Electronic Supplementary Information

The role of electronegativity on the extent of nitridation of group 5 metals as revealed

by reactions of tantalum cluster cations with ammonia molecules

Masashi Arakawa,^{*a} Kota Ando,^a Shuhei Fujimoto,^a Saurabh Mishra,^b G. Naresh Patwari^b and Akira Terasaki ^{*a}

^a Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819–0395, Japan.

^b Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

Species	Symmetry	Total energy /Hartree	Atom	x/Å	y/Å	z /Å	Natural charge /e
³ TaNH ⁺	$C_{\infty v}$	-112.025719	Та	0.000000	0.000000	0.182448	+1.445
			Ν	0.000000	0.000000	-1.537573	-0.867
			Н	0.000000	0.000000	-2.555705	+0.421
$^{1}TaN_{2}H_{2}^{+}$	C_{2v}	-167.447170	Та	0.000000	0.205515	0.000000	+1.974
			Ν	1.428205	-0.825573	0.000000	-0.891
			Ν	-1.428205	-0.825573	0.000000	-0.891
			Н	1.909502	-1.722304	0.000000	+0.404
			Н	-1.909495	-1.722307	0.000000	+0.404
$^{1}\mathrm{TaN_{2}^{+}}$	C_{2v}	-166.135246	Та	0.000000	0.000000	0.264284	+1.708
			Ν	0.000000	0.722422	-1.378052	-0.354
			Ν	0.000000	-0.722422	-1.378052	-0.354
${}^{4}\text{Ta}_{2}{}^{+}$	$D_{\infty h}$	-113.549129	Та	0.000000	0.000000	1.110866	+0.500
			Та	0.000000	0.000000	-1.110866	+0.500
$^{2}Ta_{2}NH^{+}$	C_{2v}	-169.034315	Та	0.000000	1.128951	-0.089413	+0.840
			Та	0.000000	-1.128951	-0.089413	+0.840
			Ν	0.000000	0.000000	1.504652	-1.083
			Н	0.000000	0.000000	2.521668	+0.402
${}^{2}Ta_{2}N_{2}H_{2}^{+}$	C_{2v}	-224.499393	Та	1.219799	0.000000	-0.061237	+1.147
			Та	-1.219799	0.000000	-0.061237	+1.147
			Ν	0.000000	1.411766	0.514267	-1.047
			Ν	0.000000	-1.411766	0.514267	-1.047
			Н	0.000000	-2.366216	0.870420	+0.400
			Н	0.000000	2.366216	0.870420	+0.400
${}^{4}Ta_{2}N_{2}{}^{+}$	D_{2h}	-223.306433	Та	0.000000	0.000000	1.368087	+1.396
			Та	0.000000	0.000000	-1.368087	+1.396
			Ν	0.000000	1.272131	0.000000	-0.896

Table S1. Cartesian coordinates and natural charge distribution of the optimized structures shown in Fig. 4 calculated with TPSSh/def2-TZVP using Stuttgart/Dresden relativistic effective potential (ECP) for tantalum atoms.

			Ν	0.000000	-1.272131	0.000000	-0.896
$^{2}Ta_{2}N_{3}H^{+}$	C_s	-278.749802	Та	-0.839171	-1.209365	0.000000	+1.449
			Та	0.859938	0.965219	0.000000	+1.809
			Ν	-0.034478	-0.195351	1.283151	-0.905
			Ν	-0.034478	-0.195351	-1.283151	-0.905
			Ν	-0.034478	2.485471	0.000000	-0.846
			Н	-0.791974	3.159211	0.000000	+0.397
$^{2}Ta_{2}N_{4}H_{2}^{+}$	C_{2v}	-334.126483	Та	0.000000	1.406805	-0.159101	+1.746
			Та	0.000000	-1.406805	0.159101	+1.746
			Ν	-1.283187	0.000000	-0.271977	-0.853
			Ν	1.283187	0.000000	-0.271977	-0.853
			Ν	0.000000	-1.923307	1.563348	-0.784
			Ν	0.000000	1.923307	1.563348	-0.784
			Н	0.000000	-1.839036	2.574756	+0.391
			Н	0.000000	1.839036	2.574756	+0.391
$^{2}Ta_{2}N_{4}^{+}$	C_s	-332.818207	Та	1.259094	-0.091452	0.017643	+1.632
			Та	-1.259094	-0.091452	0.017642	+1.632
			Ν	0.000002	1.847356	0.081255	-0.280
			Ν	0.000001	-1.225743	-0.862552	-0.827
			Ν	0.000004	1.230056	-1.019129	-0.419
			Ν	-0.000005	0.055753	1.432460	-0.737
${}^{3}\mathrm{Ta_{3}}^{+}$	D_{3h}	-170.574764	Та	0.000000	1.410137	0.000000	+0.334
			Та	-1.221214	-0.705068	0.000000	+0.333
			Та	1.221214	-0.705068	0.000000	+0.333
³ Ta ₃ NH ⁺	C_{2v}	-226.056553	Та	0.000000	1.436078	-0.567469	+0.746
			Та	0.000000	0.000000	1.354289	+0.205
			Та	0.000000	-1.436078	-0.567469	+0.746
			Ν	0.000000	0.000000	-1.873941	-1.101
			Н	0.000000	0.000000	-2.895085	+0.404
${}^{1}Ta_{3}N_{2}H_{2}^{+}$	C_s	-281.507448	Та	-0.936091	1.042542	0.000000	+1.046

