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Fig. S1. Examples of polyaromatic hydrocarbon (PAH) molecular cores. (a) benzene, (b) naphthalene, (c) anthracene, (d) pyrene and (e) 
anthanthrene. 

 
 

 

 
Fig. S2. Full transmission coefficients for connectivities shown in figure 3 and 6 obtained using DFT Hamiltonians and their 
corresponding Seebeck coefficients. (a-h) for parent molecules without heteroatom and (i-p) with heteroatom substitution. 
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Fig. S3. Seebeck coefficient in (a) benzene, (b) pyridine, (c) naphthalene, (d) quinolone, (e) anthracene, (f) anthracene with heteroatom 
substitution, (g) pyrene, (h) pyrene with heteroatom substitution, (i) anthanthrene and (j) anthanthrene with heteroatom substitution at T = 
30 K. Solid lines are obtained using transmission coefficient T(E) α G(E)2. Dashed (Solid) lines are obtained using simple description of 
Seebeck coefficient from equations 4. 
 

Mid-gap theory of thermoelectricity 

To rationalize the results of figures 1-6, we now present a theory of thermoelectricity for Fermi energies near the mid-gap of 
PAH molecules. Recently we predicted that for molecules, whose central core is weakly connected to external electrodes, 
provided the Fermi energy lies within the HOMO-LUMO gap, the ratio of conductances ߪ,   and ߪ, associated with 

connectivities i and j or l and m is given by the ‘magic ratio rule’ (MRR)20,21 ߪ,/ߪ, = ߬,(ܧி)/߬,(ܧி) = /(ிܧ),ܯൣ

൧(ிܧ),ܯ
ଶ
, where ߬,(ܧி) and ߬,(ܧி) are core transmission coefficients and contain no information about the electrodes 

except via the parameter ܧி . If ܪ is a Hamiltonian matrix describing the isolated core, then the core transmissions are given 

by ߬,(ܨܧ) = ܩ is the corresponding Green’s function matrix ܩ ଶ, where|(ܨܧ),ܩ| = ܨܧ) −  is proportional (ܨܧ),ܯ .ଵି(ܪ

to ܩ,(ܨܧ), with a constant of proportionality which does not depend on ݅, ݆, but may depend on ܧி . The constant of 

proportionality cancels in the above ratios and is chosen to yield the simplest possible values for the “magic numbers” 
 A simple parameter-free description of electrical conductance through polyaromatic hydrocarbon (PAH) cores is .(ிܧ),ܯ

then obtained by assuming ܧி = ܧ , where ܧ is the middle of the HOMO-LUMO gap and identifying the Hamiltonian ܪ of 
the core with a simple connectivity matrix ܥ, whose entries are either ܥ = −1 if sites ݅, ݆ are nearest neighbours or ܥ = 0 

otherwise. This yields ߪ, ܧ) ߙ (ܧ),ܯ ଶ , where[(ܧ),ܯ] ߙ  −  ଵ. It was shown experimentally that this simple ruleି(ܥ

can predict the statistically-most-probable experimental conductance ratios measured in for example a break-junction set up 
20,21. The remarkable agreement between conductance ratios obtained from the quantities ܯ,(ܧ) and experimental 

measurements carried out by different groups20, led us to refer to them as ‘magic numbers.’ We now try to generalize the 
above theory to describe the Seebeck coefficient of molecules whose central core is weakly connected to external 
electrodes.  

