Supporting Information

Controlling an Anticancer Drug Mediated Gquadruplex Formation and Stabilization by a Molecular Container

Sagar Satpathi, Reman K. Singh, Arnab Mukherjee*a and Partha Hazra*ab

^a Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune.
Dr. Homi Bhabha Road, Pashan, Pune, India 411008. Fax: +91 20 2589 8022.
E-mail: <u>p.hazra@iiserpune.ac.in</u>, <u>arnab.mukherjee@iiserpune.ac.in</u>, Tel: +91 20 2590 8076.

^b Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune (411008), Maharashtra, India

Fig. S1 Molecular structure of cucurbit[7]uril (CB7)

Fig. S2 Circular dichroism spectra of H24 DNA (~ 2 μ M) under different conditions. The K⁺ ion and Na⁺ ion legends indicate the presence of 100 mM KCl and NaCl salt, respectively, in 10 mM tris buffer solution (pH 7.2).

Note S1

For static quenching, the binding constant (K) and the number of binding sites per host (n) can be determined according to the Scatchard equation^{1, 2}

$$\log\left(\frac{F_0 - F}{F}\right) = \log K + n\log[Q]$$

Where, F_0 and F are the relative fluorescence intensities of TPT in the absence and presence of the H24 DNA, respectively. [*Q*] is the concentration of H24 DNA in the course of experiment. K and n can be determined from the slope and intercept value of log((F_0 -F)/F)) versus log [Q] plot.

Fig. S3 Scatchard plot of $log((F_0-F)/F)$ versus log [Q] for the binding constant determination of H24-TPT complex.

Binding constant (K) for the H24-TPT complex is found to be 3451.4 M^{-1} and the number of binding sites of TPT per DNA (n) is 0.68 which is very close to 3 TPT molecules per 2 H24 DNA. This binding stoichiometry (n) is found to be similar to the binding of GQ DNA with other drugs such as, ellipticine³, proflavine⁴ etc. Higher binding constant value of TPT-CB7 complex (K = 5000 M^{-1}) makes the translocation of TPT from GQ DNA to CB7 nano-cavity feasible.

Fig. S4 Static quenching of zwitterionic form of TPT (Z^*) (emission and lifetime collected at 530 nm by exciting at 375 nm) in presence of H24 DNA.

Fig. S5 Initial structure and most probable structures obtained after 100 ns of normal MD simulation (a) 1:1 GQ/TPT (b) 1:2 GQ/TPT. "D" denotes the TPT in (a) and "D1" and "D2" are two TPT molecules in (b).

Fig. S6 Variation of distance (between COM's of GQ and TPT) and angle (between GQ axis vector and COM of GQ to COM TPT vector; see simulation method section for detail) with time from an initial random distribution of TPT in (a) 1:1 GQ/TPT complex (b) 1:2 GQ/TPT complex. Left column shows the variation of distances and right column shows the change in angle. Three random configurations (Conf-1, Conf-2, Conf-3) were created for 1:1 complex while one random configuration was created for 1:2 complex. Each random configuration was simulated three times with different velocity distribution (denoted as Run1, Run2 and Run3). Color code is same for distance and angle in 1:1 GQ/TPT complex and 1:2 GQ/TPT complex.

Fig. S7 Free energy of unbinding of TPT from GQ obtained from two metadynamics simulations denoted as run1, run2. Black and green color represent the free energy profiles for the terminal-bound state, while red and blue color represent the free energy profiles for the groove-bound state.

Fig. S8 Bound and unbound states of GQ and TPT obtained from well-tempered metadynamics simulation (obtained from first metadynamic run).

Sample	a_1	τ_1 (ns)	a ₂	$\tau_2(ns)$	a ₃	$\tau_3(ns)$	${{{{{ { { { { t } } } } }}^{\#}}}}{\left({ns} ight)$	χ^2	λ_{ex} (nm)	λ_{col} (nm)
TPT in water	-	-	-	-	1	5.88	5.88	1.04	375	530
TPT + H24 2 μM	-	-	0.04	2.71	0.96	5.95	5.83	1.08	375	530
TPT + H24 4 μM	-	-	0.06	1.96	0.94	5.94	5.71	1.04	375	530
TPT + H24 20 μM	-	-	0.10	2.69	0.90	6.01	5.66	0.99	375	530
TPT + H24 CB 7 100 μM	-	-	0.17	0.93	0.83	5.84	5.00	1.06	375	530
TPT + H24 CB 7 560 μM	-	-	0.16	1.31	0.84	5.69	4.98	1.07	375	530
TPT + H24 CB 7 1.5 mM	-	-	0.22	1.88	0.78	5.28	4.54	1.09	375	530

Table S1. Fluorescence transient fittings (collected at 530 nm) of TPT (Z^*) in deionized water (pH 6.2), H24 DNA (20 μ M) and in presence of both H24 DNA and CB7 (1.5 mM).

