | Intersection, $2^{3}A''$ | /1 <sup>3</sup> A")                    |           |
| N1                                 | 0.089811                 | -0.000000                              | 0.041534  |
| C2                                 | 0.005621                 | -0.000000                              | 1.368872  |
| C3                                 | 1,269017                 | -0.000000                              | 2.047899  |
| C1                                 | _1 178269                | _0_00000                               | 2 158088  |
| C4<br>C5                           | 1 226606                 | -0.000000                              | 2.150300  |
|                                    | 1 100020                 | 0.000000                               | J.41J014  |
| 07                                 | -1.100829                | -0.000000                              | 3.542028  |
| 07                                 | 0.141168                 | -0.000000                              | 4.182612  |
| 08                                 | 0.31/123                 | 0.000000                               | 5.515214  |
| C9                                 | -0.795116                | 0.000000                               | 6.369625  |
| H10                                | 2.163659                 | -0.000000                              | 1.454914  |
| H11                                | -2.135389                | -0.000000                              | 1.678503  |
| H12                                | 2.268481                 | 0.000000                               | 3.930343  |
| H13                                | -2.011586                | -0.000000                              | 4.107093  |
| H14                                | -0.401842                | 0.000000                               | 7.375312  |
| H15                                | -1.402982                | -0.887189                              | 6.225049  |
| H16                                | -1.402982                | 0.887189                               | 6.225049  |
| N17                                | -1.328901                | 0.000000                               | -0.586309 |
| N18                                | -2.389034                | 0.00000                                | -1.075055 |
|                                    |                          |                                        |           |
| <b>CI3</b> $(S_1/S_0 \text{ Cor})$ | nical Intersection       | , 1 <sup>1</sup> A"/1 <sup>1</sup> A') |           |
| N1                                 | 0.113242                 | 0.000015                               | -0.013592 |
| C2                                 | -0.042387                | 0.000009                               | 1.399568  |
| C3                                 | 1.209017                 | 0.00003                                | 2.041134  |
| C4                                 | -1,182885                | 0.000010                               | 2,157863  |
| C5                                 | 1,281966                 | -0.000007                              | 3,420365  |
| C6                                 | -1.105073                | 0.000006                               | 3.567969  |
| C7                                 | 0 119094                 | -0.000005                              | 4 197188  |
| 08                                 | 0 310075                 | 0.000005                               | 5 5/370/  |
| 00                                 | 0.01670                  | -0.000000                              | 5.545704  |
| U9<br>U10                          | -0.801670                | -0.000002                              | 0.30/192  |
|                                    | 2.113034                 |                                        | 1.40900l  |
| H11<br>H12                         | -2.154019                | 0.00001/                               | 1./03528  |
| HIZ                                | 2.23642/                 | -0.000015                              | 3.912663  |
| H13                                | -2.021542                | 0.000009                               | 4.124500  |
| H14                                | -0.419725                | -0.000001                              | 7.398303  |
| H15                                | -1.413290                | -0.886111                              | 6.240766  |
| H16                                | -1.413284                | 0.886111                               | 6.240763  |
| N17                                | -1.740350                | 0.00002                                | -0.759781 |
| N18                                | -2.598489                | -0.000040                              | -1.436976 |



| <b>Table S1.</b> CAS-SCF internal coordinates of 4-methoxyphenyl azid | of 4-methoxyphenyl azide. <sup>a</sup> | l coord | internal | -SCF | CAS | able S1. |
|-----------------------------------------------------------------------|----------------------------------------|---------|----------|------|-----|----------|
|-----------------------------------------------------------------------|----------------------------------------|---------|----------|------|-----|----------|

| Coor.               | $M1^{b}$ | M2 <sup>b</sup> | CI1 <sup>c</sup> | CI2 <sup>c</sup> | CI3 <sup>c</sup> | ISC1 <sup>b</sup> | ISC2 <sup>b</sup> | ISC3 <sup>b</sup> |
|---------------------|----------|-----------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| R <sub>1,2</sub>    | 1.419    | 1.391           | 1.303            | 1.334            | 1.422            | 1.300             | 1.406             | 1.401             |
| R <sub>3.2</sub>    | 1.399    | 1.424           | 1.453            | 1.429            | 1.406            | 1.452             | 1.435             | 1.409             |
| R <sub>4</sub> 2    | 1.384    | 1.432           | 1.435            | 1.423            | 1.370            | 1.433             | 1.427             | 1.387             |
| R5 3                | 1.379    | 1.428           | 1.358            | 1.371            | 1.381            | 1.358             | 1.442             | 1.379             |
| R64                 | 1.400    | 1.424           | 1.390            | 1.387            | 1.412            | 1.391             | 1.436             | 1.402             |
| R7 5                | 1.399    | 1.419           | 1.426            | 1.412            | 1.398            | 1.422             | 1.415             | 1.399             |
| R 8 7               | 1.352    | 1.343           | 1.345            | 1.344            | 1.360            | 1.343             | 1.343             | 1.355             |
| Ros                 | 1.395    | 1.397           | 1.402            | 1.402            | 1.396            | 1.398             | 1.397             | 1.393             |
| R <sub>10.3</sub>   | 1.072    | 1.069           | 1.073            | 1.073            | 1.075            | 1.071             | 1.068             | 1.073             |
| R <sub>11.4</sub>   | 1.073    | 1.070           | 1.069            | 1.071            | 1.072            | 1.066             | 1.070             | 1.071             |
| R <sub>12.5</sub>   | 1.072    | 1.069           | 1.074            | 1.073            | 1.074            | 1.072             | 1.069             | 1.072             |
| R <sub>13.6</sub>   | 1.070    | 1.068           | 1.072            | 1.072            | 1.072            | 1.070             | 1.067             | 1.070             |
| $R_{14,9}$          | 1.078    | 1.078           | 1.080            | 1.080            | 1.081            | 1.078             | 1.078             | 1.079             |
| R159                | 1.085    | 1.084           | 1.085            | 1.085            | 1.087            | 1.084             | 1.083             | 1.085             |
| R <sub>16.0</sub>   | 1.085    | 1.084           | 1.085            | 1.085            | 1.087            | 1.084             | 1.083             | 1.085             |
| $R_{17,1}$          | 1.230    | 1.238           | 1.629            | 1.558            | 1.998            | 1.594             | 1.245             | 1.724             |
| R <sub>18</sub> 17  | 1.127    | 1.127           | 1.164            | 1.171            | 1.093            | 1.160             | 1.103             | 1.095             |
| A321                | 115.778  | 115.178         | 114.214          | 114.638          | 110.859          | 114.500           | 114.361           | 112.692           |
| A121                | 125.108  | 123.710         | 128.064          | 127.256          | 129.904          | 127.847           | 123.979           | 129.060           |
| A532                | 120.401  | 119.451         | 120.449          | 120.693          | 120.171          | 120.594           | 119.039           | 120.738           |
| A642                | 120.596  | 119.236         | 120.357          | 120.470          | 120.461          | 120.126           | 119.092           | 120.887           |
| A754                | 60.508   | 59.156          | 59.410           | 59.593           | 60.865           | 59.622            | 59.331            | 60.717            |
| A 8 7 5             | 115.835  | 115.180         | 114.944          | 115.372          | 115.671          | 115.196           | 115.516           | 115.941           |
| A987                | 119.676  | 120.751         | 119.747          | 119.968          | 119.115          | 119.916           | 120.966           | 119.437           |
| A10 3 2             | 119.014  | 119.048         | 118.144          | 118.293          | 120.135          | 118.117           | 119.285           | 119.382           |
| A <sub>11</sub> 4 2 | 120.971  | 121.110         | 119.773          | 119.700          | 121.309          | 119.910           | 121.529           | 120.989           |

<sup>a</sup>Intenuclear distance in Ångstrom, valence bond and dihedral angles in degrees. <sup>b</sup>ANO-RCC (C,N,O[4s3p2d1f]/H[3s2p1d]). <sup>c</sup>ANO-RCC (C,N,O[3s2p1d]/H[2s1p]).

| Coor.             | M1 <sup>b</sup> | M2 <sup>b</sup> | CI1 <sup>c</sup> | CI2 <sup>c</sup> | CI3 <sup>c</sup> | ISC1 <sup>b</sup> | ISC2 <sup>b</sup> | ISC3 <sup>b</sup> |
|-------------------|-----------------|-----------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| A1257             | 118.742         | 119.112         | 118.118          | 118.443          | 118.972          | 118.217           | 119.210           | 118.853           |
| A13.6.7           | 121.349         | 121.227         | 120.858          | 120.930          | 121.528          | 120.640           | 121.311           | 121.312           |
| $A_{14,9,8}$      | 106.503         | 106.308         | 106.247          | 106.178          | 106.494          | 106.376           | 106.276           | 106.591           |
| A1598             | 111.558         | 111.521         | 111.264          | 111.292          | 111.529          | 111.359           | 111.572           | 111.617           |
| A16.9.8           | 111.558         | 111.521         | 111.264          | 111.292          | 111.528          | 111.359           | 111.572           | 111.617           |
| $A_{17,1,2}$      | 115.541         | 116.440         | 106.359          | 110.317          | 105.643          | 106.692           | 115.657           | 107.323           |
| A 18 17 1         | 175.262         | 174.201         | 169.255          | 179.138          | 163.649          | 171.540           | 175.600           | 155.749           |
| $D_{4,2,1,3}$     | 180.000         | 180.000         | 180.000          | -180.000         | 180.000          | 180.000           | 180.000           | 180.000           |
| $D_{5,3,2,4}$     | 0.000           | 0.000           | 0.000            | 0.000            | 0.000            | 0.000             | 0.000             | 0.000             |
| $D_{6,4,2,3}$     | 0.000           | 0.000           | 0.000            | 0.000            | 0.000            | 0.000             | 0.000             | 0.000             |
| $D_{7542}$        | 180.000         | 180.000         | 180.000          | 180.000          | 180.000          | 180.000           | 180.000           | 180.000           |
| $D_{8756}$        | 180.000         | 180.000         | 180.000          | 180.000          | 180.000          | 180.000           | 180.000           | 180.000           |
| D9876             | 0.000           | 0.000           | 0.000            | 0.000            | 0.000            | 0.000             | 0.000             | 0.000             |
| $D_{10,3,2,5}$    | 180.000         | 180.000         | 180.000          | -180.000         | 180.000          | 180.000           | 180.000           | 180.000           |
| $D_{11426}$       | 180.000         | 180.000         | 180.000          | 180.000          | 180.000          | 180.000           | 180.000           | 180.000           |
| $D_{12573}$       | 180.000         | 180.000         | 180.000          | -180.000         | 180.000          | 180.000           | 180.000           | 180.000           |
| $D_{13,6,7,4}$    | 180.000         | 180.000         | 180.000          | 180.000          | 180.000          | 180.000           | 180.000           | 180.000           |
| $D_{14,9,8,7}$    | 180.000         | 180.000         | 180.000          | 180.000          | -                | 180.000           | 180.000           | 180.000           |
| $D_{159814}$      | -118.770        | -118.660        | -118.706         | -118.661         | 100 000          | -118.766          | -118.599          | -118.795          |
| $D_{16,9,8,14}$   | 118.770         | 118.660         | 118.706          | 118.661          | 118.760          | 118.766           | 118.599           | 118.795           |
| $D_{17123}$       | 180.000         | 180.000         | 180.000          | 180.000          | 179.999          | 180.000           | 180.000           | 180.000           |
| $D_{18,17,1,2,3}$ | 180.000         | 180.000         | 180.000          | 179.995          | -                | 180.000           | 180.000           | 180.000           |

Table S1. continuation

<sup>a</sup>Intenuclear distance in Ångstrom, valence bond and dihedral angles in degrees. <sup>b</sup>ANO-RCC (C,N,O[4s3p2d1f]/H[3s2p1d]). <sup>c</sup>ANO-RCC (C,N,O[3s2p1d]/H[2s1p]).



| <b>Table 52.</b> CAS-SCF Internal coordinates of 4-methoxybreny |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

| Coor.               | 1 <sup>3</sup> A" <sup>b</sup> | 1 <sup>1</sup> A" <sup>b</sup> | $1^{1}A'^{b}$ | $2^{1}A'$ | $2^{1}A'/2^{3}A''$ | $4^{1}A/3^{1}A$ |
|---------------------|--------------------------------|--------------------------------|---------------|-----------|--------------------|-----------------|
| R <sub>1.2</sub>    | 1.345                          | 1.290                          | 1.346         | 1.388     | 1.337              | 1.330           |
| R <sub>3.2</sub>    | 1.428                          | 1.469                          | 1.426         | 1.406     | 1.421              | 1.433           |
| $R_{42}$            | 1.419                          | 1.468                          | 1.417         | 1.393     | 1.436              | 1.437           |
| R <sub>5 3</sub>    | 1.371                          | 1.354                          | 1.370         | 1.382     | 1.410              | 1.419           |
| R <sub>6.4</sub>    | 1.386                          | 1.368                          | 1.381         | 1.396     | 1.410              | 1.417           |
| R <sub>7 5</sub>    | 1.409                          | 1.430                          | 1.407         | 1.396     | 1.400              | 1.393           |
| R <sub>8 7</sub>    | 1.347                          | 1.344                          | 1.330         | 1.355     | 1.353              | 1.354           |
| R9.8                | 1.397                          | 1.398                          | 1.403         | 1.394     | 1.394              | 1.394           |
| R <sub>10.3</sub>   | 1.072                          | 1.071                          | 1.072         | 1.072     | 1.070              | 1.070           |
| R <sub>11.4</sub>   | 1.072                          | 1.071                          | 1.072         | 1.072     | 1.070              | 1.070           |
| R <sub>12.5</sub>   | 1.072                          | 1.072                          | 1.072         | 1.072     | 1.071              | 1.071           |
| R <sub>13.6</sub>   | 1.070                          | 1.070                          | 1.069         | 1.070     | 1.070              | 1.069           |
| R <sub>14,9</sub>   | 1.078                          | 1.078                          | 1.077         | 1.078     | 1.078              | 1.078           |
| $R_{159}$           | 1.084                          | 1.084                          | 1.083         | 1.085     | 1.085              | 1.085           |
| R <sub>16.9</sub>   | 1.084                          | 1.084                          | 1.083         | 1.085     | 1.085              | 1.085           |
| A3 2 1              | 120.818                        | 121.399                        | 121.708       | 119.600   | 120.796            | 121.044         |
| A4 2 1              | 120.835                        | 121.483                        | 120.930       | 120.788   | 120.806            | 120.869         |
| A532                | 120.207                        | 120.221                        | 121.242       | 119.581   | 119.876            | 119.811         |
| A642                | 120.709                        | 120.726                        | 121.898       | 120.002   | 120.082            | 120.201         |
| A754                | 59.627                         | 58.789                         | 59.141        | 60.672    | 60.131             | 60.250          |
| A875                | 115.431                        | 115.096                        | 115.226       | 115.898   | 115.533            | 115.733         |
| A9 8 7              | 120.016                        | 120.125                        | 120.943       | 119.562   | 119.747            | 119.862         |
| A10.3.2             | 119.023                        | 118.271                        | 117.599       | 120.287   | 119.773            | 119.736         |
| A11 4 2             | 119.023                        | 118.217                        | 117.398       | 120.358   | 119.646            | 119.603         |
| A12 5 7             | 118.274                        | 117.671                        | 118.199       | 118.789   | 118.876            | 118.947         |
| A13.6.7             | 120.925                        | 120.436                        | 120.905       | 121.251   | 121.165            | 121.174         |
| A <sub>14,9,8</sub> | 106.394                        | 106.390                        | 106.069       | 106.543   | 106.486            | 106.466         |
|                     |                                |                                |               |           |                    |                 |