The above expressions are valid, because provided the Fermi energy lies within the HOMO-LUMO gap, when 
electrons of energy ܧ passing from one electrode to another enter the core at orbital  ݅ and leave the core from orbital ݆, the 

transmission coefficient ܶ(ܧ) is proportional to ߬,(ܧ). The low-bias, electrical conductance is given by the Landauer 

formula ߪ, = ܩ is transmission coefficient and (ܧ)ܶ where , (ிܧ)ܶܩ = 2݁ଶ/ℎ is the quantum of conductance. This form of 

the Landauer formula is valid, provided the transmission coefficient does not vary significantly on the scale of ݇ܶ, where 
ܶ is the temperature and kB= 8.6×10-5 eV/K is Boltzmann’s constant. Similarly the Seebeck coefficient is given by  

 

ܵ =
−1

|݁|ܶ
ଵܮ

ܮ
 (1) 
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where ܮ =  ܧ) − ி)ஶܧ
ିஶ (ܧ)ܶ ቀ−

డ(ா,்)

డா
ቁ (ܧ)ܶ is the n-th moment of ܧ݀ ቀ−

డ(ா,்)

డா
ቁ and ݂(ܧ) = (1 + exp ((ܧ − (ிܧ ݇ܶ⁄ ))ିଵ is 

the Fermi-Dirac distribution function. Hence for a connectivity ݅, ݆, the core Seebeck coefficient can be written 
 

ܵ =
−1
|݁|ܶ

ଵܮ
,

ܮ
,    (2) 

 

where ܮ
, =  ܧ)]ܧ݀ − (ܧ)ி)]߬ܧ ቀ− ௗ

ௗா
ቁ. Provided the transmission coefficient does not vary significantly on the scale of 

݇ܶ, it is useful to approximate ߬(ܧ) by 

 

߬(ܧ) =   ߬
() + ܧ) − ி)߬ܧ

(ଵ) + ܧ) − ி)ଶ߬ܧ
(ଶ) (3) 

 

Since (−݂݀/݀ܧ) is approximately an even function of (ܧ − ܮ ி), this yieldsܧ
, =  ߬

() + ܾ߬
(ଶ) and  

ଵܮ
, =  ܾ߬

(ଵ) where ܾ =  ܧ)]ܧ݀ − ி)]ଶܧ ቀ−
ௗ

ௗா
ቁ =  ଶ/3. Dashed lines in the left panel of figure 1-6 show the(ܶ݇ߨ)

transmission coefficient obtained using this approximation. It is apparent that this is a good approximation in the vicinity of 
middle of the HOMO-LUMO gap. From ߬(ܧ) and equation 2, we obtain 

 

ܵ =
−1
|݁|ܶ

ܾ߬
(ଵ)

߬
() + ܾ߬

(ଶ) (4) 

 
Dashed lines in the right panel of figure 1-6 show that this formula reproduces the main features of the Seebeck coefficient 
at room temperature. Equation (4) is a good approximation when τ changes linearly in the scale of kBT for energies close to 
 ி and therefore the agreement between this formula and the exact value obtained from equation 2 is even better at lowerܧ
temperatures. For comparison, we have recalculated the Seebeck coefficient shown in figures 1-6 at T=30K in the SI (figure 

S3). Note that equation (4) is more general than the usual Mott formula. When ߬
() ≫ ܾ|߬

(ଶ)|, equation (4) yields the Mott 

formula ܵ =
ି

||்

ఛೕ
(భ)

ఛೕ
(బ) = ܶ|݁|ߙ− ቀ

ௗ ఛೕ(ா)

ௗா
ቁ

ாୀாಷ

 where  ߙ =
ି

(்)మ = ቀ
ಳ


ቁ

ଶ గమ

ଷ
 = 2.44.10-8 WΩK-2 is the Lorentz number. On the 

other hand, if due to connectivity, ߬
() vanishes, it reduces to 

 

ܵ =
−1

|݁|ܶ

߬
(ଵ)

߬
(ଶ) (5) 

 
Equation (4) is a key result, because it captures the contribution of connectivity to the Seebeck coefficient. To clarify this 

point, we note that since ߬,(ܧ) = ܧ ଶ about|(ܧ),ܩ| ଶ, expanding|(ܧ),ܩ| = ி and noting that ௗீ(ா)ܧ