			Та	0.414644	-0.669395	1.268022	+0.657
			Та	0.414644	-0.669395	-1.268022	+0.657
			Ν	0.414644	1.259834	-1.456456	-1.070
			Ν	0.414644	1.259834	1.456456	-1.070
			Н	0.995833	1.994203	1.855881	+0.390
			Н	0.995833	1.994203	-1.855881	+0.390
$^{1}\mathrm{Ta_{3}N_{2}^{+}}$	C_1	-280.317386	Та	-1.289395	-0.792519	-0.074956	+1.297
			Та	1.495937	-0.495086	0.029010	+0.948
			Та	-0.105682	1.406163	-0.073091	+0.558
			Ν	-1.337936	0.633936	1.167568	-0.876
			Ν	0.286115	-1.870330	0.073814	-0.927
$^{1}\mathrm{Ta_{3}N_{3}H^{+}}$	C_1	-335.779856	Та	-0.715069	1.275523	0.027251	+0.947
			Та	-0.752330	-1.221048	0.095574	+1.530
			Та	1.573311	0.088484	-0.069036	+1.172
			Ν	-1.956732	0.077156	-0.876960	-1.136
			Ν	0.866594	-1.431832	-0.873517	-0.867
			Ν	0.375601	-0.161009	1.408501	-1.039
			Н	-2.729839	0.173777	-1.532769	+0.392
${}^{1}\text{Ta}_{3}\text{N}_{4}\text{H}_{2}{}^{+}$	C_s	-391.254162	Та	0.661134	1.240944	0.000000	+1.481
			Та	-0.280070	-0.675747	1.359510	+1.559
			Та	-0.280070	-0.675747	-1.359510	+1.559
			Ν	1.179214	-0.829285	0.000000	-1.085
			Ν	-1.481063	-1.195668	0.000000	-0.915
			Ν	-0.280070	1.304954	-1.765111	-1.183
			Ν	-0.280070	1.304954	1.765111	-1.183
			Н	-0.669329	1.987716	2.412500	+0.384
			Н	-0.669329	1.987716	-2.412500	+0.384
$^{1}\mathrm{Ta_{3}N_{4}^{+}}$	C_s	-390.028676	Та	0.341857	-0.766088	1.263129	+1.584
			Та	-0.753210	1.529673	0.000000	+1.715
			Та	0.341857	-0.766088	-1.263129	+1.584
			Ν	-1.203253	-0.458640	0.000000	-1.033
			Ν	0.341857	1.189469	-1.440361	-0.942

