Electronic Supplementary Information

Anisotropic and amphoteric characteristics of diverse carbenes

Dong Yeon Kim,^{‡,a,b} D. ChangMo Yang,^{‡,a} Jenica Marie L. Madridejos,^a Amir Hajibabaei,^a Chunggi Baig,^b and Kwang S. Kim^{*,a}

^aCenter for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 Unist-gil, Ulsan 44919, Korea

^bDepartment of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 Unist-gil, Ulsan 44919, Korea

*These authors contributed equally to this work. *E-mail: kimks@unist.ac.kr

1. Relative energies (kcal/mol) for CH₂, CF₂, and C(NHCH)₂[©]

Table S1. Relative energies (kcal/mol) of the triplet state with respect to the singlet state for different carbenes.^a

Species	MP2			CCSD			CCSD(T)		
	aVTZ	aVQZ	CBS	aVTZ	aVQZ	CBS	aVTZ	aVQZ	CBS
CH ₂	-14.54	-13.90	-13.43	-10.67	-10.41	-10.23	-9.70	-9.43	-9.23(-8.84)
CF ₂	54.08	54.77	55.28	54.16	54.43	54.63	56.36	56.66	56.88(56.77)
C(NHCH)2 [©]	90.34	91.33	92.05	83.32	84.15	84.76	85.73	86.43	86.94(87.56)

^aAll structures were optimized at the given level of theory except that the CCSD(T)/aVQZ structures used the optimized CCSD(T)/aVTZ geometries. The CCSD(T)/CBS values in parentheses denote the zero-point-energy (ZPE) corrected relative energies where the ZPE were corrected using CCSD/aVTZ frequencies for CH_2/CF_2 and MP2/aVTZ frequencies for $C(NHCH)_2^{\odot}$.

2. Electrostatic potential maps and multipole charge models for CH₂, CF₂, and C(NHCH)₂[©]

In the case of singlet species, the 1+6 point charges correspond to two point charges per cartesian axis and a point charge on :C to keep the total charge zero (Here, the charge on :C is positive, while all the outershell point charges are negative). The triplet case is simpler with a model where two main point charges corresponding to two p orbitals are placed on the $(\pm x)z$ plane, one point charge is along the -z direction, and two point charges are along $\pm y$ direction. Namely, the singlet state uses a model with charges located on :C at the origin of coordinates, two equivalent q_x charges along the $\pm x$ direction. For the triplet state, we have considered q_C on :C at the origin of coordinates, two equivalent q_{xz} charges along the $\pm x$ direction for the +z direction, and one q_z charge along the -z direction. A simplified 4+1 point model with charges at the carbon center, two equivalent q_{xz} charges along the $\pm z$ direction, and two equivalent q_{yz} charges along the the $\pm z$ direction is less intuitive.

Figure S1. Electrostatic potential (EP) maps at the MP2/aVTZ of singlet/triplet states of CH₂ and CF₂, with multipole moments at CCSD/aVTZ at the optimized CCSD(T)/aV5Z geometries (d: distance and θ : angle). Distances are in Å; 2ⁿ-multipole moments [Dipole (μ), quadrupole (Q), octupole (O), and hexapole (H) moments] in Debye·Åⁿ⁻¹.

Figure S2: EP maps at the MP2/aVTZ level and multipole moments at the CCSD/aVTZ level on the optimized CCSD(T)/aVTZ geometries of singlet and triplet imidazol-2-ylidene (C(NHCH)₂^{$^{\circ}$}). Distances are in Å; 2ⁿ-multipole moments in Debye·Åⁿ⁻¹.

Figure S3. NBO charges of carbenes (in au) at the CCSD/aVTZ//CCSD(T)/aV5Z(aVTZ) level of theory for $C(NHCH)_2^{\odot}$.

Figure S4. Multipole models for interaction potentials for imidazole-2-ylidene $(C(NHCH)_2^{\odot})$ which reproduce the EP maps of singlet and triplet-p $C(NHCH)_2^{\odot}$ at the CCSD/aVTZ//CCSD(T)/aVTZ level.

