Supporting Information (SI)

Cooperativity Between Hydrogen- and Halogen Bonds: the

Case of Selenourea

Gianluca Ciancaleoni*

Università degli Studi di Pisa, Dipartimento di Chimica e Chimica Industriale, via Giuseppe Moruzzi, 13 - 56124 Pisa, Italy. Email: gianluca.ciancaleoni@unipi.it

Titration studies.

Benzoate + I1

Table S1. ¹⁹F chemical shift of the αF of I1 (22.6 mM) at different concentrations of [TBABzO].

[TBABzO] (M)	δ _{αF} (I1) (ppm)
0	-65,1614
0,0134	-70,5373
0,0176	-71,8447
0,0192	-72,159
0,0247	-73,4476
0,03	-74,361
0,036	-75,1553
0,047	-76,0039
0,0747	-77,0226
0,00062	-65,3094
0,0021	-66,206
0,0046	-67,0994
0,0092	-69,0357

Table S2. ¹H chemical shift of the NH (a and b) of **SeU** (64 mM) at different concentrations of **[TBABzO]**.

[TBABzO] (M)	δ _{NHa} (SeU) (ppm)	δ _{NHb} (SeU) (ppm)	averaged $\delta_{_{NHa,b}}$ (SeU) (ppm)
0	а	а	7,2633
0,0011	а	а	7,301
0,00185	а	а	7,31
0,00232	7,382	7,27	7,326
0,00366	7,498	7,198	7,348
0,00529	7,6154	7,1621	7,38875
0,00706	7,7309	7,1264	7,42865
0,00919	7,8361	7,1165	7,4763
0,01123	7,973	7,0851	7,52905
0,01194	8,003	7,0728	7,5379
0,01393	8,1369	7,0454	7,59115
0,01736	8,3132	7,0239	7,66855
0,0198	8,4553	6,992	7,72365
0,02198	8,5753	6,971	7,77315
0,02343	8,6519	6,9546	7,80325
0,02815	8,9529	6,8914	7,92215
0,03337	9,2298	6,8538	8,0418
0,04514	9,9484	6,727	8,3377
0,04954	10,2051	6,6848	8,44495
0,06337	10,9646	6,5673	8,76595
0,08337	11,3006	6,529	8,9148
0,1078	11,3122	6,5491	8,93065

^aThe two peaks overlap, showing the same δ (the averaged one).

Diffusion NMR studies.

Figure S1. I/I_0 versus G^2 for **TBABzO** in acetone-d6 (C = 2.5 mM). B = benzoate; C = Tetrabutylammonium; D = solvent.

Figure S2 I/I_0 versus G^2 for **TBABzO** in acetone-d6 (C = 20.5 mM). B = benzoate; C = Tetrabutylammonium; D = solvent.

Figure S3 I/I_0 versus G^2 for **TBABzO** in acetone-d6 (C = 185 mM). B = benzoate; C = Tetrabutylammonium; D = solvent.

Figure S4 I/I_0 versus G^2 for **SeU** in acetone-d6 (C = 16 mM). B = **SeU**; C = solvent.

Figure S5 I/I₀ versus G² for SeU in acetone-d6 (C = 16 mM) + I1 (19 mM). B = SeU; C = solvent.

Figure S6 I/I₀ versus G² for SeU in acetone-d6 (C = 16 mM) + I1 (82 mM). B = SeU; C = solvent.

Figure S7 I/I₀ versus G² for SeU in acetone-d6 (C = 16 mM) + I1 (209 mM). B = SeU; C = solvent.

Figure S8 I/I_0 versus G² for SeU in acetone-d6 (C = 16 mM) + I1 (460 mM). B = SeU; C = solvent.

Figure S9 I/I₀ versus G² for SeU in acetone-d6 (C = 16 mM) + I1 (931 mM). B = SeU; C = solvent.