			Ν	1.244281	-1.894192	0.000000	-0.965
			Ν	0.341857	1.189469	1.440361	-0.942
$^{1}Ta_{3}N_{5}H^{+}$	C_s	-445.480315	Та	0.394859	-0.850338	1.419231	+1.739
			Та	-0.671719	1.433701	0.000000	+1.904
			Та	0.394859	-0.850338	-1.419231	+1.739
			Ν	-0.960097	-0.669528	0.000000	-1.023
			Ν	0.394859	0.953983	-1.638564	-0.927
			Ν	1.595359	-1.208945	0.000000	-0.919
			Ν	0.394859	0.953983	1.638564	-0.927
			Ν	-2.213393	2.348215	0.000000	-0.977
			Н	-3.094958	2.845136	0.000000	+0.391
${}^{1}Ta_{3}N_{6}H_{2}^{+}$	C_1	-500.831095	Та	1.571098	0.214116	-0.063606	+1.850
			Та	-1.184791	1.129503	0.206409	+1.754
			Та	-0.639736	-1.651277	-0.013042	+1.738
			Ν	-0.048126	-0.205078	1.189524	-1.068
			Ν	-1.862148	-0.360354	-0.709414	-0.920
			Ν	0.877723	-1.447033	-0.977552	-0.894
			Ν	0.467169	1.763141	-0.695498	-0.611
			Ν	3.192170	0.216157	0.696176	-0.966
			Ν	-0.473081	2.782392	-0.770410	-0.650
			Н	4.100168	0.195299	1.142729	+0.391
			Н	-0.675871	3.019166	-1.745014	+0.376
${}^{1}\text{Ta}_{3}\text{N}_{6}^{+}$	C_1	-499.543643	Та	1.597116	0.226288	0.073496	+1.528
			Та	-0.821295	-1.423571	-0.203984	+1.664
			Та	-1.058186	1.410431	0.015315	+1.734
			Ν	-0.165204	0.156989	-1.173182	-1.025
			Ν	-1.687970	-0.252859	0.887715	-0.878
			Ν	0.472358	1.809281	0.835466	-0.870
			Ν	1.091919	-1.733297	0.730760	-0.359
			Ν	2.822132	0.475519	-1.102330	-0.606
			Ν	0.411434	-2.678464	1.022662	-0.188

	Formal	Change in relat	tive energy / eV
Species	oxidation number of Ta atoms	TPSSh Stuttgart/Dresden ECP	B3LYP Stuttgart/Dresden ECP
n = 1			
$Ta^+ + 2NH_3$	+1	0.00	0.00
$TaNH^+ + H_2 + NH_3$	+3	-2.33	-2.24
$TaN_2H_2^+ + 2H_2$	+5	-1.19	-1.01
$TaN_2^{+}+3H_2$	+7	+3.89	+4.06
<i>n</i> = 2			
$Ta_2^+ + 4NH_3$	+0.5	0.00	0.00
$Ta_2NH^+ + H_2 + 3NH_3$	+1.5	-2.92	-2.62
$Ta_2N_2H_2^+ + 2H_2 + 2NH_3$	+2.5	-2.38	-2.15
$Ta_2N_2^+ + 3H_2 + 2NH_3$	+3.5	+0.65	+0.74
$Ta_2N_3H^+ + 4H_2 + NH_3$	+4.5	-1.78	-1.65
$Ta_2N_4H_3^+ + 4H_2 + H_3$	+5	+0.26	-1.35
$Ta_2N_4H_2^+ + 5H_2$	+5.5	-0.23	+0.21
$Ta_2N_4{}^+ + 6H_2$	+6.5	+3.79	+4.37
<i>n</i> = 3			
$Ta_{3}^{+} + 6NH_{3}$	+0.3	0.00	0.00
$Ta_3NH^+ + H_2 + 5NH_3$	+1	-2.83	-2.64
$Ta_{3}N_{2}H_{2}^{+}+2H_{2}+4NH_{3}$	+1.7	-1.99	-1.70
$Ta_3N_2^+ + 3H_2 + 4NH_3$	+2.3	+0.58	+0.63
$Ta_3N_3H^+ + 4H_2 + 3NH_3$	+3	-2.30	-1.99
$Ta_3N_4H_2^+ + 5H_2 + 2NH_3$	+3.7	-2.63	-2.37
$Ta_3N_4^+ + 6H_2 + 2NH_3$	+4.3	+1.54	+1.49
$Ta_3N_5H^+ + 7H_2 + NH_3$	+5	-2.01	-2.00
$Ta_3N_6H_2^+ + 8H_2$	+5.7	+0.74	+0.87
$Ta_{3}N_{6}^{+} + 9H_{2}$	+6.3	+1.83	+6.06

