PCCP

Mechanistic insights into the interaction between the energetic oxygen ions with nanosized ZnFe₂O₄: XAS-XMCD investigations

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Jitendra Pal Singh^a, Baljeet Kaur^b, Aditya Sharma^a, So Hee Kim^a, Sanjeev Gautam^c, Navdeep Goyal^b, Weol Cheol Lim^a, Ramesh Chandra Srivastava^d, , H.-J. Lin^e, J. M. Chen^e, K. Asokan^f, D. Kanjilal^f, Sung Ok Won^a, Ik-Jae Lee^g and Keun Hwa Chae^a

www.rsc.org/

1.1: About the structure of zinc ferrite

Bulk zinc ferrite has normal inverse spinel structure having Fd3m space group¹. In this structure oxygen ions form face centred cubic (FCC) structure. Metal ions are situated among tetrahedral (A-site) and octahedral (B-site) voids surrounded by 4 and six ions respectively. Ions are distributed among these sites, so that maximum occupancies of A-site and B-sites are 1 and 2 per $ZnFe_2O_4$ formula. Positions and occupancies of various ions in zinc ferrite are collated in following Table 1²⁻⁴. Position of oxygen ions in the lattice is termed as oxygen positional parameter (u)²⁻⁴. The detailed explanation of this parameter is described elsewhere⁵.

Table: Positions and occupancies of various ions in bulk ZnFe₂O₄

lons	Pos	Occupancy	Site		
	х у 2		Ζ		
Zn ²⁺	0.125	0.125	0.125	1	Tetrahedral
Fe ³⁺	0.500	0.500	0.500	2	Octahedral
O ²⁻	0.260	0.260	0.260	4	

Thus, all Zn^{2+} ions remains at A-site, however, all of Fe ³⁺ remains at B-site, in case of bulk zinc ferrite. Hence, structure formula of bulk zinc ferrite is written as $(Zn)_{A}[Fe_{2}]_{B}O_{4}$.

When this material is synthesized in nano-regime, then it's structure transform to mixed spinel. It means that some amount of Fe^{3+} ions migrates to A-site. An inverse affect is observed for Zn^{2+} ions. In case of such redistribution of cations spinel structured material maintain it's characteristics behaviour that maximum occupancies of A-site and B-sites are 1 and 2 per $ZnFe_2O_4$ formula. If λ fraction of Fe^{3+} ions migrate to A-site from B-site, then structure formula is written as $(Zn_{1-\lambda}Fe_{\lambda})_A[Zn_{\lambda}Fe_{2-\lambda}]_BO_4$. Based on this structural formula cation inversion, *x*, is defined as

$$x = \left[\frac{\lambda}{2 - \lambda}\right]_{Fe^{3}} +$$

This concept was used for estimating cation inversion by using XRD and EXAFS techniques in these materials.

1.2: Synthesis, and phase of bulk zinc ferrite

Bulk zinc ferrite is synthesized using the method described in experimental section and by annealing precursor at 1200°C 1hr followed by sintering at 1200°C for 12 hr. Morphology and phase of bulk zinc ferrite is shown in Fig. S4. The material contains particles of size ~ 1 μ m having cubic spinel phase.

Material	Ion Species	Energy (MeV)	Electronic stopping; (dE/dx) _e (keV/nm)	Nuclear Stopping; (dE/dx) _n (eV/nm)	S _e /S _n	R (um)
ZnFe ₂ O ₄	07+	100.00	1.09	0.618	1.7×10 ³	65

Table S1: Parameters estimated from Stopping and Range of Ions in Matter (SRIM) for O⁷⁺ ions and ZnFe₂O₄ interaction

Table S2: Position (x_c) and area (A) of XRD peak corresponding to impure phase and most intense peak of ZFP and ZFI nanoparticles. Y_o is background intensity.

Material	Impure phase			Spir	Ratio		
	<i>x_c</i> (°)	A (arb. unit)	Уo	<i>x</i> _c (°)	A(arb. unit)		
ZFP	31.76±0.05	2.6±1.5	8.9±0.8	35.16±0.02	728±3	0.003	
ZFI	31.61±0.05	4.2±2.0	6.4±0.9	35.16±0.02	689±3	0.006	
							_

Table S3: Bonds, co-ordination number and radial distance of A-site and B-site of bulk ZnFe₂O₄ estimated using ATOMs calculated from occupancies of metal ions given in section 1.1.

	A-site		B-site		
Bonds	Co- ordination number (N)	Radial Distance (Å)	Bonds	Co- ordination number (N)	Radial Distance (Å)
Zn-O	4	1.974	Fe-O	6	2.030

Table S4: Area of T, O_1 and O_2 spectral features of XMCD signals for ZFP and ZFI NPs

ZFP				ZFI			
Т	<i>O</i> ₁	O ₂	$T/(O_1+O_2)$	Т	<i>O</i> ₁	O ₂	$T/(O_1+O_2)$
0.02	0.01	0.05	0.33	0.009	0.004	0.004	1.1

Fig. S1: Schematic of synthesis route adopted for ZnFe₂O₄ nanoparticles

Fig. S2: XRD patterns showing (a) evolution of ZnO phase for ZFI nanoparticles. (b) Impurity peak fitted for ZFP and ZFI nanoparticles. y_0 shows background level. x_{c1} , w_1 and A_1 are position, width and area of peak. Intensity of impure phase is less than background of pattern in both materials.

PCCP

Fig. S3. O K-edge spectra of ZFP and ZFI. Arrow indicates that pre-edge spectral spectral feature is related with O (2p)-Metal M (3d) hybridization

Fig. S4. X-ray diffraction pattern of bulk ZnFe₂O₄ synthesized using route adopted mention in section 1.2. Inset shows scanning electron micrograph of synthesized material.

Fig. S5: Linear combination fitting of ZFP and ZFI using $\rm ZnFe_2O_4$ bulk and ZnO standard

Fig. S6: Extended X-ray absorption fine structure (EXAFS) spectra of ZFP and ZFI at (a) Fe K-edge and (b) Zn K-edge

Fig. S7: Simulated non-phase corrected inverse Fourier Transform of EXAFS spectra at Fe K -edge for ZFP and ZFI nanoparticles. Spectra were simulated in R-range of 1-3.6Å.

РССР

Fig. S8: Simulated non-phase corrected inverse Fourier Transform of EXAFS spectra at Zn K -edge for ZFP and ZFI nanoparticles. Spectra were simulated in R-range of 1-2.5 Å

Fig. S9: de-convoluted T, O₁ and O₂ spectral features of XMCD signal for (a) ZFP and (b) ZFI NPs

- 1 B. D. Cullity and C. D. Graham, Introduction to magnetic materials, Wiley-IEEE Press (2008)
- 2 A. Pavese, D. Levy, A. Hoser, *American Mineralogist*, 2000, **85**, 1497-1502.
- 3 J.A. Gomes, M.H. Sousa, F.A. Tourinho, J. Mestnik-Filho, R. Itri, J. Depeyrot, *J. Magn. Magn. Mater.*, 2005, **289**, 184-187.
- 4 B. Lavina, G. Salviulo, A. D. Giusta, *Phys. Chem. Miner.* 2002, **29**, 10-18
- 5 B. B. V. S. V. Prasad, B. R. Babu, M. S. R. Prasad, Materials Science-Poland, 2015, 33, 806-815