ௗா
=  yields (ܧ)ଶܩ−

(ܧ)ܩ = (ிܧ)ܩ   − ܧ)[(ிܧ)ଶܩ]2 − (ிܧ + ܧ)[(ிܧ)ଷܩ] − ி)ଶ. Hence ߬ܧ
() = ߬

()(ܧி), where 

 

߬
()(ܧி) =  ଶ|(ிܧ)ܩ| 

 

(6) 
 

߬
(ଵ)(ܧி) = −2ܴ݁൛ܩ

∗ ൧(ிܧ)ଶܩ](ிܧ)


} =   (7)[(ிܧ)ଶܩ](ிܧ)ܩ2−

 
and 
 

߬
(ଶ)(ܧி) = ൛|[ܩଶ(ܧி)]|ଶ + ܩ}2ܴ݁

∗ }ൟ[(ிܧ)ଷܩ](ிܧ) =  ൛[ܩଶ(ܧி)]]ଶ +  ൟ (8)[(ிܧ)ଷܩ](ிܧ)ܩ2
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where the right hand sides of equation (7) and (8) are valid in the presence of time-reversal symmetry, because ܩ and the 
Hamiltonian are both real and ܩ describes a closed system. In what follows we use these expressions to investigate the Seebeck 
coefficient of different PAHs molecules in the absence and presence of a heteroatom substitution.  

For bipartite PAH cores with equal numbers of odd ‘o’ sites and even ‘e’ sites, the Hamiltonian has the form 

൬
ܪ 0

ܪ 0 ൰  and the Greens function satisfies 

 

൬
ܪ− ܧ

ܪ− ܧ ൰ ൬
ܩ ܩ
ܩ ܩ

൰ =  ቀ1 0
0 1

ቁ (9) 

 
which yields 
 

ܩ = ଶܧ)ܧ − ܩ      ,)ିଵܪܪ = ଶܧ)ܧ −  )ିଵ (10)ܪܪ
and 
 

ܩ = ଶܧ)ܪ −  )ିଵ  (11)ܪܪ
 

Hence the squares of all Greens function matrix elements are even functions of E and therefore 
ௗఛ,ೕ(ா)

ௗா
 ~

ௗாమ

ௗா
 which ,ܧ2~

vanishes at the mid-HL gap ܧ = 0. Consequently for ܧி = 0, ܵ = 0 and therefore bipartite PAHs with equal numbers of odd 

and even atoms are expected to be poor thermoelectric materials. This is also evident from equ. (5), because since ܩ,(0) is 

block off diagonal, ܩ,(0) = 0 and [ܩଷ(0)] = 0 if ݅, ݆ are both odd or both even and they are non-zero otherwise. Similarly 

[ଶ(0)ܩ] = 0 if ݅ is odd and ݆ is even or vice versa and [ܩଶ(0)] is non-zero if ݅, ݆ are both odd or both even. Consequently 

for ܧி = 0 ,   ߬
(ଵ) = [ଶ(0)ܩ](0)ܩ2− = 0 for all choices of ݆ and from equ. (5), ܵ = 0. 

On the other hand, if ܧி ≠ 0, the behaviour of ܵ(ܧி) in the vicinity of ܧி = 0 is quite different for odd-even 

compared with even-even and odd-odd connectivities. To explore the Fermi-energy dependence of ܵ(ܧி), we note that for 

ிܧ ≈ the dominant behavior is obtained by writing ߬ ( is an arbitrary reference energyܧ where) ,ܧ
()(ܧி) ≈  ߬

()(ܧ) +

ிܧ) − )߬ܧ
(ଵ)(ܧ) + ிܧ) − )ଶ߬ܧ

(ଶ)(ܧ), ߬
(ଵ)(ܧி) ≈  ߬

(ଵ)(ܧ) + ிܧ)2 − )߬ܧ
(ଶ)(ܧ) and ߬

(ଶ)(ܧி)  ≈ ߬
(ଶ)(ܧ). Hence 

 