Table S2. Change in relative energy of the reactants and possible products upon reaction of Ta_n^+ with NH₃ molecules. The change in relative energy exhibits the same trend in both calculations employing TPSSh and B3LYP functional.

e			U	e			
Species	Symmetry	Total energy /Hartree	Atom	x/Å	y/Å	z/Å	Natural charge / <i>e</i>
${}^{4}\mathrm{V_{2}}^{+}$	$D_{\infty h}$	-141.377560	V	0.000000	0.000000	0.836972	+0.500
			V	0.000000	0.000000	-0.836972	+0.500
$^{2}V_{2}NH^{+}$	C_{2v}	-196.786484	V	0.000000	0.872701	-0.254879	+0.725
			V	0.000000	-0.872701	-0.254879	+0.725
			Ν	0.000000	0.000000	1.338195	-0.842
			Н	0.000000	0.000000	2.357049	+0.392
${}^{6}V_{2}N_{2}H_{2}^{+}$	C_{2v}	-252.250293	V	1.355463	0.000000	-0.035231	+1.107
			V	-1.355463	0.000000	-0.035231	+1.107
			Ν	0.000000	1.262242	0.114163	-0.981
			Ν	0.000000	-1.262242	0.114163	-0.981
			Н	0.000000	-2.279627	0.011164	+0.374
			Н	0.000000	2.279627	0.011164	+0.374
${}^{4}V_{2}N_{2}{}^{+}$	D_{2h}	-251.041795	V	0.000000	0.000000	1.256102	+1.052
			V	0.000000	0.000000	-1.256102	+1.052
			Ν	0.000000	1.183998	0.000000	-0.552
			Ν	0.000000	-1.183998	0.000000	-0.552
$^{4}V_{2}N_{3}H^{+}$	C_1	-306.406515	V	1.365261	0.247314	0.004780	+0.967
			V	-1.023126	-0.664089	0.014412	+1.091
			Ν	0.712812	-1.271982	-0.025374	-0.598
			Ν	-0.139176	1.138533	0.012242	-0.333
			Ν	-1.428876	1.217645	-0.104039	-0.528
			Н	-1.882424	1.996459	0.378788	+0.400
$^{2}V_{2}N_{4}H_{2}^{+}$	C_1	-361.746380	V	1.308675	-0.565905	0.160696	+1.109
			V	-1.141375	-0.005115	-0.429864	+0.825
			Ν	0.357517	1.069919	-0.425192	-0.248
			Ν	-0.188796	-1.417158	-0.015279	-0.500
			Ν	-2.024359	0.349962	0.884392	-0.492
			Ν	1.417436	1.460047	0.132449	-0.491

Table S3. Cartesian coordinates and natural charge distribution of the optimized structures shown	in
Fig. 5 calculated with TPSSh/def2-TZVP using Stuttgart/Dresden ECP for vanadium atoms.	

			Н	-2.341047	0.434472	1.851661	+0.386
			Н	1.560549	2.459600	0.304606	+0.410
${}^{1}V_{3}^{+}$	D_{3h}	-212.188944	V	0.000000	1.04716	0.000000	+0.333
			V	-0.906867	-0.52358	0.000000	+0.334
			V	0.906867	-0.52358	0.000000	+0.334
$^{3}V_{3}NH^{+}$	C_{2v}	-267.683752	V	0.000000	1.376211	-0.520755	+0.713
			V	0.000000	0.000000	1.687418	+0.273
			V	0.000000	-1.376211	-0.520755	+0.713
			Ν	0.000000	0.000000	-1.729169	-1.067
			Н	0.000000	0.000000	-2.751686	+0.368
$^{1}V_{3}N_{2}H_{2}^{+}$	C_s	-323.041065	V	-0.84920	0.779703	0.000000	+0.701
			V	0.295308	-0.769235	1.062416	+0.531
			V	0.295308	-0.769235	-1.062416	+0.531
			Ν	0.295308	1.004865	-1.388389	-0.769
			Ν	0.295308	1.004865	1.388389	-0.769
			Н	0.906675	1.691771	1.826561	+0.388
			Н	0.906675	1.691771	-1.826561	+0.388
${}^{5}V_{3}N_{2}{}^{+}$	C_1	-321.869345	V	0.423036	1.363954	-0.115475	+0.946
			V	-1.592672	-0.622484	0.087316	+0.801
			V	1.114097	-1.111850	-0.181644	+0.637
			Ν	1.463105	0.173177	0.789131	-0.671
			Ν	-1.280620	1.043787	-0.099780	-0.712
$^{3}V_{3}N_{3}H^{+}$	C_1	-377.326275	V	1.409528	-0.930120	-0.034656	+1.006
			V	-0.032351	1.275064	0.311951	+0.937
			V	-1.481764	-0.784819	-0.157985	+0.945
			Ν	1.591178	0.813387	-0.535055	-0.966
			Ν	-1.299288	0.958209	-0.693153	-0.524
			Ν	-0.272479	-0.516698	0.992325	-0.775
			Н	2.269624	1.332833	-1.092931	+0.376
${}^{1}V_{3}N_{4}H_{2}^{+}$	C_s	-432.752916	V	0.662345	1.027837	0.000000	+0.920

