## **Supporting Information**

## Tunable Polaron-induced Coloration of Tungsten Oxide *via* a Multistep Control of Physicochemical Property for Gaseous F Detection

Sang Yeon Lee<sup>a</sup>, Gowoon Shim<sup>a</sup>, Jucheol Park<sup>b</sup>, and Hyungtak Seo<sup>a,c\*</sup>

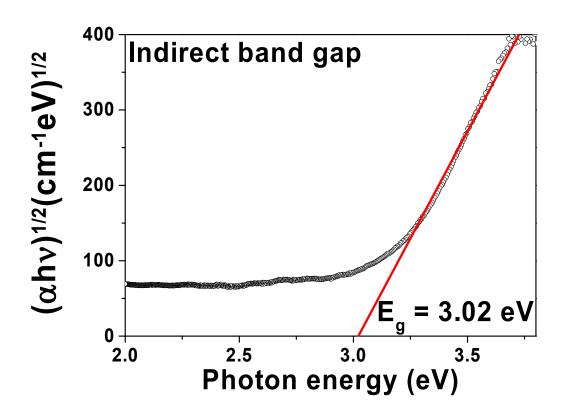



Figure S1. The extracted optical band gap of tungsten oxide from Tauc plot

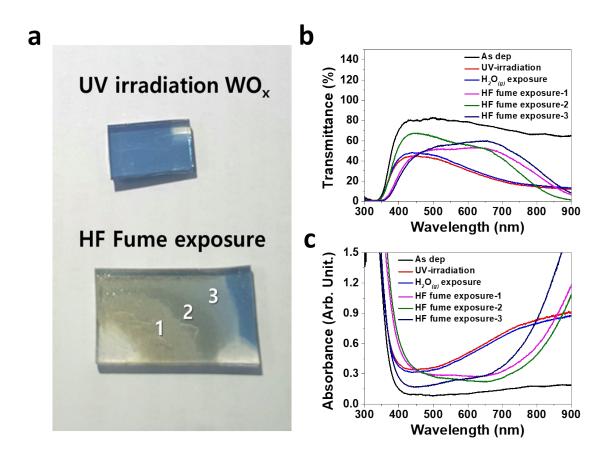



Figure S2. a) Photoimages, b) transmittance, and c) absorbance spectra of of pristine, H-WO<sub>3-x</sub>, and F- WO<sub>3-x</sub> films formed on FTO substrate

In Fig. S2, The sample was exposed to HF vapor by heating the 40 % HF solution in air atmosphere and also, was exposed to pure water vapor by boiling DI water to confirm the selectivity against of H<sub>2</sub>O. The experiment was performed by boiling HF solution (40% concentration) in the hood at 50 Celsius degree (Video attached). The bleaching of tungsten oxide by HF exposure was observed within about 10 minutes. In the case of H<sub>2</sub>O exposure, however, any change of colorimetric was not observed while water boiling was proceeded at 100 Celsius degree for 1 hour. It is shown that the polaron-induced H-WO<sub>3-x</sub> is selective for the fluorine species in gas phase XeF<sub>2</sub> and HF since H-WO<sub>3-x</sub> did not react with H<sub>2</sub>O.

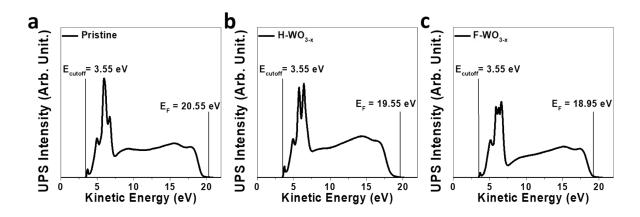



Figure S3. UPS spectra of a) pristine, b) H-WO\_{3-x\prime} and c) F-WO\_{3-x\prime} respectively.