Figure S10. I/I_0 versus G^2 for **SeU** in acetone-d6 (C = 32 mM) + **TBABzO** (74 mM). B = **SeU**; C = solvent.

Figure S11. I/I_0 versus G^2 for SeU in acetone-d6 (C = 32 mM) + TBABzO (74 mM) + I1 (16 mM). B = SeU; C = solvent.

Figure S12. I/I_0 versus G^2 for SeU in acetone-d6 (C = 32 mM) + TBABzO (74 mM) + I1 (30 mM). B = SeU; C = solvent.

Figure S13 I/I₀ versus G² for SeU in acetone-d6 (C = 32 mM) + TBABzO (74 mM) + I1 (52.8 mM). B = SeU; C = solvent.

Figure S14 I/I₀ versus G² for SeU in acetone-d6 (C = 32 mM) + TBABzO (74 mM) + I1 (248 mM). B = SeU; C = solvent.

Table S3. Interaction energy (in kcal/mol), thermodynamic parameters and bond lengths (in Å) for the different adducts at M06-2X/aug-TZVP//BP86-D3/aug-TZVP level (gas phase). The parenthesis indicate that the interaction energy is referred to the pre-formed binary adduct rather than the three isolated components.

Adduct	ΔE	$\Delta H^{\rm a}$	ΔS^{a}	ΔG^{a}	C-Se	C-N
SeU	-	-	-	-	1.830	1.366
S-I _m	-6.2	-5.9	-10.3	4.4	1.855	1.351 ^b
B-S	-39.4	-41.3	-14.1	-25.5	1.881	1.344
B-I _m	-21.6	-21.4	-13.2	-8.1	-	-
B-S-I _m	-52.4	-54.3	-29.3	-25.0	1.903	1.334 ^b
$(B-S)-I_m$	-13.0	-12.9	-13.5	0.6	-	-
$B-(S-I_m)$	-46.2	-48.4	-19.0	-29.3	-	-

^a Calculated at 298 K; ^b Averaged between the two CN bonds

Table S4. Relevant donor – acceptor (D \rightarrow A) natural bond orbital interactions and their secondorder perturbation stabilization energies ($E^{(2)}$, in kcal/mol) for halogen- and hydrogen bonds in S-I_m, B-S and B-S-I_m adducts.

Adduct	$D \rightarrow A$ interaction	$E^{(2)}$
S-I _m	$LP(1)Se2 \rightarrow BD^*(1)I9C10$	1.37
	$LP(2)Se2 \rightarrow BD^{*}(1)I9C10$	25.04
	$LP(1)N3 \rightarrow BD^{*}(1)C1Se2$	82.66
	$LP(1)N6 \rightarrow BD^*(1)C1Se2$	72.89
	$LP(3)I9 \rightarrow BD^{*}(1)N3H4$	4.51
	$BD(1)C1Se2 \rightarrow RY(2)I9$	0.23
B-S	$LP(2)O21 \rightarrow BD^*(1)N6H8$	13.49
	$LP(2)O22 \rightarrow BD^*(1)N3H4$	13.46
	$LP(2)Se2 \rightarrow LV(1)C1$	349.15
	$LP(1)N3 \rightarrow LV(1)C1$	161.99
	$LP(1)N6 \rightarrow LV(1)C1$	163.03
B-S-I _m	$LP(1)Se2 \rightarrow BD^{*}(1)I23C24$	2.16
	$LP(2)Se2 \rightarrow BD^{*}(1)I23C24$	50.87
	$LP(2)O21 \rightarrow BD^*(1)N6H8$	17.81
	$LP(2)O22 \rightarrow BD^{*}(1)N3H4$	20.84
	$LP(3)I23 \rightarrow BD^{*}(1)N6H7$	1.80

$LP(2)Se2 \rightarrow LV(1)C1$	178.79
$LP(1)N6 \rightarrow LV(1)C1$	185.41
$LP(1)N3 \rightarrow LV(1)C1$	177.85