ܵ =
−ܾ
|݁|ܶ

߬
(ଵ)(ܧ) + ிܧ)2 − )߬ܧ

(ଶ)(ܧ)

߬
()(ܧ) + ிܧ) − )߬ܧ

(ଵ)(ܧ) + [ܾ + ிܧ) − )ଶ]߬ܧ
(ଶ)(ܧ)

 (12) 

 

 For ܧ = 0, since ߬
(ଵ)(0) = 0 for all choices of ݅, ݆ this yields: 

 

ܵ =
−ܾ
|݁|ܶ

߬(ிܧ)2
(ଶ)(0)

߬
()(0) + [ܾ + ଶ]߬(ிܧ)

(ଶ)(0)
 (13) 

 
From equ. (13) we conclude that 

a. When ݅ is odd and ݆ is even or vice versa, assuming that b and ܧி   are small compared with ߬
()(0)/߬

(ଶ)(0) yields 

 

ܵ ≈
߬(ிܧ)|݁|ܶߙ2−

(ଶ)(0)

߬
()(0)

 (14) 

 
In this case, we see that ܵ is proportional to ܧி  and vanishes linearly with ܧி  at ܧி = 0. 

b. On the other hand, when ݅, ݆ are both odd or both even,  ߬
()(0) = 0.  Hence 
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ܵ =
߬(ிܧ)|݁|ܶߙ2−

(ଶ)(0)

[ܾ + ଶ]߬(ிܧ)
(ଶ)(0)

 (15) 

 

In this case, ܵ is proportional to 
(ாಷ)

[ା(ாಷ)మ]
 and therefore exhibits a Fano lineshape as ܧி  approaches 0.  

If the aromatic core contains heteroatoms, whose site energies differ from that of carbon, then naturally one should 
add the site-energy difference to the appropriate diagonal element of the Hamiltonian. As an example of the effect of 
heteroatoms, consider the effect of adding one or more heteroatoms to the odd-numbered sublattice ‘o’ of a bipartite lattice. 
In this case, equation (9) becomes 
 

൬
ܧ − ܪ− ܪ

ܪ− ܧ ൰ ൬
ܩ ܩ
ܩ ܩ

൰ =  ቀ1 0
0 1

ቁ (16) 

 
which yields 
 

ܩ = ܧ)ܧ]ܧ − (ܪ −  ]ିଵ (17)ܪܪ
 
and   
 

ܩ = ܧ)ܧ]ܪ − (ܪ − ܩ        ,]ିଵܪܪ = ܧ] −  ]ିଵ (18)ܪ݃ܪ
 
where ݃ = ܧ) −  )ିଵ. Hence at E=0, in the presence of heteroatoms on odd-numbered ‘o’ sites, matrix elementsܪ
 between even-numbered ‘e’ and ‘e’ sites become non-zero, while (ܩ) between ‘o’ and ‘o’ sites remain zero, those of (ܩ)
elements of (ܩ) between ‘e’ and ‘o’ sites are unchanged. 

As an example, consider modelling the effect of a heteroatom by adding a single site energy ߝ to odd-numbered site 

݈. Then if ݃(ܧ) is the Greens function of the lattice without the heteroatom, the new Greens function becomes 

 

(ܧ)ܩ =  ݃(ܧ)  +  ݃
(ܧ)

ߝ

1 − ߝ
݃

(ܧ)
݃(ܧ) (19) 

 

To be more precise, since (0)ܩ = ൬
0 ܩ

ܩ ܩ
൰, we find  ܩଶ(0) = ൬

ܩܩ ܩܩ
ܩܩ ܩܩ + ܩܩ

൰  and ܩଷ(0) =

൬
ܩܩܩ ܩܩ)ܩ + (ܩܩ

ܩܩܩ + ܩܩܩ ܩܩܩ + ܩܩ)ܩ +  )൰. Combining these with equs (6) and (7) yields the followingܩܩ

table: 
 
Table 1: Greens function G, and transmission τ and their expansion for given connectivity i,j when a heteroatom substituted to odd-
numbered site ݈. 