continue

| 1 abic 52. v                     | Commutatio                     | 11                             |                                |                   |                    |                 |
|----------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------|--------------------|-----------------|
| Coor.                            | 1 <sup>3</sup> A" <sup>b</sup> | 1 <sup>1</sup> A" <sup>b</sup> | 1 <sup>1</sup> A' <sup>b</sup> | 2 <sup>1</sup> A' | $2^{1}A'/2^{3}A''$ | $4^{1}A/3^{1}A$ |
| $A_{1598}$                       | 111.496                        | 111.449                        | 111.229                        | 111.607           | 111.590            | 111.627         |
| A16.9.8                          | 111.496                        | 111.449                        | 111.229                        | 111.607           | 111.590            | 111.627         |
| $D_{4,2,1,3}$                    | 180.000                        | 180.000                        | 180.000                        | 180.000           | 180.000            | 180.000         |
| $D_{5,2,2,4}$                    | 0.000                          | 0.000                          | 0.000                          | 0.000             | 0.000              | 0.000           |
| $D_{6,4,2,2}$                    | 0.000                          | 0.000                          | 0.000                          | 0.000             | 0.000              | 0.000           |
| $D_{7,5,4,2,3}$                  | 180.000                        | 180.000                        | 180.000                        | 180.000           | 180.000            | 180.000         |
| Do 7.5.6                         | 180.000                        | 180.000                        | 180.000                        | 180.000           | 180.000            | 180.000         |
| $D_{0,7,5,0}$                    | 0.000                          | 0.000                          | 0.000                          | 0.000             | 0.000              | 180.000         |
| $D_{10,2,2,5}$                   | 180.000                        | 180.000                        | 180.000                        | 180.000           | 180.000            | 0.000           |
| $D_{10,3,2,3}$                   | 180.000                        | 180.000                        | 180.000                        | 180.000           | 180.000            | 180.000         |
| $D_{11,4,2,0}$                   | 180.000                        | 180.000                        | 180.000                        | 180.000           | 180.000            | 180.000         |
| $D_{12,5,7,5}$                   | 180.000                        | 180.000                        | 180.000                        | 180.000           | 180.000            | 180.000         |
| $D_{13,6,7,4}$<br>$D_{14,9,8,7}$ | 180.000                        | 180.000                        | 180.000                        | 180.000           | 180.000            | 180.000         |
| $D_{15,0,0,14}$                  | -118.721                       | -118.727                       | -118.683                       | -118.769          | -118.741           | -118.707        |
| $D_{16,9,8,14}$                  | 118.721                        | 118.727                        | 118.683                        | 118.769           | 118.741            | 118.707         |
| - 10,2,0,14                      |                                |                                |                                |                   |                    |                 |

Table S2. Continuation

<sup>a</sup>Intenuclear distance in Ångstrom, valence bond and dihedral angles in degrees. <sup>b</sup>ANO-RCC (C,N,O[4s3p2d1f]/H[3s2p1d]).



| Table | S3. | Definition | of redundant | internal | coordinates | of 4.4 | 4'-dimethoxy | vazobenzene |
|-------|-----|------------|--------------|----------|-------------|--------|--------------|-------------|
|       |     |            |              |          |             | ~ ~    |              | ,           |

| $N^{o}$ | Coor.          | Connectivity      | type                               |
|---------|----------------|-------------------|------------------------------------|
| 1       | $r_1$          | 9-14              | $\nu$ (C-H) <sub>methyl</sub>      |
| 2       | $r_2$          | 9-15              | $\nu$ (C-H) <sub>methyl</sub>      |
| 3       | r3             | 9-16              | v(C-H) methyl                      |
| 4       | r <sub>A</sub> | 3-10              | $v(C-H)_{ring}$                    |
| 5       | r <sub>5</sub> | 4-11              | $\nu$ (C-H), ing                   |
| 6       | r y            | 5-12              | v(C-H)                             |
| 7       | r <sub>0</sub> | 6-13              | v(C-H)                             |
| 8       | r /            | 7-8               | $v(C-\Omega)$                      |
| 9       | 18             | 8-9               | v(C-O)                             |
| 10      | <i>r</i> 9     | 2-1               | $v(0-CH_3)$                        |
| 11      | $r_{10}$       | 1-17              | $V(N-C_{ring})$<br>V(N-N)          |
| 12      | $r_{12}$       | 17-18             | v(N-N)                             |
| 13      | $R_1$          | 2-3               | v(C-C)                             |
| 14      | $R_2$          | 3-5               | v(C-C)                             |
| 15      | $R_3$          | 5-7               | v(C-C)                             |
| 16      | $R_4$          | 7-6               | v(C-C)                             |
| 17      | $R_5$          | 4-2               | v(C-C)                             |
| 18      | $R_6$          | 6-4               | v(C-C)                             |
| 19      | $\beta_1$      | [10-3-2]-[10-3-5] | $\delta(C-H)_{ring}$               |
| 20      | $\beta_2$      | [12-5-7]-[12-5-3] | $\delta(C-H)_{ring}$               |
| 21      | $\beta_3$      | [13-6-7]-[13-6-4] | $\delta(\text{C-H})_{\text{ring}}$ |
| 22      | $\beta_4$      | [11-4-2]-[11-4-6] | δ(C-H) <sub>ring</sub>             |
| 23      | β <sub>5</sub> | [8-7-5]-[8-7-6]   | δ(O-C-C)                           |
| 24      | $\beta_6$      | [1-2-3]-[1-2-4]   | δ(N-C-C)                           |

| 1 1000   | <b>55.</b> Contr | Iluation           |                                    |
|----------|------------------|--------------------|------------------------------------|
| 25       | β <sub>7</sub>   | 9-8-7              | δ(C-O-C)                           |
| 26       | $\beta_8$        | 2-1-17             | δ(C-N-N)                           |
| 27       | β9               | 1-17-18            | δ(N-N-N)                           |
| 28       | $\alpha_1$       | 15-9-16            | $\delta(\text{H-C-H})_{methyl}$    |
| 29       | $\alpha_2$       | 14-9-16            | $\delta$ (H-C-H) <sub>methyl</sub> |
| 30       | $\alpha_3$       | 14-9-15            | $\delta$ (H-C-H) <sub>methyl</sub> |
| 31       | $\alpha'_1$      | 14-9-8             | $\delta$ (O-C-H) <sub>methyl</sub> |
| 32<br>22 | $\alpha'_2$      | 15-9-8             | $\delta$ (O-C-H) <sub>methyl</sub> |
| 24       | α'3              | 5.7.6              | $\delta(O-C-H)_{methyl}$           |
| 34       | $\alpha_4$       | 5-7-0              | $\delta(C-C-C)_{ring}$             |
| 35       | $\alpha_5$       | 7-6-4              | $\delta(C-C-C)_{ring}$             |
| 36       | $\alpha_6$       | 6-4-2              | $\delta(C-C-C)_{ring}$             |
| 37       | $\alpha_7$       | 4-2-3              | $\delta(C-C-C)_{ring}$             |
| 38       | $\alpha_8$       | 2-3-5              | $\delta$ (C-C-C) <sub>ring</sub>   |
| 39       | α9               | 3-5-7              | $\delta$ (C-C-C) <sub>ring</sub>   |
| 40       | $\gamma_1$       | 13-6-7-4           | γ(C-H)                             |
| 41       | $\gamma_2$       | 11-4-6-2           | γ(C-H)                             |
| 42       | $\gamma_3$       | 10-3-2-5           | γ(C-H)                             |
| 43       | $\gamma_4$       | 12-5-3-7           | γ(C-H)                             |
| 44       | $\gamma_5$       | 1-2-4-3            | γ(C-N)                             |
| 45       | γ <sub>6</sub>   | 8-7-5-6            | γ(O-C)                             |
| 46       | $\Gamma_l$       | (5,8)-7-6-(4-13)   | Γ(CC)                              |
| 47       | $\Gamma_2$       | (7,13)-6-4-(11-2)  | Γ(CC)                              |
| 48       | $\Gamma_3$       | (6,11)-4-2-(3-1)   | Γ(CC)                              |
| 49       | $\Gamma_4$       | (4,1)-2-3-(5-10)   | Γ(CC)                              |
| 50       | $\Gamma_{5}$     | (2,10)-3-5-(7-12)  | Γ(CC)                              |
| 51       | Γ <sub>6</sub>   | (3,12)-5-7-(6-8)   | Γ(CC)                              |
| 52       | $\Gamma_7$       | (5,6)-7-8-(9)      | Γ(ΟC)                              |
| 53       | $\Gamma_{8}$     | (14,15,16)-9-8-(7) | Γ(CO)                              |
| 54       | Γa               | (3,4)-1-2-(17)     | F(CN)                              |
| 55       | $\Gamma_{10}$    | (2)-1-17-(18)      | $\Gamma(NN)$                       |
|          | <b>▲</b> 10      |                    | • (****)                           |

Table S3. Continuation

| Coordinate               | type                          | Definition                                                                     | Wilson |
|--------------------------|-------------------------------|--------------------------------------------------------------------------------|--------|
| $q_1q_3$                 | $\nu$ (C-H) <sub>methyl</sub> | $r_1r_3$                                                                       |        |
| $q_4q_7$                 | $\nu$ (C-H) <sub>ring</sub>   | <i>r</i> 4 <i>r</i> <sub>7</sub>                                               |        |
| $q_8$                    | v(C-O)                        | <i>r</i> <sub>8</sub>                                                          |        |
| $q_9$                    | ν(O-CH <sub>3</sub> )         | <i>P</i> 9                                                                     |        |
| $q_{10}$                 | $\nu$ (N-C <sub>ring</sub> )  | $r_{10}$                                                                       |        |
| $q_{11}$                 | ν(N-N)                        | $r_{11}$                                                                       |        |
| $q_{12}$                 | ν(N-N)                        | <i>r</i> <sub>12</sub>                                                         |        |
| $q_{13}$                 | v(C-C)                        | $6^{-1/2}(R_1 + R_2 + R_3 + R_4 + R_5 + R_6)$                                  | 1      |
| $q_{14}$                 | v(C-C)                        | $12^{-1/2}(-R_1+2R_2-R_3-R_4+2R_5-R_6)$                                        | 8a     |
| $q_{15}$                 | v(C-C)                        | $2^{-1}(-R_1+R_3-R_4+R_6)$                                                     | 8b     |
| $q_{16}$                 | v(C-C)                        | $6^{-1/2}(R_1-R_2+R_3-R_4+R_5-R_6)$                                            | 14     |
| $q_{17}$                 | v(C-C)                        | $2^{-1}(R_1-R_3-R_4+R_6)$                                                      | 19a    |
| $q_{18}$                 | v(C-C)                        | $2^{-1/2}(R_2-R_6)$                                                            | 19b    |
| $q_{19}$                 | $\delta(C-H)_{ring}$          | $2^{-1}(\beta_1+\beta_2+\beta_3+\beta_4)$                                      | 9a     |
| $q_{20}$                 | $\delta(C-H)_{ring}$          | $2^{-1}(\beta_1+\beta_2-\beta_3-\beta_4)$                                      | 15     |
| $q_{21}$                 | $\delta(C-H)_{ring}$          | $2^{-1}(\beta_1-\beta_2+\beta_3-\beta_4)$                                      | 3      |
| $q_{22}$                 | $\delta(C-H)_{ring}$          | $2^{-1}(\beta_1-\beta_2-\beta_3+\beta_4)$                                      | 18a    |
| $q_{23}$                 | δ(O-C-C)                      | $\beta_5$                                                                      |        |
| $q_{24}$                 | δ(N-C-C)                      | $\beta_6$                                                                      |        |
| $q_{25}$                 | δ(C-O-C)                      | $\beta_7$                                                                      |        |
| $q_{26}$                 | δ(C-N-N)                      | $\beta_8$                                                                      |        |
| $q_{27}$                 | δ(N-N-N)                      | β9                                                                             |        |
| $q_{28}$                 | $\delta(C-H)_{methyl}$        | $6^{-1/2}(\alpha_1 + \alpha_2 + \alpha_3 + \alpha'_1 - \alpha'_2 - \alpha'_3)$ |        |
| $q_{29}$                 | $\delta(C-H)_{methyl}$        | $6^{-1/2}(2\alpha_1 - \alpha_2 - \alpha_3)$                                    |        |
| $q_{30}$                 | $\delta(C-H)_{methyl}$        | $2^{-1/2}(\alpha_2 - \alpha_3)$                                                |        |
| $q_{31}$                 | $\delta(C-H)_{methyl}$        | $6^{-1/2}(2\alpha'_{1}-\alpha'_{2}-\alpha'_{3})$                               |        |
| $q_{32}$                 | $\delta(C-H)_{methyl}$        | $2^{-1/2}(\alpha'_2 - \alpha'_3)$                                              |        |
| <i>q</i> <sub>33</sub>   | δ(C-C-C)                      | $6^{-1/2}(\alpha_4 - \alpha_5 + \alpha_6 - \alpha_7 + \alpha_8 - \alpha_9)$    | 12     |
| $q_{34}$                 | δ(C-C-C)                      | $12^{-1/2}(2\alpha_4-\alpha_5-\alpha_6+2\alpha_7-\alpha_8-\alpha_9)$           | 6a     |
| $q_{35}$                 | δ(C-C-C)                      | $2^{-1}(\alpha_5 - \alpha_6 + \alpha_8 - \alpha_9)$                            | 6b     |
| <i>q</i> <sub>3639</sub> | γ(С-Н)                        | $\gamma_1 \dots \gamma_4$                                                      |        |
| $q_{40}$                 | γ(C-N)                        | $\gamma_5$                                                                     |        |
| $q_{41}$                 | γ(O-C)                        | γ6                                                                             |        |
| $q_{42}$                 | Γ(CC)                         | $6^{-1/2}(\Gamma_1 - \Gamma_2 + \Gamma_3 - \Gamma_4 + \Gamma_5 - \Gamma_6)$    |        |
| <i>q</i> <sub>43</sub>   | Г(СС)                         | $2^{-1}(\Gamma_l+\Gamma_3+\Gamma_4+\Gamma_6)$                                  |        |