 ${}^{\#}\tau_{avg} = a_1\tau_1 + a_2\tau_2 + a_3\tau_3;$

Table S2. Fluorescence transient fittings (collected at 430 nm) of TPT (C*) in deionized water (pH 6.2), H24 DNA (20 μ M) and in presence of both H24 DNA and CB7 (1.5 mM).

Sample	a ₁	τ_1 (ns)	a ₂	τ_2 (ns)	a ₃	$\tau_3(ns)$	${\tau_{avg}}^{\#}$ (ns)	χ^2	λ _{ex} (nm)	λ_{col} (nm)
TPT in water	0.99	0.038	-	-	0.01	0.837	0.042	0.99	375	430
TPT + H24 CB 7 100 μM	0.72	0.049	0.12	0.5 6	0.16	2.16	0.452	1.01	375	430
TPT + H24 CB 7 560 μM	0.41	0.063	0.11	0.6 5	0.48	2.18	1.15	1.002	375	430
TPT + H24 CB 7 1.5 mM	0.22	0.18	0.09	0.9 4	0.68	2.19	1.62	1.09	375	430
${}^{\#}\tau_{avg} = a_1\tau_1 + a_2\tau_2$	$_{2}+a_{3}\tau_{3};$									

Table S3. Force-field parameter of TPT molecule.

Sigma and Epsilon of each atom.

Atom Type	Sigma (σ) nm	Epsilon (ε) kJ/mol
НО	0.00000e+00	0.00000e+00
N3	3.25000e-01	7.11280e-01
NC	3.25000e-01	3.25000e-01
СВ	3.39967e-01	3.59824e-01
N*	3.25000e-01	7.11280e-01
OS	3.00001e-01	7.11280e-01
СТ	3.39967e-01	4.57730e-01
С	3.39967e-01	3.59824e-01
ОН	3.06647e-01	8.80314e-01
СА	3.39967e-01	3.59824e-01
0	2.95992e-01	8.78640e-01
H1	2.64953e-01	6.56888e-02
НА	2.64953e-01	6.56888e-02
НС	2.64953e-01	6.56888e-02
Н	1.06908e-01	6.56888e-02
HP	2.64953e-01	6.56888e-02

Charges on each atom

Atom Type	Atom	Charge
NC	Ν	-0.63905
СВ	С	0.62518
СВ	С	-0.12025
CA	С	-0.24053
НА	Н	0.19936
CA	С	0.06023
СТ	С	0.28472
СТ	С	0.03754
СТ	С	-0.23287
НС	Н	0.07057
НС	Н	0.07057

НС	Н	0.07057
НС	Н	0.01456
НС	Н	0.01456
ОН	0	-0.64834
НО	Н	0.42637
С	С	0.70340
0	0	-0.56104
OS	0	-0.43894
СТ	С	0.16112
H1	Н	0.08559
H1	Н	0.08559
CA	С	-0.16967
С	С	0.56964
0	0	-0.61127
N*	N	-0.07541
СТ	С	-0.12097
H1	Н	0.14311
H1	Н	0.14311
СВ	С	-0.12129
СА	С	-0.17380
НА	Н	0.18987
СА	С	-0.12615
СА	С	0.41327
СА	С	-0.12886
НА	Н	0.20014
СА	С	-0.38272
НА	Н	0.21738
СА	С	0.36839
ОН	0	-0.66510
НО	Н	0.49419
CA	С	-0.09885
СТ	С	-0.05269
HP	Н	0.12940

HP	Н	0.12940
N3	N	-0.01498
СТ	С	-0.31243
HP	Н	0.16667
HP	Н	0.16667

References

- 1. Chandra, A.; Singh, K.; Singh, S.; Sivakumar, S.; and Patra, A. K. *Dalton Trans.*, 2016, **45**, 494.
- 2. Chen, L.; Zhang, J.; Zhub, Y.; and Zhang, Y. RSC Adv., 2015, 5, 79874.
- 3. Ghosh, S.; Kar, A.; Chowdhury, S.; and Dasgupta, D.; Biochemistry 2013, 52, 4127.
- 4. Kumar, V.; Sengupta, A.; Gavvala, K.; Koninti, R. K. and Hazra, P.; *J. Phys. Chem. B*, 2014, **118**, 11090.