			V	-0.207486	-0.661542	1.237011	+0.901
			V	-0.207486	-0.661542	-1.237011	+0.901
			Ν	1.134819	-0.834447	0.000000	-0.576
			Ν	-1.346702	-1.033262	0.000000	-0.387
			Ν	-0.207486	1.155083	-1.587613	-0.771
			Ν	-0.207486	1.155083	1.587613	-0.771
			Н	-0.650803	1.846731	2.191310	+0.391
			Н	-0.650803	1.846731	-2.191310	+0.391
${}^{3}V_{3}N_{4}^{+}$	C_s	-431.537315	V	0.275182	-0.702210	1.292875	+0.900
			V	-0.832198	1.244006	0.000000	+0.901
			V	0.275182	-0.702210	-1.292875	+0.900
			Ν	-1.030245	-0.586272	0.000000	-0.535
			Ν	0.275182	1.033556	-1.320523	-0.389
			Ν	1.405909	-0.953765	0.000000	-0.388
			Ν	0.275182	1.033556	1.320523	-0.389
$^{1}V_{3}N_{5}H^{+}$	C_1	-486.894737	V	1.497568	-0.727400	-0.154846	+0.948
			V	0.286334	1.487554	0.231391	+0.922
			V	-1.055333	-0.921900	0.369353	+0.860
			Ν	0.479740	-0.108024	1.181549	-0.600
			Ν	-1.469468	1.055258	-0.349482	-0.269
			Ν	-0.055139	-1.655677	-0.681105	-0.427
			Ν	1.485222	0.908517	-0.846089	-0.493
			Ν	-2.377605	0.249230	-0.607545	-0.337
			Н	-3.196351	0.575017	-1.136962	+0.396
${}^{3}V_{3}N_{6}H_{2}^{+}$	C_1	-542.254336	V	-1.042144	-0.798859	-0.057799	+0.650
			V	1.499514	-0.009823	0.464353	+0.859
			V	-0.415493	1.692163	-0.075774	+0.865
			Ν	-0.287406	0.436509	1.144506	-0.503
			Ν	1.277382	1.357785	-0.513274	-0.389
			Ν	-1.244708	0.661923	-1.103381	-0.294
			Ν	0.756447	-1.517561	-0.539501	-0.214
			Ν	-2.458497	-1.440694	0.411251	-0.436
			Ν	1.969994	-1.782838	-0.455446	-0.327

			Н	-3.392606	-1.710963	0.719828	+0.390
			Н	2.336947	-2.614979	-0.936845	+0.397
${}^{1}V_{3}N_{6}^{+}$	C_1	-541.044845	V	0.645203	1.209871	-0.135811	+0.653
			V	-1.366851	-0.547473	0.479265	+0.807
			V	1.079806	-1.367486	-0.040147	+0.893
			Ν	0.372798	-0.26585	1.113443	-0.499
			Ν	-0.742289	-1.559218	-0.609120	-0.349
			Ν	1.678979	-0.238950	-0.995307	-0.304
			Ν	-1.395128	1.300749	-0.580875	-0.124
			Ν	1.351285	2.242766	0.727544	-0.100
			Ν	-2.442447	0.837217	-0.652264	-0.023