Table S3b. Non-redundant internal coordinates of 4-methoxyphenyl nitrene.

| Table Sob.  | Continuation |                                                                       |  |
|-------------|--------------|-----------------------------------------------------------------------|--|
| $q_{44}$    | Γ(CC)        | $12^{-1/2}(-\Gamma_1+2\Gamma_2-\Gamma_3-\Gamma_4+2\Gamma_5-\Gamma_6)$ |  |
| $q_{45}$    | Γ(ΟC)        | $\Gamma_7$                                                            |  |
| $q_{46}$    | Γ(CO)        | $\Gamma_8$                                                            |  |
| $q_{ m 47}$ | $\Gamma(CN)$ | $\Gamma_{9}$                                                          |  |
| $q_{48}$    | $\Gamma(NN)$ | $\Gamma_{10}$                                                         |  |

Table S3b. Continuation



| <b>Table 34.</b> Definition of regundant internal coordinates of 4-incluoxyditenvi intern | <b>4.</b> Definition of redundant internal coordinates of 4 | -methoxyphenvl nitren |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------|
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------|

| $N^{o}$ | Coor.          | Connectivity      | type                     |
|---------|----------------|-------------------|--------------------------|
| 1       | $r_1$          | 9-14              | v(C-H) <sub>methyl</sub> |
| 2       | $r_2$          | 9-15              | $v(C-H)_{methvl}$        |
| 3       | r3             | 9-16              | v(C-H) methyl            |
| 4       | r              | 3-10              | v(C-H)ring               |
| 5       | r 4<br>r-      | 4-11              | v(C-H)                   |
| 6       | 15             | 5-12              | V(C-H)                   |
| 7       | 76             | 6-13              | $V(C-II)_{ring}$         |
| 8       | $r_7$          | 7-8               | V(C-H) <sub>ring</sub>   |
| 0       | $r_8$          | 2 O               | v(C-O)                   |
| 9       | <b>r</b> 9     | 8-9               | $\nu(O-CH_3)$            |
| 10      | $r_{10}$       | 2-1               | $v(N-C_{ring})$          |
| 11      | $\mathbf{R}_1$ | 2-3               | v(C-C)                   |
| 12      | $R_2$          | 3-5               | v(C-C)                   |
| 13      | R <sub>3</sub> | 5-7               | v(C-C)                   |
| 14      | $R_4$          | 7-6               | v(C-C)                   |
| 15      | $R_5$          | 4-2               | v(C-C)                   |
| 16      | $R_6$          | 6-4               | v(C-C)                   |
| 17      | $\beta_1$      | [10-3-2]-[10-3-5] | $\delta(C-H)_{ring}$     |
| 18      | $\beta_2$      | [12-5-7]-[12-5-3] | $\delta(C-H)_{ring}$     |
| 19      | $\beta_3$      | [13-6-7]-[13-6-4] | $\delta(C-H)_{ring}$     |
| 20      | $\beta_4$      | [11-4-2]-[11-4-6] | $\delta(C-H)_{ring}$     |
| 21      | $\beta_5$      | [8-7-5]-[8-7-6]   | δ(O-C-C)                 |
| 22      | $\beta_6$      | [1-2-3]-[1-2-4]   | δ(N-C-C)                 |
| 23      | $\beta_7$      | [9-8-7]           | δ(C-O-C)                 |

| 1 abic | 54. Conti    | nuution            |                                        |
|--------|--------------|--------------------|----------------------------------------|
| 24     | $\alpha_1$   | [15-9-16]          | $\delta$ (H-C-H) <sub>methyl</sub>     |
| 25     | $\alpha_2$   | [14-9-16]          | δ(H-C-H) <sub>methyl</sub>             |
| 26     | $\alpha_3$   | [14-9-15]          | $\delta(\text{H-C-H})_{methyl}$        |
| 27     | $\alpha'_1$  | [14-9-8]           | $\delta$ (O-C-H) <sub>methyl</sub>     |
| 28     | $\alpha'_2$  | [15-9-8]           | $\delta$ (O-C-H) <sub>methyl</sub>     |
| 29     | $\alpha'_3$  | [16-9-8]           | $\delta(\text{O-C-H})_{\text{methyl}}$ |
| 30     | $\alpha_4$   | [5-7-6]            | $\delta$ (C-C-C) <sub>ring</sub>       |
| 31     | $\alpha_5$   | [7-6-4]            | $\delta$ (C-C-C) <sub>ring</sub>       |
| 32     | $\alpha_6$   | [6-4-2]            | $\delta$ (C-C-C) <sub>ring</sub>       |
| 33     | $\alpha_7$   | [4-2-3]            | $\delta$ (C-C-C) <sub>ring</sub>       |
| 34     | $\alpha_8$   | [2-3-5]            | $\delta$ (C-C-C) <sub>ring</sub>       |
| 35     | α9           | [3-5-7]            | $\delta$ (C-C-C) <sub>ring</sub>       |
| 36     | $\gamma_1$   | {13-6-7-4}         | ү(С-Н)                                 |
| 37     | $\gamma_2$   | {11-4-6-2}         | γ(C-H)                                 |
| 38     | $\gamma_3$   | {10-3-2-5}         | γ(C-H)                                 |
| 39     | $\gamma_4$   | {12-5-3-7}         | γ(C-H)                                 |
| 40     | $\gamma_5$   | {1-2-4-3}          | γ(C-N)                                 |
| 41     | $\gamma_6$   | {8-7-5-6}          | γ(O-C)                                 |
| 42     | $\Gamma_{l}$ | (5,8)-7-6-(4-13)   | Γ(CC)                                  |
| 43     | $\Gamma_2$   | (7,13)-6-4-(11-2)  | Г(СС)                                  |
| 44     | $\Gamma_3$   | (6,11)-4-2-(3-1)   | Γ(CC)                                  |
| 45     | $\Gamma_4$   | (4,1)-2-3-(5-10)   | Γ(CC)                                  |
| 46     | $\Gamma_5$   | (2,10)-3-5-(7-12)  | Γ(CC)                                  |
| 47     | $\Gamma_6$   | (3,12)-5-7-(6-8)   | Γ(CC)                                  |
| 48     | $\Gamma_7$   | (5,6)-7-8-(9)      | $\Gamma(C-OCH_3)$                      |
| 49     | $\Gamma_8$   | (14,15,16)-9-8-(7) | $\Gamma(\text{O-CH}_3)$                |

Table S4. Continuation

| Coordinate               | Туре                          | Definition                                                                     | Wilson |
|--------------------------|-------------------------------|--------------------------------------------------------------------------------|--------|
| $q_1q_3$                 | $\nu$ (C-H) <sub>methyl</sub> | $r_1r_3$                                                                       |        |
| $q_4q_7$                 | $\nu$ (C-H) <sub>ring</sub>   | <i>r</i> 4 <i>r</i> 7                                                          |        |
| $q_8$                    | v(C-O)                        | <i>r</i> <sub>8</sub>                                                          |        |
| $q_9$                    | v(O-CH <sub>3</sub> )         | <i>r</i> 9                                                                     |        |
| $q_{10}$                 | $\nu$ (N-C <sub>ring</sub> )  | $r_{10}$                                                                       |        |
| $q_{11}$                 | v(C-C)                        | $6^{-1/2}(R_1 + R_2 + R_3 + R_4 + R_5 + R_6)$                                  | 1      |
| $q_{12}$                 | v(C-C)                        | $12^{-1/2}(-R_1+2R_2-R_3-R_4+2R_5-R_6)$                                        | 8a     |
| $q_{13}$                 | v(C-C)                        | $2^{-1}(-R_1+R_3-R_4+R_6)$                                                     | 8b     |
| $q_{14}$                 | v(C-C)                        | $6^{-1/2}(R_1-R_2+R_3-R_4+R_5-R_6)$                                            | 14     |
| $q_{15}$                 | v(C-C)                        | $2^{-1}(R_1-R_3-R_4+R_6)$                                                      | 19a    |
| $q_{16}$                 | v(C-C)                        | $2^{-1/2}(R_2-R_5)$                                                            | 19b    |
| $q_{17}$                 | $\delta(C-H)_{ring}$          | $2^{-1}(\beta_1+\beta_2+\beta_3+\beta_4)$                                      | 9a     |
| $q_{18}$                 | $\delta(\text{C-H})_{ring}$   | $2^{-1}(\beta_1+\beta_2-\beta_3-\beta_4)$                                      | 15     |
| $q_{19}$                 | $\delta(C-H)_{ring}$          | $2^{-1}(\beta_1-\beta_2+\beta_3-\beta_4)$                                      | 3      |
| $q_{20}$                 | $\delta(C-H)_{ring}$          | $2^{-1}(\beta_1-\beta_2-\beta_3+\beta_4)$                                      | 18a    |
| $q_{21}$                 | δ(O-C-C)                      | $\beta_5$                                                                      |        |
| $q_{22}$                 | δ(N-C-C)                      | $\beta_6$                                                                      |        |
| $q_{23}$                 | δ(C-O-C)                      | $\beta_7$                                                                      |        |
| $q_{24}$                 | $\delta(C-H)_{methyl}$        | $6^{-1/2}(\alpha_1 + \alpha_2 + \alpha_3 + \alpha'_1 - \alpha'_2 - \alpha'_3)$ |        |
| $q_{25}$                 | $\delta(C-H)_{methyl}$        | $6^{-1/2}(2\alpha_1-\alpha_2-\alpha_3)$                                        |        |
| $q_{26}$                 | $\delta(C-H)_{methyl}$        | $2^{-1/2}(\alpha_2 - \alpha_3)$                                                |        |
| $q_{27}$                 | $\delta(C-H)_{methyl}$        | $6^{-1/2}(2\alpha'_{1}-\alpha'_{2}-\alpha'_{3})$                               |        |
| $q_{28}$                 | $\delta(C-H)_{methyl}$        | $2^{-1/2}(\alpha'_2-\alpha'_3)$                                                |        |
| $q_{29}$                 | δ(C-C-C)                      | $6^{-1/2}(\alpha_4-\alpha_5+\alpha_6-\alpha_7+\alpha_8-\alpha_9)$              | 12     |
| $q_{30}$                 | δ(C-C-C)                      | $12^{-1/2}(2\alpha_4-\alpha_5-\alpha_6+2\alpha_7-\alpha_8-\alpha_9)$           | 6a     |
| $q_{31}$                 | δ(C-C-C)                      | $2^{-1}(\alpha_5-\alpha_6+\alpha_8-\alpha_9)$                                  | 6b     |
| <i>q</i> <sub>3235</sub> | γ(C-H)                        | $\gamma_1 \ldots \gamma_4$                                                     |        |
| <b>q</b> <sub>36</sub>   | γ(C-N)                        | γ <sub>5</sub>                                                                 |        |
| $q_{37}$                 | γ(O-C)                        | $\gamma_6$                                                                     |        |
| <i>q</i> <sub>38</sub>   | Γ(CC)                         | $6^{-1/2}(\Gamma_1 - \Gamma_2 + \Gamma_3 - \Gamma_4 + \Gamma_5 - \Gamma_6)$    |        |
| <i>q</i> <sub>39</sub>   | Γ(CC)                         | $2^{-1}(\Gamma_1+\Gamma_3+\Gamma_4+\Gamma_6)$                                  |        |
| $q_{40}$                 | Γ(CC)                         | $12^{-1/2}(-\Gamma_1+2\Gamma_2-\Gamma_3-\Gamma_4+2\Gamma_5-\Gamma_6)$          |        |
| $q_{41}$                 | Г(СО)                         | $\Gamma_7$                                                                     |        |
| <b>q</b> <sub>42</sub>   | Γ(OCH <sub>3</sub> )          | $\Gamma_8$                                                                     |        |

 Table S4b. Non redundant internal coordinates of 4-methoxyphenyl nitrene.