 ߬[ଷ(0)ܩ] [ଶ(0)ܩ] (0)ܩ ݆ ݅
()(0) ߬

(ଵ)(0) ߬
(ଶ)(0) 

odd odd 0 
[ܩܩ]

= [݃(0)்݃(0)] 
[݃(0)்݃(0)]  [݃(0)்݃(0)] 0 0ߝ

Non-
zero 

odd even [ܩ] = ݃(0) 
[ܩܩ]

= [݃(0)்݃(0)]ߝ ݃(0) 
[݃(0)்݃(0)݃(0)] + ߝ)ܱ

ଶ) [ ݃(0)]ଶ −2݃(0)[݃(0)்݃(0)]ߝ ݃(0) 
Non-
zero 

even even 
[ܩ]

= ݃(0)ߝ ݃(0)

ܩܩ] + ]ܩܩ

= [்݃(0)݃(0)]

+ ߝ)ܱ
ଶ) 

2− (ߝ)ܱ (ߝ)ܱ ݃(0)ߝ ݃(0) [்݃(0)݃(0)] 
Non-
zero 

 

In the above table, the non-zero values of  ߬
(ଶ)(0) are given by   ߬

(ଶ)(0) =  ൛[݃ଶ(0)]]ଶ + 2݃(0)[݃ଷ(0)]ൟ + ߝ)ܱ
). Since 

߬
(ଵ)(0) is proportional to ߝ

 it is convenient to write ߬
(ଵ)(0) = ߝ 

 ߬̅
(ଵ)(0). Then from equ. (12), setting ܧி = ܧ = 0 yields  

 
ܵ = ߝ

ܵ̅ (20) 
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where 

ܵ̅ =
−ܾ

|݁|ܶ

߬̅
(ଵ)(0)

߬
()(0) + ܾ߬

(ଶ)(0)
 (21) 

 
Equation (20) is a key result, because it shows that the mid-gap Seebeck coefficient is a product of two parameters. The first 

is ߝ which depends on the nature of the heteroatom (electron donating or accepting) and the second is ܵ̅ which depends 

on connectivity, but not on the nature of the heteroatom. Since the sign of the mid-gap Seebeck coefficient depends on 
connectivity, heteroatom substituted PAHs are bi-thermoelectric. 

From equation (7), the mid-gap Seebeck coefficient between even and even or odd and even sites is no longer zero, 

because  ߬
(ଵ)(0) no longer vanishes. On the other hand the mid-gap Seebeck coefficient between odd and odd sites remains 

at zero. These features are clearly present in the right-hand columns of figures 2-6. 
 
 
 

 
Fig S4. Frontier molecular orbitals of the molecules shown in figures1 and 2. The intercepts between the vertical lines and the 
connections between the acetylene linkers and the central 6-fold ring show the points at which molecular orbitals ߰ு(ݎ), ߰(ݎ) ,(ݎ) 
and ߰(ݎ) are to be evaluated. Red = positive and blue = negative. 
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Fig. S5. Results for the tight binding transmission, obtained by weakly coupling two pendant pi orbitals (labelled S) to the central core. 
These are a simple extension of the tight binding model of the main text, used to obtain figure 2a and 2b. As for the former, the site 
energies of the carbons are ߳ = 0, the site energy of the nitrogen is ߳ே = −0.35  and the C-C and C-N couplings are -1. The site energies 
of the pendant sites are ߳ௌ = −0.3  and the weak couplings to the pendant sites are ߛ௦ = −0.1  This shows that the anti-resonance of the 
2-4 connectivity is shifted towards the HOMO, in agreement with figure 2c. 

 

 