Table S4. Change in relative energy of the reactants and possible products upon reaction of V_n^+ with NH₃ molecules. The change in relative energy obtained by either of the methods exhibits the same trend for n = 2 and 3; the result depends neither on functional nor on the use of ECP. For n = 1, the result is dependent on the method; the use of ECP resulted in far off from a previous experiment, where the total energy of VNH⁺ + H₂ is reported to be about 0.1 eV lower than that of V⁺ + NH₃.^a

	Formal	С	hange in rela	tive energy / eV	
Species	oxidation	TPSSh	TPSSh	B3LYP	B3LYP
I	number of V atoms	Stuttgart/Dresden	All	Stuttgart/Dresden	All
	v utomb	ECF	electrons	ECF	electrons
n-1					
$V^{+} + 4NH_3$	+1	0.00	0.00	0.00	0.00
$VNH^+ + H_2 + 3NH_3$	+3	+0.76	+0.01	+0.96	+0.25
$VN_2H_2^+ + 2H_2 + 2NH_3$	+5	+0.04	+0.30	+0.34	-0.01
$VN_2^+ + 3H_2 + 2NH_3$	+7	+1.61	+1.42	+1.47	+1.91
n = 2					
$V_2^+ + 4NH_3$	+0.5	0.00	0.00	0.00	0.00
$V_2NH^+ + H_2 + 3NH_3$	+1.5	-0.85	-1.15	-1.33	-0.75
$V_2 N_2 {H_2}^+ + 2 H_2 + 2 N H_3$	+2.5	-2.34	-2.32	-2.47	-2.59
$V_2N_2^{+} + 3H_2 + 2NH_3$	+3.5	+1.08	+0.89	+1.37	+1.25
$V_2N_3H^++4H_2+NH_3$	+4.5	+0.71	+0.64	+0.76	+0.70
$V_2N_4H_2^+ + 5H_2$	+5.5	+0.68	+0.29	+0.81	+0.47
n=3					
$V_3^+ + 6NH_3$	+0.3	0.00	0.00	0.00	0.00
$V_3NH^+ + H_2 + 5NH_3$	+1	-3.18	-2.57	-3.80	-2.72
$V_{3}N_{2}H_{2}^{+}+2H_{2}+4NH_{3}$	+1.7	+0.56	-1.21	-0.12	-1.54
$V_3N_2^{+} + 3H_2 + 4NH_3$	+2.3	+0.08	+1.15	+0.83	+0.77
$V_3N_3H^+ + 4H_2 + 3NH_3$	+3	-2.15	-2.31	-1.73	-2.06
$V_{3}N_{4}H_{2}^{+}+5H_{2}+2NH_{3}$	+3.7	-1.33	-2.17	-0.82	-1.59
$V_3N_4^+ + 6H_2 + 2NH_3$	+4.3	+1.27	+1.60	+1.94	+1.83
$V_3N_5H^+ + 7H_2 + NH_3$	+5	+0.55	+0.23	+0.31	+0.21
$V_3N_6H_2^+ + 8H_2$	+5.7	+0.50	+0.26	+0.70	+0.43
$VN_6^{+}+9H_2$	+6.3	+1.10	+1.50	+0.27	-1.39

^a D. E. Clemmer, L. S. Sunderlin and P. B. Armentrout, J. Phys. Chem., 1990, 94, 208–217.

		Bond	dissociation energy / d	eV	
Species	TPSSh	TPSSh	B3LYP	B3LYP	
	Stuttgart/Dresden	All	Stuttgart/Dresden	All	Experiment
	ECP	electrons	ECP	electrons	
Ta ⁺ -Ta	4.50		4.19		6.87 ^a
Ta_2^+ - Ta	5.55		4.74		6.60 ^a
Ta ₃ ⁺ -Ta	6.56		5.64		7.60 ^a
$V^+ - V$	2.26	2.88	2.12	1.95	3.14 ^b
$V_2^+ - V$	1.67	2.35	0.53	0.37	2.27 ^b

Table S5. Bond dissociation energies obtained by DFT calculations along with experimental reports.

^a P. B. Armentrout, D. A. Hales and D. Lian, in *Advances in Metal and Semiconductor Clusters*, ed. M. A. Duncan, JAI Press, Greenwich, 1994, vol. 2, pp. 1–39.

^b C.-X. Su, D. A. Hales and P. B. Armentrout, J. Chem. Phys., 1993, 99, 6613–6623.