| $N^{o}$ | Coor.                 | Connectivity | type                          |
|---------|-----------------------|--------------|-------------------------------|
| 1       | $r_1$                 | 15-27        | $\nu$ (C-H) <sub>methyl</sub> |
| 2       | $r_2$                 | 16 -28       | $\nu$ (C-H) <sub>methyl</sub> |
| 3       | <i>r</i> <sub>3</sub> | 15-29        | $\nu$ (C-H) <sub>methyl</sub> |
| 4       | ľ4                    | 16-30        | $\nu$ (C-H) <sub>ring</sub>   |
| 5       | $r_5$                 | 15-32        | $\nu$ (C-H) <sub>ring</sub>   |
| 6       | $r_6$                 | 16-31        | $\nu$ (C-H) <sub>ring</sub>   |
| 7       | $r_7$                 | 5-19         | $\nu$ (C-H) <sub>ring</sub>   |
| 8       | $r_8$                 | 6-20         | v(C-H) <sub>ring</sub>        |
| 9       | <i>r</i> 9            | 7-21         | v(C-H) <sub>ring</sub>        |
| 10      | $r_{10}$              | 8-22         | $\nu$ (C-H) <sub>ring</sub>   |
| 11      | $r_{11}$              | 9-23         | v(C-H) <sub>ring</sub>        |
| 12      | $r_{12}$              | 10-24        | $\nu$ (C-H) <sub>ring</sub>   |
| 13      | $r_{13}$              | 11-25        | $\nu$ (C-H) <sub>ring</sub>   |
| 14      | $r_{14}$              | 12-26        | $\nu$ (C-H) <sub>ring</sub>   |
| 15      | $r_{15}$              | 13-17        | v(C-O)                        |
| 16      | $r_{16}$              | 14-18        | v(C-O)                        |
| 17      | $r_{17}$              | 15-17        | ν(O-CH <sub>3</sub> )         |
| 18      | $r_{18}$              | 16-18        | ν(O-CH <sub>3</sub> )         |
| 19      | $r_{19}$              | 1-2          | v(N-N)                        |
| 20      | $r_{20}$              | 1-3          | $v(N-C_{ring})$               |
| 21      | $r_{21}$              | 2-4          | $v(N-C_{ring})$               |
| 22      | $R_1$                 | 3-5          | v(C-C)                        |
| 23      | $R_2$                 | 5-9          | v(C-C)                        |
| 24      | $R_3$                 | 9-13         | v(C-C)                        |
| 25      | $R_4$                 | 13-11        | v(C-C)                        |
| 26      | $R_5$                 | 11-7         | v(C-C)                        |
| 27      | R <sub>6</sub>        | 7-3          | ν(C-C)                        |

Table S5. Continuation

| 1 and | , <b>55</b> , Collu | iluation              |                                        |
|-------|---------------------|-----------------------|----------------------------------------|
| 28    | $R_7$               | 4-6                   | v(C-C)                                 |
| 29    | $R_8$               | 6-10                  | v(C-C)                                 |
| 30    | R9                  | 10-14                 | v(C-C)                                 |
| 31    | R <sub>10</sub>     | 14-12                 | v(C-C)                                 |
| 32    | R <sub>11</sub>     | 12-8                  | v(C-C)                                 |
| 33    | R <sub>12</sub>     | 8-4                   | v(C-C)                                 |
| 34    | $\beta_1$           | [19-5-3]-[ 19-5-9]    | $\delta(C-H)_{ring}$                   |
| 35    | $\beta_2$           | [23-9-13]-[ 23-9-5]   | $\delta(C-H)_{ring}$                   |
| 36    | $\beta_3$           | [25-11-13]-[ 25-11-7] | $\delta(C-H)_{ring}$                   |
| 37    | $\beta_4$           | [21-7-3]-[ 21-7-11]   | $\delta(C-H)_{ring}$                   |
| 38    | $\beta_5$           | [20-6-4]-[20-6-10]    | $\delta(C-H)_{ring}$                   |
| 39    | $\beta_6$           | [24-10-14]-[24-10-6]  | $\delta(C-H)_{ring}$                   |
| 40    | $\beta_7$           | [26-12-14]-[26-12-8]  | $\delta(C-H)_{ring}$                   |
| 41    | $\beta_8$           | [22-8-4]-[22-8-12]    | $\delta(C-H)_{ring}$                   |
| 42    | β9                  | [17-13-9]-[17-13-11]  | δ(O-C-C)                               |
| 43    | $\beta_{10}$        | [18-14-10]-[18-14-12] | δ(O-C-C)                               |
| 44    | $\beta_{11}$        | [1-3-5]-[1-3-7]       | δ(N-C-C)                               |
| 45    | $\beta_{12}$        | [2-4-6]-[2-4-8]       | δ(N-C-C)                               |
| 46    | $\beta_{13}$        | [3-1-2]               | δ(N-N-C)                               |
| 47    | $\beta_{14}$        | [1-2-4]               | δ(N-N-C)                               |
| 48    | $\beta_{15}$        | [15-17-13]            | δ(C-O-C)                               |
| 49    | $\beta_{16}$        | [16-18-14]            | δ(C-O-C)                               |
| 50    | $\alpha_1$          | [27-15-29]            | $\delta$ (H-C-H) <sub>methyl</sub>     |
| 51    | $\alpha_2$          | [29-15-32]            | $\delta$ (H-C-H) <sub>methyl</sub>     |
| 52    | $\alpha_3$          | [32-15-27]            | $\delta$ (H-C-H) <sub>methyl</sub>     |
| 53    | $\alpha'_1$         | [27-15-17]            | $\delta$ (O-C-H) <sub>methyl</sub>     |
| 54    | $\alpha'_2$         | [29-15-17]            | $\delta$ (O-C-H) <sub>methyl</sub>     |
| 55    | $\alpha'_3$         | [32-15-17]            | $\delta$ (O-C-H) <sub>methyl</sub>     |
| 56    | $\alpha_4$          | [28-16-30]            | $\delta$ (H-C-H) <sub>methyl</sub>     |
| 57    | $\alpha_5$          | [30-16-31]            | $\delta(\text{H-C-H})_{\text{methyl}}$ |

| 1 aut    | - 55. Conti     | Iluation            |                                    |
|----------|-----------------|---------------------|------------------------------------|
| 58       | $\alpha_6$      | [31-16-28]          | δ(H-C-H) <sub>methyl</sub>         |
| 59       | $\alpha'_4$     | [28-16-18]          | $\delta$ (O-C-H) <sub>methyl</sub> |
| 60       | $\alpha'_5$     | [30-16-18]          | $\delta(O-C-H)_{methyl}$           |
| 61<br>(2 | α' <sub>6</sub> | [31-16-18]          | $\delta(O-C-H)_{methyl}$           |
| 62<br>63 | $\alpha_7$      | [/-3-5]             | $\delta(C-C-C)_{ring}$             |
| 64       | α <sub>o</sub>  | [5-9-13]            | $\delta(C-C-C)$                    |
| 65       | 0.9<br>0.5      | [9-13-11]           | $\delta(C-C-C)_{ring}$             |
| 66       | α <sub>10</sub> | []-13-11-7]         | $\delta(C-C-C)$ -ing               |
| 67       | $\alpha_{11}$   | [11-7-3]            | $\delta(C-C-C)$ ring               |
| 68       | α12             | [8-4-6]             | $\delta(C-C-C)_{ring}$             |
| 69       | α12             | [4-6-10]            | $\delta(C-C-C)$ ring               |
| 70       | α <sub>14</sub> | [6-10-14]           | $\delta(C-C-C)_{ring}$             |
| 71       | α <sub>15</sub> | [10-14-12]          | $\delta(C-C-C)_{ring}$             |
| 72       | $\alpha_{16}$   | [14-12-8]           | $\delta(C-C-C)_{ring}$             |
| 73       | $\alpha_{17}$   | [12-8-4]            | $\delta(C-C-C)_{ring}$             |
| 74       | $\gamma_1$      | {19-5-4-9}          | γ(С-Н)                             |
| 75       | $\gamma_2$      | {20-6-4-10}         | γ(С-Н)                             |
| 76       | $\gamma_3$      | {21-7-11-3}         | γ(С-Н)                             |
| 77       | $\gamma_4$      | {22-8-12-4}         | γ(С-Н)                             |
| 78       | γ <sub>5</sub>  | {23-9-13-5}         | γ(С-Н)                             |
| 79       | $\gamma_6$      | {24-10-14-6}        | γ(С-Н)                             |
| 80       | $\gamma_7$      | {25-11-13-7}        | γ(С-Н)                             |
| 81       | $\gamma_8$      | {26-12-14-8}        | γ(C-H)                             |
| 82       | $\gamma_9$      | {1-3-7-5}           | γ(C-N)                             |
| 83       | $\gamma_{10}$   | {2-4-8-6}           | γ(C-N)                             |
| 84       | $\gamma_{11}$   | {17-13-9-11}        | γ(O-C)                             |
| 85       | $\gamma_{12}$   | {18-14-10-12}       | γ(O-C)                             |
| 86       | $\Gamma_l$      | (1,7)-3-5-(19,9)    | $\Gamma(CC)$                       |
| 87       | $\Gamma_2$      | (19,3)-5-9-(23,13)  | Γ(CC)                              |
| 88       | $\Gamma_3$      | (23,5)-9-13-(17,11) | Γ(CC)                              |
| 89       | $\Gamma_4$      | (17,9)-13-11-(25,7) | Γ(CC)                              |
| 90       | $\Gamma_5$      | (25,13)-11-7-(21,3) | Γ(CC)                              |
| 91       | $\Gamma_6$      | (21,11)-7-3-(1,5)   | Γ(CC)                              |

Γ(CC) 92  $\Gamma_7$ (2,8)-4-6-(20,10) 93  $\Gamma_8$ Γ(CC) (20,4)-6-10-(24,14) Γ9 Γ(CC) 94 (24,6)-10-14-(18,12)  $\Gamma_{10}$ Γ(CC) 95 (18,10)-14-12-(26,8)  $\Gamma_{11}$ Γ(CC) 96 (26,14)-12-8-(22,4) Γ(CC) 97  $\Gamma_{12}$ (22,12)-8-4-(2,6)  $\Gamma_{13}$ Γ(NN) 99 (3)-1-2-(4)  $\Gamma_{14}$ Γ(CN) 100 (2)-1-3-(7,5)  $\Gamma_{15}$ Γ(CN) 101 (1)-2-4-(8,6)  $\Gamma(C-OCH_3)$  $\Gamma_{16}$ 102 (15)-17-13-(11,9)  $\Gamma_{17}$  $\Gamma(C-OCH_3)$ 103 (16)-18-14-(12,10)  $\Gamma(O-CH_3)$  $\Gamma_{18}$ (13)-17-15-(27,29,32) 104  $\Gamma(O-CH_3)$  $\Gamma_{19}$ 105 (14)-18-16-( 28,30,31)

Table S5. Continuation

| Coordinate                | Туре                          | Definition                                                                                            | Wilson |
|---------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------|--------|
| $q_1 \ldots q_6$          | $\nu$ (C-H) <sub>methyl</sub> | $r_1r_6$                                                                                              |        |
| $q_{7}q_{14}$             | $\nu$ (C-H) <sub>ring</sub>   | $r_{7}r_{14}$                                                                                         |        |
| <b>q</b> 15,16            | v(C-O)                        | r <sub>15,16</sub>                                                                                    |        |
| $q_{17,18}$               | $\nu(O-CH_3)$                 | <i>r</i> <sub>17,18</sub>                                                                             |        |
| $q_{19}$                  | v(N-N)                        | <i>r</i> <sub>19</sub>                                                                                |        |
| $q_{20,21}$               | $\nu$ (N-C <sub>ring</sub> )  | $r_{20}, r_{21}$                                                                                      |        |
| <i>q</i> <sub>22,23</sub> | v(C-C)                        | $6^{-1/2}(R_{1,7}+R_{2,8}+R_{3,9}+R_{4,10}+R_{5,11}+R_{6,12})$                                        | 1      |
| <i>q</i> <sub>24,25</sub> | v(C-C)                        | $12^{-1/2}(-R_{1,7}+2R_{2,8}-R_{3,9}-R_{4,10}+2R_{5,11}-R_{6,12})$                                    | 8a     |
| $q_{26,27}$               | v(C-C)                        | $2^{-1}(-R_{1,7}+R_{3,9}-R_{4,10}+R_{6,12})$                                                          | 8b     |
| <i>q</i> <sub>28,29</sub> | v(C-C)                        | $6^{-1/2}(R_{1,7}-R_{2,8}+R_{3,9}-R_{4,10}+R_{5,11}-R_{6,12})$                                        | 14     |
| <b>q</b> 30,31            | v(C-C)                        | $2^{-1}(R_{1,7}-R_{3,9}-R_{4,10}+R_{6,12})$                                                           | 19a    |
| <i>q</i> <sub>32,33</sub> | v(C-C)                        | $2^{-1/2}(R_{2,8}-R_{5,11})$                                                                          | 19b    |
| <i>q</i> <sub>34,35</sub> | $\delta(C-H)_{ring}$          | $2^{-1}(\beta_{1,5}+\beta_{2,6}+\beta_{3,7}+\beta_{4,8})$                                             | 9a     |
| <i>q</i> <sub>36,37</sub> | $\delta(C-H)_{ring}$          | $2^{-1}(\beta_{1,5}+\beta_{2,6}-\beta_{3,7}-\beta_{4,8})$                                             | 15     |
| <i>q</i> <sub>38,39</sub> | $\delta(C-H)_{ring}$          | $2^{-1}(\beta_{1,5}-\beta_{2,6}+\beta_{3,7}-\beta_{4,8})$                                             | 3      |
| <b>q</b> 40,41            | $\delta(C-H)_{ring}$          | $2^{-1}(\beta_{1,5}-\beta_{2,6}-\beta_{3,7}+\beta_{4,8})$                                             | 18a    |
| <i>q</i> <sub>42,43</sub> | δ(O-C-C)                      | β <sub>9,10</sub>                                                                                     |        |
| <b>q</b> 44,45            | δ(N-C-C)                      | β <sub>11,12</sub>                                                                                    |        |
| <b>q</b> 46,47            | δ(N-N-C)                      | β <sub>13,14</sub>                                                                                    |        |
| <b>q</b> <sub>48,49</sub> | δ(C-O-C)                      | β <sub>15,16</sub>                                                                                    |        |
| <b>q</b> 50,51            | $\delta(C-H)_{methyl}$        | $6^{-1/2}(\alpha_{1,4}+\alpha_{2,5}+\alpha_{3,6}+\alpha'_{1,4}-\alpha'_{2,5}-\alpha'_{3,6})$          |        |
| <i>q</i> 52,53            | $\delta(C-H)_{methyl}$        | $6^{-1/2}(2\alpha_{1,4}-\alpha_{2,5}-\alpha_{3,6})$                                                   |        |
| <i>q</i> <sub>54,55</sub> | $\delta(C-H)_{methyl}$        | $2^{-1/2}(\alpha_{2,5}-\alpha_{3,6})$                                                                 |        |
| <i>q</i> 56,57            | $\delta(C-H)_{methyl}$        | $6^{-1/2}(2\alpha'_{1,4}-\alpha'_{2,5}-\alpha'_{3,6})$                                                |        |
| <i>q</i> <sub>58,59</sub> | $\delta(C-H)_{methyl}$        | $2^{-1/2}(\alpha'_{2,5}-\alpha'_{3,6})$                                                               |        |
| <b>q</b> 60,61            | δ(C-C-C)                      | $6^{-1/2}(\alpha_{7,13}-\alpha_{8,14}+\alpha_{9,15}-\alpha_{10,16}+\alpha_{11,17}-\alpha_{12,18})$    | 12     |
| <i>q</i> <sub>62,63</sub> | δ(C-C-C)                      | $12^{-1/2}(2\alpha_{7,13}-\alpha_{8,14}-\alpha_{9,15}+2\alpha_{10,16}-\alpha_{11,17}-\alpha_{12,18})$ | 6a     |
| $q_{64,65}$               | δ(C-C-C)                      | $2^{-1}(\alpha_{8,14}-\alpha_{9,15}+\alpha_{11,17}-\alpha_{12,18})$                                   | 6b     |
| <i>q</i> <sub>6673</sub>  | <b>γ</b> (C-H)                | $\gamma_1 \dots \gamma_8$                                                                             |        |
| <i>q</i> <sub>74,75</sub> | γ(C-N)                        | <b>Y</b> 9,10                                                                                         |        |
| <b>q</b> 76,77            | γ(O-C)                        | <b>Y</b> 11,12                                                                                        |        |
| <b>q</b> 78,79            | $\Gamma(CC)$                  | $6^{-1/2}(\Gamma_{1,7}-\Gamma_{2,8}+\Gamma_{3,9}-\Gamma_{4,10}+\Gamma_{5,11}-\Gamma_{6,12})$          |        |
| $q_{80,81}$               | Γ(CC)                         | $2^{-1}(\Gamma_{1,7}+\Gamma_{3,9}+\Gamma_{4,10}+\Gamma_{6,12})$                                       |        |
| <i>q</i> <sub>82,83</sub> | Γ(CC)                         | $12^{-1/2}(-\Gamma_{1,7}+2\Gamma_{2,8}-\Gamma_{3,9}-\Gamma_{4,10}+2\Gamma_{5,11}-\Gamma_{6,12})$      |        |
| $q_{84}$                  | $\Gamma(NN)$                  | $\Gamma_{I3}$                                                                                         |        |
| <i>q</i> <sub>85,86</sub> | $\Gamma(CN)$                  | $\Gamma_{14,15}$                                                                                      |        |
| $q_{87,88}$               | $\Gamma(C\text{-}OCH_3)$      | $\Gamma_{16,17}$                                                                                      |        |
| $q_{89,90}$               | $\Gamma(O-CH_3)$              | Γ <sub>18,19</sub>                                                                                    |        |

 Table S5b. Non redundant internal coordinates of 4,4'-dimethoxyazobenzene.

| $N^{o}$ | $Freq(cm^{-1})$ | $PED^{c}$                                                   | Assignment                    |
|---------|-----------------|-------------------------------------------------------------|-------------------------------|
| 1       | 3364            | 93 $q_7$                                                    | v(C-H) <sub>ring</sub>        |
| 2       | 3354            | $52 q_4 + 46 q_6$                                           | v(C-H) <sub>ring</sub>        |
| 3       | 3337            | 47 $q_4$ + 53 $q_6$                                         | $\nu$ (C-H) <sub>ring</sub>   |
| 4       | 3325            | 94 q <sub>5</sub>                                           | $\nu$ (C-H) <sub>ring</sub>   |
| 5       | 3268            | 91 <i>q</i> <sub>1</sub>                                    | $\nu$ (C-H) <sub>methyl</sub> |
| 6       | 3207            | $50 q_2 + 50 q_3$                                           | $\nu$ (C-H) <sub>methyl</sub> |
| 7       | 3152            | $46 q_2 + 46 q_3$                                           | $\nu$ (C-H) <sub>methyl</sub> |
| 8       | 2191            | $20 \ q_{11}$ + 79 $q_{12}$                                 | v(N-N)                        |
| 9       | 1758            | $36 q_{14}$ +15 $q_{19}$ +26 $q_{34}$ +18 $q_{35}$          | 8a                            |
| 10      | 1712            | $62 q_{15} + 13 q_{19}$                                     | 8b                            |
| 11      | 1657            | $35 q_{17}$ + $14 q_{18}$ + $32 q_{22}$                     | 19a+18a                       |
| 12      | 1630            | 89 q <sub>29</sub>                                          | $\delta(C-H)_{methyl}$        |
| 13      | 1622            | 93 q <sub>30</sub>                                          | $\delta(C-H)_{methyl}$        |
| 14      | 1606            | 85 q <sub>28</sub>                                          | $\delta(C-H)_{methyl}$        |
| 15      | 1541            | $49 \ q_{18} + 35 \ q_{20}$                                 | 19b+15                        |
| 16      | 1440            | $76 q_{21}$                                                 | 3                             |
| 17      | 1415            | $28 q_8 + 12 q_{10} + 10 q_{13}$                            | v(C-O)                        |
| 18      | 1384            | $12q_8 + 26q_{10} + 22 q_{11} + 12q_{22} + 10q_{33}$        | $v(N-C_{ring})$               |
| 19      | 1316            | $52 q_{31}$                                                 | $\delta(C-H)_{methyl}$        |
| 20      | 1282            | 95 q <sub>32</sub>                                          | $\delta(C-H)_{methyl}$        |
| 21      | 1277            | 21 $q_{14}$ +55 $q_{19}$                                    | 9a                            |
| 22      | 1247            | 53 $q_{16}$ + 14 $q_{20}$                                   | 14                            |
| 23      | 1216            | 27 $q_{11}$ + 10 $q_{17}$ + 13 $q_{33}$                     | v(N-N)                        |
| 24      | 1173            | $34 \ q_{16} + 45 \ q_{18} + 10 \ q_{20}$                   | 19b+15                        |
| 25      | 1157            | $28 q_9 + 12 q_{13} + 26 q_{16}$                            | v(O-CH <sub>3</sub> )         |
| 26      | 1090            | $44 \ q_{17} + 20 \ q_{18} + 28 \ q_{33}$                   | 12                            |
| 27      | 997             | $34 q_{38} + 26 q_{39} + 26 q_{44}$                         | γ(C-H)                        |
| 28      | 953             | $26 q_{36} + 26 q_{37} + 21 q_{42} + 12 q_{43} + 11 q_{44}$ | γ(C-H)                        |
| 29      | 894             | 22 $q_{13}$ + 28 $q_{34}$ + 18 $q_{35}$                     | 1                             |
| 30      | 861             | $28 \ q_{38} + 30 \ q_{39} + 23 \ q_{43}$                   | <b>γ</b> (C-H)                |
| 31      | 832             | 41 <i>q</i> <sub>36</sub> + 37 <i>q</i> <sub>37</sub>       | <b>γ</b> (C-H)                |
| 32      | 828             | $20 \ q_{34} + 16 \ q_{35} + 10 \ q_{26}$                   | 6a                            |
| 33      | 733             | $19 \ q_{40} + 23 \ q_{41} + 40 \ q_{42}$                   | $\Gamma(CC)$                  |
| 34      | 688             | $74 q_{35}$                                                 | 6b                            |
| 35      | 674             | $12 q_{27} + 34 q_{34}$                                     | δ(N-N-N)                      |
| 36      | 575             | 96 $q_{48}$                                                 | $\Gamma(NN)$                  |
| 37      | 545             | $23 \ q_{23} + 35 \ q_{25} + 35 \ q_{34}$                   | δ(C-O-C)                      |
| 38      | 544             | $37 \; q_{40} + 39 \; q_{41}$                               | γ(C-N)                        |
| 39      | 450             | $10 \ q_{27}$ +31 $q_{34}$ +41 $q_{35}$                     | δ(N-N-N)                      |
| 40      | 444             | 19 q <sub>43</sub> + 56 q <sub>44</sub>                     | Γ(CC)                         |

 Table S6. Assignment of the CAS-SCF vibrational frequencies of 4-methoxyphenyl azide.<sup>a,b</sup>

## Table S6. Continuation.

| 1 and | Table 50. Continuation. |                                                               |                     |  |  |  |
|-------|-------------------------|---------------------------------------------------------------|---------------------|--|--|--|
| 41    | 381                     | $16 \ q_{40}$ + $10 \ q_{41}$ + $29 \ q_{42}$ + $23 \ q_{43}$ | Γ(CC)               |  |  |  |
| 42    | 366                     | $13 q_{24}$ + $43 q_{34}$ + $22 q_{45}$                       | δ(N-C-C)            |  |  |  |
| 43    | 263                     | $87 \; q_{46}$                                                | $\Gamma(O-CH_3)$    |  |  |  |
| 44    | 257                     | $35 q_{23}$ + $28 q_{25}$ + $12 q_{26}$ + $11 q_{27}$         | δ(O-C-C)            |  |  |  |
| 45    | 165                     | 61 q <sub>43</sub>                                            | $\Gamma(CC)$        |  |  |  |
| 46    | 132                     | $24 \ q_{24}$ + $42 \ q_{26}$ + $20 \ q_{27}$                 | δ(C-N-N)            |  |  |  |
| 47    | 67                      | 65 q <sub>45</sub> + 31 q <sub>46</sub>                       | $\Gamma(OC_{ring})$ |  |  |  |
| 48    | 53                      | $80 q_{47}$                                                   | $\Gamma(CN)$        |  |  |  |

<sup>a</sup>According with the potential energy distribution matrix (Refs. 32, 33). <sup>b</sup>Active space: (12e,11o); ANO-RCC[C,N,O/4s3p2d1f||H/3s2p1d]. <sup>c</sup>Potential energy distribution.

| N° | $Freq(cm^{-1})$ | PED <sup>c</sup>                                                                                              | Assignment                    |
|----|-----------------|---------------------------------------------------------------------------------------------------------------|-------------------------------|
| 1  | 3365            | 85 q <sub>7</sub>                                                                                             | $\nu(C-H)_{ring}$             |
| 2  | 3353            | $45 q_4 + 53 q_6$                                                                                             | $\nu$ (C-H) <sub>ring</sub>   |
| 3  | 3339            | 85 q <sub>5</sub>                                                                                             | $\nu$ (C-H) <sub>ring</sub>   |
| 4  | 3335            | 53 $q_4$ + 45 $q_6$                                                                                           | $\nu$ (C-H) <sub>ring</sub>   |
| 5  | 3273            | 90 <i>q</i> <sub>1</sub>                                                                                      | $\nu$ (C-H) <sub>methyl</sub> |
| 6  | 3214            | $50 q_2 + 50 q_3$                                                                                             | $\nu$ (C-H) <sub>methyl</sub> |
| 7  | 3156            | $46 q_2 + 46 q_3$                                                                                             | $\nu$ (C-H) <sub>methyl</sub> |
| 8  | 1696            | $28 q_{12}$ + 15 $q_{19}$ + 21 $q_{30}$ + 13 $q_{31}$                                                         | 8a                            |
| 9  | 1636            | 46 $q_{13}$ +15 $q_{17}$ + 12 $q_{31}$                                                                        | 8b                            |
| 10 | 1630            | 86 q <sub>25</sub>                                                                                            | $\delta(C-H)_{methyl}$        |
| 11 | 1623            | 93 q <sub>26</sub>                                                                                            | $\delta(C-H)_{methyl}$        |
| 12 | 1611            | 72 q <sub>24</sub>                                                                                            | $\delta(C-H)_{methyl}$        |
| 13 | 1590            | $16 q_{15} + 45 q_{18} + 13 q_{24}$                                                                           | 9b                            |
| 14 | 1516            | 41 $q_{16}$ + 30 $q_{20}$                                                                                     | 19b                           |
| 15 | 1415            | 35 q <sub>8</sub>                                                                                             | v(C-O)                        |
| 16 | 1393            | $18 \ q_{13} + 44 \ q_{17}$                                                                                   | 9a                            |
| 17 | 1324            | 21 $q_{10}$ + 14 $q_{19}$ + 24 $q_{27}$                                                                       | $v(N-C_{ring})$               |
| 18 | 1310            | $17 q_{10}$ + $12 q_{19}$ + $35 q_{27}$                                                                       | $\delta(C-H)_{methyl}$        |
| 19 | 1282            | 95 q <sub>28</sub>                                                                                            | $\delta(C-H)_{methyl}$        |
| 20 | 1228            | 65 q <sub>14</sub>                                                                                            | 14                            |
| 21 | 1203            | $14 q_{10}$ + $14 q_{12}$ + $18 q_{19}$ + $14 q_{30}$                                                         | 3                             |
| 22 | 1176            | $23 \ q_{14} + 53 \ q_{16} + 20 \ q_{20}$                                                                     | 19b                           |
| 23 | 1151            | $38  q_9 + 13  q_{30}$                                                                                        | v(O-CH <sub>3</sub> )         |
| 24 | 1047            | 39 <i>q</i> <sub>15</sub> + 27 <i>q</i> <sub>29</sub>                                                         | 19a                           |
| 25 | 991             | 28 <i>q</i> <sub>34</sub> + 32 <i>q</i> <sub>35</sub>                                                         | ү(С-Н)                        |
| 26 | 962             | 31 <i>q</i> <sub>32</sub> + 22 <i>q</i> <sub>33</sub>                                                         | ү(С-Н)                        |
| 27 | 868             | 45 $q_{11}$ +21 $q_{30}$ + 15 $q_{31}$                                                                        | 1                             |
| 28 | 846             | 32 <i>q</i> <sub>34</sub> + 18 <i>q</i> <sub>35</sub> + 16 <i>q</i> <sub>39</sub>                             | ү(С-Н)                        |
| 29 | 818             | 24 <i>q</i> <sub>32</sub> + 33 <i>q</i> <sub>33</sub> + 14 <i>q</i> <sub>34</sub> + 15 <i>q</i> <sub>39</sub> | ү(С-Н)                        |
| 30 | 778             | 21 <i>q</i> <sub>8</sub> + 21 <i>q</i> <sub>29</sub>                                                          | 12                            |
| 31 | 728             | $22 q_{36} + 27 q_{37} + 29 q_{38}$                                                                           | γ(C-N)                        |
| 32 | 669             | $76 q_{31}$                                                                                                   | 6b                            |
| 33 | 555             | 24 <i>q</i> <sub>23</sub> + 43 <i>q</i> <sub>30</sub>                                                         | $6a + \delta(C-O-C)$          |
| 34 | 527             | 33 <i>q</i> <sub>36</sub> + 43 <i>q</i> <sub>37</sub>                                                         | γ(O-C)                        |
| 35 | 445             | $40 \ q_{30} + 47 \ q_{31}$                                                                                   | 6b                            |
| 36 | 427             | $15 q_{39} + 55 q_{40}$                                                                                       | Γ(CC)                         |
| 37 | 390             | 53 <i>q</i> <sub>22</sub> + 14 <i>q</i> <sub>23</sub>                                                         | $\delta$ (N-C-C)              |
| 38 | 352             | $32 q_{38} + 21 q_{39}$                                                                                       | Γ(CC)                         |
| 39 | 257             | 80 q <sub>42</sub>                                                                                            | Γ( OCH <sub>3</sub> )         |
| 40 | 246             | $44 q_{21} + 34 q_{23}$                                                                                       | δ(O-C-C)                      |
| 41 | 151             | $60 \ q_{39} + 20 \ q_{41}$                                                                                   | Γ(CC)                         |
| 42 | 69              | $66 q_{41} + 32 q_{42}$                                                                                       | Г( СО)                        |

 Table S7. Assignment of the CAS-SCF vibrational frequencies of triplet 4-methoxyphenyl nitrene.<sup>a,b</sup>

<sup>42</sup> <u>69</u> <u>66</u>  $q_{41}$ + <u>32</u>  $q_{42}$  <u> $\Gamma(CO)$ </u> <sup>a</sup>According with the potential energy distribution matrix (Refs. 32, 33). <sup>b</sup>Active space: (12e,11o); ANO-RCC[C,N,O/4s3p2d1f||H/3s2p1d]. <sup>c</sup>Potential energy distribution.

| N° | $Freq(cm^{-1})$ | $PED^{c}$                                             | Assignment                       |
|----|-----------------|-------------------------------------------------------|----------------------------------|
| 1  | 3365            | $43 q_5 + 55 q_7$                                     | $\nu$ (C-H) <sub>ring</sub>      |
| 2  | 3358            | $72 q_4 + 26 q_7$                                     | $\nu$ (C-H) <sub>ring</sub>      |
| 3  | 3346            | $56 q_5 + 26 q_6$                                     | $\nu$ (C-H) <sub>ring</sub>      |
| 4  | 3337            | 23 $q_4$ + 73 $q_6$                                   | $\nu$ (C-H) <sub>ring</sub>      |
| 5  | 3275            | 90 $q_1$                                              | $\nu$ (C-H) <sub>methyl</sub>    |
| 6  | 3217            | $50 q_2 + 50 q_3$                                     | $\nu$ (C-H) <sub>methyl</sub>    |
| 7  | 3158            | $45 q_2 + 45 q_3$                                     | $\nu$ (C-H) <sub>methyl</sub>    |
| 8  | 1707            | $28 q_{12}$ + 15 $q_{17}$ + 25 $q_{30}$ + 17 $q_{31}$ | 8a                               |
| 9  | 1650            | $32 q_{10}$ +17 $q_{15}$ + 23 $q_{20}$                | $v(N-C_{ring})$                  |
| 10 | 1630            | 88 q <sub>25</sub>                                    | $\delta(C-H)_{methyl}$           |
| 11 | 1623            | 93 q <sub>26</sub>                                    | $\delta(C-H)_{methyl}$           |
| 12 | 1610            | $18 q_{16} + 52 q_{24}$                               | $\delta(C-H)_{methyl}$           |
| 13 | 1598            | $28 q_{16} + 18 q_{24}$                               | 19b                              |
| 14 | 1537            | 27 $q_{10}$ + 11 $q_{19}$ + 26 $q_{20}$               | 18a                              |
| 15 | 1494            | 13 $q_{16}$ + 12 $q_{18}$ + 44 $q_{19}$               | 3                                |
| 16 | 1420            | $39 q_8 + 15 q_{20} + 10 q_{27}$                      | v(C-O)                           |
| 17 | 1346            | $24 q_{13}$ + $14 q_{14}$ + $21 q_{18}$ + $24 q_{19}$ | 8b+3                             |
| 18 | 1322            | $17 q_{10}$ + $12 q_{19}$ + $35 q_{27}$               | $\delta$ (C-H) <sub>methyl</sub> |
| 19 | 1281            | 95 $q_{28}$                                           | $\delta(C-H)_{methyl}$           |
| 20 | 1259            | $23 q_{14} + 32 q_{17}$                               | 9a                               |
| 21 | 1217            | $45 q_{14}$ + $13 q_{16}$ + $11 q_{17}$               | 14                               |
| 22 | 1175            | $23 q_{14} + 39 q_{16} + 39 q_{18}$                   | 19b+15                           |
| 23 | 1153            | 59 $q_9$                                              | v(O-CH <sub>3</sub> )            |
| 24 | 1029            | $36 q_{15} + 51 q_{29}$                               | 12                               |
| 25 | 979             | $19 q_{34} + 47 q_{35} + 23 q_{40}$                   | γ(C-H)                           |
| 26 | 952             | $50 q_{32}$ + 12 $q_{33}$ + 12 $q_{38}$ + 17 $q_{40}$ | γ(C-H)                           |
| 27 | 818             | $50 q_{11} + 12 q_{15} + 14 q_{30}$                   | 1                                |
| 28 | 800             | $16 q_{33} + 41 q_{34} + 23 q_{36}$                   | γ(C-H)                           |
| 29 | 768             | $18 q_8 + 20 q_{15} + 17 q_{29}$                      | 19a+12                           |
| 30 | 744             | $39 q_{33} + 13 q_{34} + 15 q_{35} + 15 q_{39}$       | γ(C-H)                           |
| 31 | 683             | $21 q_{32}$ + $12 q_{35}$ + $22 q_{36}$ + $17 q_{38}$ | γ(C-N)                           |
| 32 | 640             | $20 q_{13} + 68 q_{31}$                               | 6b                               |
| 33 | 547             | $12 q_{21} + 24 q_{23} + 45 q_{30}$                   | $6a + \delta(C-O-C)$             |
| 34 | 462             | $31 q_{36} + 41 q_{37} + 11 q_{30}$                   | γ(O-C)                           |
| 35 | 442             | $39 q_{30} + 47 q_{31}$                               | 6a+6b                            |
| 36 | 397             | $32 q_{22}$ + 11 $q_{23}$ + 34 $q_{30}$ + 12 $q_{31}$ | δ(N-C-C)                         |
| 37 | 364             | $12 q_{32}$ + $12 q_{33}$ + $10 q_{35}$ + $45 q_{40}$ | Γ(CC)                            |
| 38 | 294             | $15 q_{37} + 16 q_{38} + 13 q_{39} + 43 q_{42}$       | $\Gamma(OCH_3)$                  |
| 39 | 244             | $47 q_{21} + 33 q_{23}$                               | δ(O-C-C)                         |
| 40 | 231             | $17 q_{37} + 25 q_{38} + 16 q_{39} + 29 q_{42}$       | Γ(CC)                            |
| 41 | 110             | $14 q_{38} + 27 q_{39} + 33 q_{41}$                   | Γ(CC)                            |
| 42 | 62              | $61 q_{41} + 32 q_{42}$                               | Γ( CO)                           |

**Table S8.** Assignment of the CAS-SCF vibrational frequencies of  $1^{1}A''$  4-methoxyphenyl nitrene.<sup>a,b</sup>

<sup>42</sup> 02 01  $q_{41}$  + 32  $q_{42}$  1'(CO) <sup>a</sup>According with the potential energy distribution matrix (Refs. 32, 33). <sup>b</sup>Active space: (12e,11o); ANO-RCC[C,N,O/4s3p2d1f||H/3s2p1d]. <sup>c</sup>Potential energy distribution.

| $N^{o}$ | $Freq(cm^{-1})$ | $PED^{c}$                                                                         | Assignment                    |
|---------|-----------------|-----------------------------------------------------------------------------------|-------------------------------|
| 1       | 3372            | 24 <i>q</i> <sub>5</sub> + 74 <i>q</i> <sub>7</sub>                               | $\nu$ (C-H) <sub>ring</sub>   |
| 2       | 3362            | 71 $q_4$ + 27 $q_6$                                                               | $\nu$ (C-H) <sub>ring</sub>   |
| 3       | 3351            | 75 $q_5$ + 24 $q_7$                                                               | $\nu$ (C-H) <sub>ring</sub>   |
| 4       | 3343            | $28 q_4 + 72 q_6$                                                                 | $\nu$ (C-H) <sub>ring</sub>   |
| 5       | 3287            | 89 <i>q</i> <sub>1</sub>                                                          | $\nu$ (C-H) <sub>methyl</sub> |
| 6       | 3236            | $50 q_2 + 50 q_3$                                                                 | $\nu$ (C-H) <sub>methyl</sub> |
| 7       | 3170            | $45 q_2 + 45 q_3$                                                                 | $\nu$ (C-H) <sub>methyl</sub> |
| 8       | 1707            | $35 q_{12}$ + $15 q_{17}$ + $22 q_{30}$ + $15 q_{31}$                             | 8a                            |
| 9       | 1667            | 57 $q_{13}$ +14 $q_{19}$ + 23 $q_{20}$                                            | 8b                            |
| 10      | 1629            | $70 \; q_{25}$                                                                    | $\delta(C-H)_{methyl}$        |
| 11      | 1625            | 93 q <sub>26</sub>                                                                | $\delta(C-H)_{methyl}$        |
| 12      | 1624            | $21 q_{24}$ + $18 q_{25}$                                                         | $\delta(C-H)_{methyl}$        |
| 13      | 1602            | 25 q <sub>20</sub> + 57 q <sub>24</sub>                                           | 18a                           |
| 14      | 1534            | 47 $q_{16}$ + 28 $q_{18}$                                                         | 19b                           |
| 15      | 1421            | $37 q_8 + 13 q_{20}$                                                              | v(C-O)                        |
| 16      | 1396            | $12 q_{13} + 58 q_{19}$                                                           | 3                             |
| 17      | 1337            | $42 q_{10}$                                                                       | $v(N-C_{ring})$               |
| 18      | 1321            | $25 q_{14} + 23 q_{27}$                                                           | $\delta(C-H)_{methyl}$        |
| 19      | 1287            | $62  q_{14} + 19  q_{16} + 37  q_{17}$                                            | 14                            |
| 20      | 1282            | 95 q <sub>28</sub>                                                                | $\delta(C-H)_{methyl}$        |
| 21      | 1235            | 13 $q_{10}$ + 15 $q_{12}$ + 37 $q_{17}$                                           | 9a                            |
| 22      | 1185            | 38 q <sub>16</sub> + 47 q <sub>18</sub>                                           | 15                            |
| 23      | 1152            | 72 $q_9$                                                                          | v(O-CH <sub>3</sub> )         |
| 24      | 1078            | $41 q_{15}$ + $14 q_{20}$ + $44 q_{29}$                                           | 12                            |
| 25      | 1042            | 49 <i>q</i> <sub>34</sub> + 18 <i>q</i> <sub>35</sub> + 16 <i>q</i> <sub>38</sub> | γ(C-H)                        |
| 26      | 1038            | $14 q_{32} + 46 q_{33} + 22 q_{40}$                                               | <b>γ</b> (C-H)                |
| 27      | 889             | 40 $q_{11}$ +26 $q_{30}$ + 19 $q_{31}$                                            | 1                             |
| 28      | 889             | $20  q_{32} + 30  q_{35} + 14  q_{37}$                                            | γ(C-H)                        |
| 29      | 846             | $45 \ q_{32} + 14 \ q_{33} + 20 \ q_{35}$                                         | γ(C-H)                        |
| 30      | 802             | $17 q_8 + 21 q_{15} + 22 q_{29} + 12 q_{30}$                                      |                               |
| 31      | 783             | $16 q_{36}$ + 37 $q_{37}$ + 27 $q_{38}$                                           | γ(O-C)                        |
| 32      | 674             | $15 \ q_{13} + 70 \ q_{31}$                                                       | 6b                            |
| 33      | 569             | 27 $q_{21}$ + 27 $q_{36}$ + 48 $q_{37}$                                           | γ(N-C)                        |
| 34      | 562             | 13 $q_{21}$ + 26 $q_{23}$ + 42 $q_{30}$                                           | δ(C-O-C)                      |
| 35      | 454             | $36 q_{30} + 48 q_{31}$                                                           | 6a                            |
| 36      | 427             | $15 q_{39} + 61 q_{40}$                                                           | $\Gamma(CC)$                  |
| 37      | 410             | 43 $q_{22}$ + 28 $q_{30}$                                                         | δ(N-C-C)                      |
| 38      | 312             | $29 \ q_{38} + 30 \ q_{39} + 18 \ q_{42}$                                         | Γ(CC)                         |
| 39      | 254             | $44 \ q_{21} + 42 \ q_{23}$                                                       | δ(O-C-C)                      |
| 40      | 237             | $20 \ q_{38} + 17 \ q_{39} + 49 \ q_{42}$                                         | $\Gamma(OCH_3)$               |
| 41      | 127             | $20 q_{36}$ + 15 $q_{38}$ + 36 $q_{41}$                                           | $\Gamma(CC)$                  |
| 42      | 80              | 44 <i>q</i> <sub>41</sub> + 18 <i>q</i> <sub>42</sub>                             | Г( СО)                        |

**Table S9.** Assignment of the CAS-SCF vibrational frequencies of 1<sup>1</sup>A' 4-methoxyphenyl nitrene.<sup>a,b</sup>

<sup>42</sup>  $\frac{80}{44} \frac{44}{q_{41}+18} \frac{\Gamma(CO)}{q_{42}}$ <sup>a</sup>According with the potential energy distribution matrix (Refs. 32, 33). <sup>b</sup>Active space: (12e,11o); ANO-RCC[C,N,O/4s3p2d1f]|H/3s2p1d]. <sup>c</sup>Potential energy distribution.

| $N^{o}$ | $Freq(cm^{-1})$ | $PED^{c}$                                                                         | Assignment                       |
|---------|-----------------|-----------------------------------------------------------------------------------|----------------------------------|
| 1       | 3376            | $40 q_{9} + 40 q_{10}$                                                            | v(C-H) <sub>ring</sub>           |
| 2       | 3376            | $40 \ q_{9} + 40 \ q_{10}$                                                        | $\nu$ (C-H) <sub>ring</sub>      |
| 3       | 3355            | $39 q_{13} + 39 q_{14}$                                                           | $\nu$ (C-H) <sub>ring</sub>      |
| 4       | 3355            | $39 q_{13} + 39 q_{14}$                                                           | $\nu$ (C-H) <sub>ring</sub>      |
| 5       | 3352            | $21 q_7 + 21 q_8 + 28 q_{11} + 28 q_{12}$                                         | $\nu$ (C-H) <sub>ring</sub>      |
| 6       | 3352            | 21 $q_7$ + 21 $q_8$ + 28 $q_{11}$ + 28 $q_{12}$                                   | $\nu$ (C-H) <sub>ring</sub>      |
| 7       | 3335            | $28 q_7 + 28 q_8 + 22 q_{11} + 22 q_{12}$                                         | $\nu$ (C-H) <sub>ring</sub>      |
| 8       | 3335            | $28 q_7 + 28 q_8 + 22 q_{11} + 22 q_{12}$                                         | $\nu$ (C-H) <sub>ring</sub>      |
| 9       | 3269            | $47 q_1 + 47 q_2$                                                                 | $\nu$ (C-H) <sub>methyl</sub>    |
| 10      | 3269            | $47 q_1 + 47 q_2$                                                                 | $\nu$ (C-H) <sub>methyl</sub>    |
| 11      | 3211            | $25 q_3 + 25 q_4 + 25 q_5 + 25 q_6$                                               | $\nu$ (C-H) <sub>methyl</sub>    |
| 12      | 3211            | $25 q_3 + 25 q_4 + 25 q_5 + 25 q_6$                                               | $\nu$ (C-H) <sub>methyl</sub>    |
| 13      | 3154            | 23 $q_3$ + 23 $q_4$ + 23 $q_5$ + 23 $q_6$                                         | $\nu$ (C-H) <sub>methyl</sub>    |
| 14      | 3154            | $23 q_3 + 23 q_4 + 23 q_5 + 23 q_6$                                               | $\nu$ (C-H) <sub>methyl</sub>    |
| 15      | 1748            | $26 \ q_{24} + 23 \ q_{25}$                                                       | 8a                               |
| 16      | 1746            | $29 \ q_{24} + 29 \ q_{25}$                                                       | 8a                               |
| 17      | 1720            | $28 \ q_{26} + 28 \ q_{27}$                                                       | 8b                               |
| 18      | 1710            | $34 q_{26} + 34 q_{27}$                                                           | 8b                               |
| 19      | 1675            | 64 q <sub>19</sub>                                                                | v(N-N)                           |
| 20      | 1659            | $23 \ q_{40} + 23 \ q_{41} + 16 \ q_{30} + 16 \ q_{31}$                           | 18a+19a                          |
| 21      | 1652            | $22 \ q_{40} + 22 \ q_{41} + 14 \ q_{30} + 14 \ q_{31}$                           | 18a+19a                          |
| 22      | 1630            | $33 q_{34} + 33 q_{35}$                                                           | 9a                               |
| 23      | 1630            | $33 q_{34} + 33 q_{35}$                                                           | 9a                               |
| 24      | 1622            | $35 q_{52} + 35 q_{53}$                                                           | $\delta(C-H)_{methyl}$           |
| 25      | 1622            | 35 <i>q</i> <sub>52</sub> + 35 <i>q</i> <sub>53</sub>                             | $\delta(C-H)_{methyl}$           |
| 26      | 1606            | $44 \ q_{50} + 44 \ q_{51}$                                                       | $\delta(C-H)_{methyl}$           |
| 27      | 1606            | $43 \ q_{50} + 43 \ q_{51}$                                                       | $\delta(C-H)_{methyl}$           |
| 28      | 1536            | 25 q <sub>32</sub> + 25 q <sub>33</sub> + 17 q <sub>36</sub> + 17 q <sub>37</sub> | 19b                              |
| 29      | 1536            | $24 q_{32}$ + $24 q_{33}$ + $16 q_{36}$ + $16 q_{37}$                             | 19b+15                           |
| 30      | 1436            | $38 q_{38} + 38 q_{39}$                                                           | 3                                |
| 31      | 1429            | $39  q_{38} + 39  q_{39}$                                                         | 3                                |
| 32      | 1406            | $21 q_{15} + 21 q_{16}$                                                           | $\nu(O-C_{ring})$                |
| 33      | 1402            | $21 q_{15} + 21 q_{16}$                                                           | $v(O-C_{ring})$                  |
| 34      | 1338            | $25 q_{20} + 25 q_{21}$                                                           | $\nu(N-C_{ring})$                |
| 35      | 1326            | $14 q_{56} + 14 q_{57}$                                                           | $\delta$ (C-H) <sub>methyl</sub> |
| 36      | 1317            | $23 q_{56} + 23 q_{57}$                                                           | $\delta(C-H)_{methyl}$           |
| 37      | 1294            | $12 q_{56} + 12 q_{57}$                                                           | $\delta(C-H)_{methyl}$           |
| 38      | 1282            | $48 q_{58} + 48 q_{59}$                                                           | $\delta(C-H)_{methyl}$           |
| 39      | 1282            | $48  g_{58} + 48  g_{59}$                                                         | $\delta(C-H)_{methyl}$           |
| 40      | 1264            | $14 q_{28} + 14 q_{29} + 18 q_{24} + 18 q_{25}$                                   | 9a                               |
| 41      | 1258            | $25 q_{34} + 25 q_{35}$                                                           | 9a                               |
| 42      | 1243            | $24 q_{28} + 24 q_{29}$                                                           | 14                               |
| 43      | 1241            | $23 q_{28} + 23 q_{29}$                                                           | 14                               |
| 44      | 1173            | $16 q_{28} + 16 q_{20} + 16 q_{22} + 16 q_{22}$                                   | 19b                              |
| 45      | 1170            | $18 q_{28} + 18 q_{29} + 22 q_{32} + 22 q_{32}$                                   | 19b                              |
| 46      | 1164            | $13  q_{17} + 13  a_{18} + 18  a_{27} + 18  a_{27}$                               | v(O-CH <sub>3</sub> )            |
| 47      | 1164            | $25 a_{17} + 25 a_{19}$                                                           | $v(O-CH_3)$                      |

**Table S10.** Assignment of the CAS-SCF vibrational frequencies of 4,4'-dimethoxyazobenzene.<sup>a,b</sup>

continue

| 1 4010 | SIC Continuation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|--------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 48     | 1088             | $21 \ q_{30}$ + $21 \ q_{31}$ + $22 \ q_{60}$ + $22 \ q_{61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19a+12                        |
| 49     | 1088             | $21 \ q_{30}$ + $21 \ q_{31}$ + $22 \ q_{60}$ + $22 \ q_{61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19a+12                        |
| 50     | 1003             | $11 q_{67}$ + 17 $q_{82}$ + 17 $q_{83}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | γ(C-H)                        |
| 51     | 1003             | $11 q_{67}$ + 17 $q_{82}$ + 17 $q_{83}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>γ</b> (C-H)                |
| 52     | 992              | 13 $q_{68}$ + 13 $q_{60}$ + 14 $q_{78}$ + 14 $q_{79}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | γ(C-H)                        |
| 53     | 989              | 13 $q_{68}$ + 13 $q_{60}$ + 14 $q_{78}$ + 14 $q_{79}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | γ(C-H)                        |
| 54     | 988              | $11 q_{22}$ + $11 q_{23}$ + $20 q_{46}$ + $20 q_{47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | δ(N-N-C)                      |
| 55     | 891              | $27 q_{22} + 27 q_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                             |
| 56     | 876              | $17 q_{70} + 15 q_{71}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>γ</b> (C-H)                |
| 57     | 869              | $19 \ q_{70} + 17 \ q_{71}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>γ</b> (C-H)                |
| 58     | 849              | 13 $q_{22}$ + 13 $q_{23}$ + 11 $q_{62}$ + 11 $q_{63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                             |
| 59     | 847              | $18 q_{72}$ + $16 q_{73}$ + $21 q_{80}$ + $14 q_{81}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | γ(С-Н)                        |
| 60     | 846              | $18 q_{72}$ + $16 q_{73}$ + $21 q_{80}$ + $14 q_{81}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | γ(С-Н)                        |
| 61     | 800              | $11 q_{15}$ + $11 q_{16}$ + $13 q_{60}$ + $13 q_{61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                            |
| 62     | 758              | $11 \ q_{76}$ + $11 \ q_{77}$ + $15 \ q_{78}$ + $15 \ q_{79}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | γ(O-C)                        |
| 63     | 741              | $12 q_{76}$ + $12 q_{77}$ + $18 q_{78}$ + $18 q_{79}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | γ(O-C)                        |
| 64     | 695              | 31 <i>q</i> <sub>64</sub> + 31 <i>q</i> <sub>65</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6b                            |
| 65     | 682              | $38  q_{64} + 38  q_{65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6b                            |
| 66     | 638              | $17 q_{62} + 17 q_{63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6a                            |
| 67     | 588              | $9q_{44}$ + $9q_{45}$ + 7 $q_{46}$ + 9 $q_{46}$ + 13 $q_{64}$ + 13 $q_{65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\delta(N-C-C)+\delta(N-N-C)$ |
| 68     | 585              | $16 \ q_{74}$ + $14 \ q_{75}$ + $17 \ q_{76}$ + $18 \ q_{77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | γ(C-N)                        |
| 69     | 542              | $18 \ q_{74}$ + $15 \ q_{75}$ + $18 \ q_{76}$ + $18 \ q_{77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | γ(C-N)                        |
| 70     | 531              | $12 q_{48}$ + $12 q_{49}$ + $11 q_{62}$ + $11 q_{63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | δ(C-O-C)                      |
| 71     | 522              | $15 \ q_{42} + 15 \ q_{43} + 16 \ q_{48} + 16 \ q_{49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | δ(C-O-C)                      |
| 72     | 450              | $26 \ q_{82} + 26 \ q_{83}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Gamma(CC)$                  |
| 73     | 450              | $20 \ q_{80} + 14 \ q_{81} + 15 \ q_{82} + 15 \ q_{83}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Gamma(CC)$                  |
| 74     | 443              | $19 \ q_{62} + 19 \ q_{63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6a                            |
| 75     | 443              | $12 q_{78} + 12 q_{79}$ $13 q_{78} + 11 q_{79} + 13 q$ | $\Gamma(CC)$                  |
| 76     | 383              | $11 q_{80}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Γ(CC)                         |
| 77     | 325              | $19 q_{44} + 19 q_{45} + 17 q_{48} + 17 q_{49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | δ(N-C-C)                      |
| 78     | 274              | $42 q_{89} + 42 q_{90}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Gamma(O-CH_3)$              |
| 79     | 263              | $49 q_{89} + 40 q_{90}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Gamma(O-CH_3)$              |
| 80     | 263              | $20 q_{42} + 20 q_{43} + 20 q_{48} + 20 q_{49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | δ(O-C-C)                      |
| 81     | 249              | $10 q_{42} + 10 q_{43} + 13 q_{62} + 13 q_{63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | δ(O-C-C)                      |
| 82     | 204              | $11 q_{80} + 21 q_{84}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Γ(CC)                         |
| 83     | 190              | 13 $q_{80}$ + 29 $q_{85}$ + 12 $q_{86}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Gamma(NN)$                  |
| 84     | 161              | $16 q_{44} + 16 q_{45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | δ(N-C-C)                      |
| 85     | 88               | $24 \ q_{66}$ + $20 \ q_{85}$ + $13 \ q_{87}$ + $13 \ q_{88}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Gamma(CN)$                  |
| 86     | 77               | $30 q_{87} + 30 q_{88} + 14 q_{89} + 13 q_{90}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Gamma(C-OCH_3)$             |
| 87     | 59               | $\begin{array}{c} 13 \ q_{66} + \ 21 \ q_{87} + \ 21 \ q_{88} + \ 12 \ q_{89} + \\ 12 \ q_{90} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Gamma(C\text{-OCH}_3)$      |
| 88     | 58               | $15 \; q_{44}$ + $15 \; q_{45}$ + $28 \; q_{46}$ + $28 \; q_{47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\delta(N-N-C)+\delta(N-C-C)$ |
| 89     | 33               | $35 q_{66}$ + $14 q_{80}$ + $10 q_{84}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Γ(CC)                         |
| 90     | 20               | $50 q_{85} + 20 q_{86}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Γ(CN)                         |

<sup>a</sup>According with the potential energy distribution matrix (Refs. 32, 33). <sup>b</sup>Active space: (16e,15o); ANO-RCC[C,N,O/4s3p2d1f||H/3s2p1d]. <sup>c</sup>Potential energy distribution.

| CAS-SCF <sup>c</sup> | <i>I<sub>rel</sub></i> (320) | <i>I<sub>rel</sub></i> (340) | Assignment             |
|----------------------|------------------------------|------------------------------|------------------------|
| 1707                 | 100                          | 80                           | 8a                     |
| 1650                 | 76                           | 100                          | $\nu(N-C_{ring})$      |
| 1259                 | 14                           | 12                           | 9a                     |
| 1029                 | 23                           | 34                           | 12                     |
| $CAS$ - $SCF^{d}$    | <i>I<sub>rel</sub></i> (320) | <i>I<sub>rel</sub></i> (340) | Assignment             |
| 1707                 | 100                          | 40                           | 8a                     |
| 1629                 | 4                            | 11                           | $\delta(C-H)_{methyl}$ |
| 1624                 | 19                           | 27                           | $\delta(C-H)_{methyl}$ |
| 1602                 | 4                            | 22                           | 18a                    |
| 1421                 | 11                           | 65                           | v(C-O)                 |
| 1337                 | 28                           | 44                           | $\nu(N-C_{ring})$      |
| 1235                 | 23                           | 11                           | 9a                     |
| 1152                 | 19                           | 7                            | v(O-CH <sub>3</sub> )  |
| 889                  | 27                           | 100                          | 1                      |
| 562                  | 44                           | 13                           | δ(C-O-C)               |
| 454                  | 85                           | 34                           | 6a                     |
| CAS-SCF <sup>e</sup> | <i>I<sub>rel</sub></i> (320) | <i>I<sub>rel</sub></i> (340) | Assignment             |
| 1758                 | 12                           | 39                           | 8a                     |
| 1712                 | 6                            | 10                           | 8b                     |
| 1657                 | 3                            | 11                           | 19a+18a                |
| 1415                 | 100                          | 100                          | v(C-O)                 |
| 1384                 | 14                           | 76                           | $\nu(N-C_{ring})$      |
| 1277                 | 15                           | 18                           | 9a                     |
| 1247                 | 54                           | 33                           | 14                     |
| 1216                 | 31                           | 24                           | v(N-N)                 |
| 1173                 | 49                           | 31                           | 19b+15                 |
| 1157                 | 18                           | 12                           | v(O-CH <sub>3</sub> )  |
| 894                  | 87                           | 54                           | 1                      |
| 828                  | 22                           | 14                           | 6a                     |

**Table S11.** Assignment of the calculated Resonance Raman spectrum of singlet 4methoxyphenyl nitrene and 4-methoxyohenyl azide.<sup>a,b</sup>

<sup>a</sup>According with the potential energy distribution matrix (Refs. 32, 33).

<sup>b</sup>Active space: (12e,11o); ANO-RCC[C,N,O/4*s*3*p*2*d*1*f*||H/3*s*2*p*1*d*]; state average: (4 states A', 4 states A''); IPEA=0.25.

<sup>c</sup>1<sup>1</sup>A" 4-methoxyphenyl nitrene. <sup>d</sup>1<sup>1</sup>A' 4-methoxyphenyl nitrene.

<sup>e</sup>4-methoxyohenyl azide.

|                                        | $\frac{2j}{VT^{h}}$ |                        |                                                                                                 |
|----------------------------------------|---------------------|------------------------|-------------------------------------------------------------------------------------------------|
| Iransition                             | VE                  | <i>OS</i> <sup>e</sup> | Configuration                                                                                   |
| $I^{3}A" \rightarrow 2^{3}A"$          | 3.16                | 0.20-02                | 29% $n_{\sigma}(N)^1 n_{\pi}(N)^0 \pi_2^*(ring)^1$                                              |
|                                        |                     |                        | $36\% n_{\sigma}(N)^1 \pi_2(ring)^1 n_{\pi}(N)^2$                                               |
| $l^{3}A" \rightarrow 3^{3}A"$          | 3.31                | 0.84-02                | $43\% n_{\sigma}(N)^{1} n_{\pi}(N)^{2} \pi_{3} (ring)^{1}$                                      |
|                                        |                     |                        | 24% $n_{\sigma}(N)^{1} \pi_{3}(ring)^{1} n_{\pi}(N)^{0}$                                        |
| $l^3 A'' \rightarrow 4^3 A''$          | 4.80                | 0.61-03                | 73% $n_{\sigma}(N)^{1} \pi_{2}(ring)^{1} n_{\pi}(N)^{1} \pi_{2}^{*}(ring)^{1}$                  |
|                                        |                     |                        |                                                                                                 |
| $l^{3}A" \rightarrow l^{3}A'$          | 4.22                | 0.11-04                | 76% $n_{\sigma}(N)^2 n_{\pi}(N)^1 \pi_3(ring)^1$                                                |
|                                        |                     |                        |                                                                                                 |
| $l^3 A'' \rightarrow 2^3 A'$           | 4.24                | 0.83-02                | $76\% n_{\sigma}(N)^{1} \sigma(CN)^{1} n_{\pi}(N)^{2}$                                          |
|                                        |                     |                        |                                                                                                 |
| $l^3 A'' \rightarrow 3^3 A'$           | 4.85                | 0.19-04                | $68\% n (N)^2 \pi_2 (ring)^1 n (N)^1$                                                           |
|                                        |                     |                        | $\sigma_{\alpha}(x) = \sigma_{\alpha}(x) + \sigma_{\alpha}(x)$                                  |
| 1 <sup>3</sup> A 11 A <sup>3</sup> A 1 | 5 88                | 0.00                   | 729/ $u$ (N) <sup>2</sup> $=$ (ring) <sup>1</sup> $u$ (N) <sup>0</sup> $=$ *(ring) <sup>1</sup> |
| $I \land \rightarrow 4 \land$          | 5.00                | 0.00                   | $1270 n_{\sigma}(10) n_2 (1112) n_{\pi}(10) n_2 (1112)$                                         |

**Table S12.** Vertical transition energies in eV of triplet 4-methoxyphenyl nitrene (MS-CASPT2),  $C_s$ -symmetry.<sup>a</sup>

<sup>a</sup>Four state-average CAS-SCF reference wavefunction: (12e, 11o). ANO-RCC, (C,N)[4s3p2d1f]/(H)[3s2p1d].

<sup>b</sup>Vertical excitation energy in eV.

<sup>c</sup>Oscillator strength, dipole-length formula.

<sup>d</sup>MS-CASPT2 electron configurations. Only contributions greater than 15% are included. Only orbitals with different occupation to the ground state are given.

|                               | $=$ $, $ $\circ$ $\circ$ | inneu j. |                                                                              |
|-------------------------------|--------------------------|----------|------------------------------------------------------------------------------|
| Transition                    | VE <sup>b</sup>          | $OS^{c}$ | Configuration <sup>d</sup>                                                   |
| $l^1 A'' \rightarrow 2^1 A''$ | 2.52                     | 0.93-03  | $34\% n_{\sigma}(N)^{1} n_{\pi}(N)^{0} \pi_{2}^{*}(ring)^{1}$                |
|                               |                          |          | $40\% n_{\sigma}(N)^1 \pi_2(ring)^1 n_{\pi}(N)^0$                            |
| $I^{1}A" \rightarrow 3^{1}A"$ | 3.04                     | 0.30-02  | 44% $n_{\sigma}(N)^{1} \pi_{3}(ring)^{1} n_{\pi}(N)^{2}$                     |
|                               |                          |          | $32\% n_{\sigma}(N)^{1} n_{\pi}(N)^{0} \pi_{2}*(ring)^{1}$                   |
| $l^1 A'' \rightarrow 4^1 A''$ | 4.67                     | 0.22-02  | $25\% n_{\sigma}(N)^1 n_{\pi}(N)^2 \pi_1(ring)^1$                            |
|                               |                          |          | $28\% n_{\sigma}(N)^{1} n_{\pi}(N)^{1} \pi_{1}(ring)^{1} \pi_{2}*(ring)^{1}$ |
| $l^1 A'' \rightarrow l^1 A'$  | 0.47                     | 0.0      | 83% $n_{\sigma}(N)^2 n_{\pi}(N)^0$                                           |
|                               |                          |          |                                                                              |
| $l^1 A'' \rightarrow 2^1 A'$  | 1.92                     | 0.0      | $71\% n_{\sigma}(N)^2 n_{\pi}(N)^2$                                          |
|                               |                          |          |                                                                              |
| $l^1 A'' \rightarrow 3^1 A'$  | 4.55                     | 0.51-04  | 53% $n_{\sigma}(N)^2 n_{\pi}(N)^1 \pi_2(ring)^1$                             |
|                               |                          |          |                                                                              |
| $l^1 A'' \rightarrow 4^1 A'$  | 4.95                     | 0.0      | 63% $n_{\sigma}(N)^2 \pi_3 (\text{ring})^1 n_{\pi}(N)^1$                     |

**Table S13.** Vertical transition energies in eV of  $1^{1}$ A" 4-methoxyphenyl nitrene (MS-CASPT2),  $C_{s}$ -symmetry.<sup>a</sup>

<sup>a</sup>Four state-average CAS-SCF reference wavefunction: (12e, 11o). ANO-RCC, (C,N)[4s3p2d1f]/(H)[3s2p1d].

<sup>b</sup>Vertical excitation energy in eV.

<sup>c</sup>Oscillator strength, dipole-length formula.

<sup>d</sup>MS-CASPT2 electron configurations. Only contributions greater than 15% are included. Only orbitals with different occupation to the ground state are given.

| (MIS-CASPI                   | 2), C <sub>s</sub> -sy | mmetry.  |                                                                                                                                                |
|------------------------------|------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Transition                   | $VE^{b}$               | $OS^{c}$ | <i>Configuration</i> <sup>d</sup>                                                                                                              |
| $l^1 A' \rightarrow 2^1 A'$  | 1.42                   | 0.16-01  | 74% $n_{\sigma}(N)^0 n_{\pi}(N)^2$                                                                                                             |
| $l^1 A' \rightarrow 3^1 A'$  | 3.97                   | 0.26-01  | 55% $n_{\sigma}(N)^2 \pi_2(ring)^1 n_{\pi}(N)^1$                                                                                               |
| $l^1 A' \rightarrow 4^1 A'$  | 4.39                   | 0.3829   | 60% $n_{\sigma}(N)^2 \pi_3(\operatorname{ring})^1 n_{\pi}(N)^1$                                                                                |
| $l^1 A' \rightarrow l^1 A''$ | -0.30                  | 0.0      | 84% $n_{\sigma}(N)^{1} n_{\pi}(N)^{1}$                                                                                                         |
| $l^1 A' \rightarrow 2^1 A''$ | 2.13                   | 0.24-04  | 33% $n_{\sigma}(N)^{1} \pi_{2}^{*}(ring)^{1}$<br>40% $n_{\sigma}(N)^{1} \pi_{2}(ring)^{1} n_{\sigma}(N)^{2}$                                   |
| $I^1 A' \rightarrow 3^1 A''$ | 2.50                   | 0.00     | $46\% n_{\sigma}(N)^{1} n_{\pi}(N)^{1}$ $31\% n_{\sigma}(N)^{1} \pi_{3}^{*}(ring)^{1}$                                                         |
| $l^1 A' \rightarrow 4^1 A''$ | 3.97                   | 0.0      | $\frac{18\% n_{\sigma}(N)^2 \pi_1(\text{ring})^1 n_{\pi}(N)^2}{34\% n_{\sigma}(N)^1 \pi_1(\text{ring})^1 n_{\pi}(N)^1 \pi_2^*(\text{ring})^1}$ |

**Table S14.** Vertical transition energies in eV of  $1^{1}$ A' 4-methoxyphenyl nitrene (MS-CASPT2),  $C_{s}$ -symmetry.<sup>a</sup>

<sup>a</sup>Four state-average CAS-SCF reference wavefunction: (12e, 11o). ANO-RCC, (C,N)[4s3p2d1f]/(H)[3s2p1d].

<sup>b</sup>Vertical excitation energy in eV.

<sup>c</sup>Oscillator strength, dipole-length formula.

<sup>d</sup>MS-CASPT2 electron configurations. Only contributions greater than 15% are included. Only orbitals with different occupation to the ground state are given.

| Species                          | VE <sup>a</sup> | $OS^{b}$ | Configuration <sup>c</sup>                                                  |
|----------------------------------|-----------------|----------|-----------------------------------------------------------------------------|
|                                  |                 |          |                                                                             |
| $1A_g \rightarrow 2A_g$          | 4.05            | 0.0000   | $24\% \pi_3(b_g)^1 \pi^*(NN)^1$                                             |
|                                  |                 |          | 22% HF                                                                      |
| $1A_g \rightarrow 3A_g$          | 4.76            | 0.0000   | 25% $\pi_3(b_g)^1\pi^*(NN)^1$                                               |
| 1A <sub>°</sub> →1B <sub>°</sub> | 2.02            | 0.0000   | 75% σ(NN) <sup>1</sup> π*(NN) <sup>1</sup>                                  |
| 6 6                              |                 |          | $42\% \sigma(NN)^{1}\pi_{2}^{*}(b_{g})^{1}\pi^{*}(NN)^{2}$                  |
| $1A_g \rightarrow 2B_g$          | 4.22            | 0.0000   |                                                                             |
| 0 0                              |                 |          | $22\% \ \sigma(NN)^1 \pi_2(b_g)^1$                                          |
| $1A_g \rightarrow 3B_g$          | 5.00            | 0.0000   | $17\% \sigma(NN)^{1} \pi_{3}*(b_{g})^{1}$                                   |
|                                  |                 |          | $22\% \sigma(NN)^{1}\pi_{3}(a_{u})^{1}\pi^{*}(NN)^{2}$                      |
| $1A_g \rightarrow 1A_u$          | 4.10            | 0.72-03  | $23\% \sigma(NN)^{1} \pi_{2}^{*}(a_{u})^{1}$                                |
|                                  |                 |          | $15\% \sigma(NN)^{1}\pi_{3}(a_{u})^{1}\pi^{*}(NN)^{2}$                      |
| $1A_g \rightarrow 2A_u$          | 4.49            | 0.45-03  | $18\% \sigma(NN)^{1} \pi_{2}^{*} (b_{g})^{1}$                               |
|                                  |                 |          | $25\% \sigma(NN)^1 \pi *_2(b_g)^1 \pi * (NN)^1 \pi_2(a_u)^1$                |
| $1A_g \rightarrow 3A_u$          | 5.75            | 0.0000   | 22% $\sigma(NN)^{1}\pi_{2}(b_{g})^{1}\pi^{*}(NN)^{1}\pi_{2}^{*}(a_{u})^{1}$ |
| 1∆ →1B                           | 2 83            | 0 4982   | $73\% \pi_2(h)^1 \pi_2(a)^1 \pi^* (NN)^2$                                   |
| $IA_g \rightarrow ID_u$          | 2.85            | 0.4982   | $260/\pi_{0}(0_{g})^{1}\pi^{*}(NN)^{1}$                                     |
| 14.00                            | 4.04            | 0.16.01  | $20\% h_2(a_u) h^2(INN)$                                                    |
| $1A_g \rightarrow 2B_u$          | 4.04            | 0.10-01  | $1 / 70 \pi_3(a_u) \pi^*_2(0_g)$                                            |
|                                  |                 |          |                                                                             |

**Table S15.** Vertical transition energies in eV of 4,4'-dimethoxyazobenzene  $C_{2h}$  (MS-CASPT2).

 $\frac{1A_{g}\rightarrow 3B_{u}}{^{a}} 6.20 \qquad 0.21-02 \qquad 15\% \pi (NN)^{1} \pi^{*} (NN)^{1}$ 

<sup>b</sup>Oscillator strength.

<sup>c</sup>MS-CASPT2 electron configurations. Only contributions greater than 15% are included. Only orbitals with different occupation to the ground state are given.