The multipole model for $C(NHCH)_2^{\odot}$ (Figure S4) is much more complicated due to the addition of other atoms in the ring. The singlet case using 1+6 point model still gives an accurate result that schematically simplifies the EP map. However, it was not easy to fit the triplet case by using the 1+5 point model due to the nonplanarity of the molecule arising from the protruding hydrogen atoms. In the triplet-p case, a simplified 1+4 point model was used where two inequivalent charges (q_{xz1} , q_{xz2}) are used as well as two equivalent q_{yz} charges, while the multipole moments were fit up to hexadecapole moments.

Figure S5. A 4-point model for interaction potentials for CH_2 and CF_2 which reproduces their EP maps (right) of singlet and triplet states at the CCSD(T)/aV5Z level.

Figure S6. A 4-point model for the interaction potentials reproducing the EP maps (right) of singlet and triplet $C(NHCH)_2^{\odot}$ at the CCSD(T)/aVTZ level.

3. Interactions of carbenes with a Na⁺/Cl⁻ ion or a water molecule

Table S2. Relative energies (E^{T-S} in kcal/mol) of the triplet state with respect to the singlet state for CH₂, CF₂, and C(NHCH)₂[©] and their complexes with Na⁺/Cl⁻/H₂O at the CCSD(T)/CBS on the MP2/aVTZ optimized geometry.

Species	un-complexed	Na ⁺	Cŀ	H ₂ O
CH ₂	-9.25	6.18	22.08	3.01
CF ₂	56.88	64.95	47.50	58.39
C(NHCH)2 [©]	86.94	98.33	84.29	91.25

Table S3. Important interaction energies (kcal/mol) and sites of carbenes with $Na^+/Cl^-/H_2O$. (Distances are in Å.)^a

Species	Na ⁺	Cl	H of H ₂ O	O of H ₂ O
CH ₂	-24.36 C tip	-38.58 face-on	-5.35 C tip	-13.94 C antiparallel face-on
singlet	(2.55: CNa)	(1.90: CCl)	(2.097: CH)	(1.74: CO)
CH ₂	-8.99 C tip	-6.92 H end	-1.67 C tip	-1.75 H end (O tip)
triplet	(2.71: CNa)	(2.40: HCl)	(2.40: CH)	(2.37: HO)
CF_2	-13.84 C tip	-11.65 C face-on	-2.96 C tip	-2.39 C antiparallel face-on
singlet	(2.62: CNa)	(2.06: CCl)	(2.23: CH)	(2.79: CO)
				-1.71 $ O^{\delta}C^{\delta+}, F^{\delta}H^{\delta+}$
CF_2	-5.73 F end	-21.12 C tip		(2.93: CO)
triplet	(2.38: FNa)	(2.33: CCl)	-	-1.33 C parallel facial on
				(3.21: CO)
CONTICITY ©	29 97 C tim	11 60 IIIC-CII tim	-9.67 C tip (H)	
C(NHCH)2*	-30.07 C up	$-11.08 \Pi C - C \Pi up$	NH end (O lone pair)	-
singlet	(2.43. CNa)	(2.71. CHCI)	(2.00: CH; 2.26: NHO)	
	-27.44 ring Ct up	-17.11 NH end		
C(NHCH)2 [©]	(2.67: CNa)	(2.04: NHCl)	-5.39 N lone pair	
Triplet-p	-26.69 C face up	-14.48 ring Ct up	(2.01: NĤ)	-
	(2.50: CNa)	(3.27: CCl)		

^aImportant interaction energies are denoted in bold.

The important interaction energies and binding sites of various carbenes with Na⁺/Cl⁻/H₂O are summarized in Table S3. The representative interaction sites of :C are the :C tip which favors a cation or a positively charged site (such as H of H₂O) and the :C face-on site which favors an anion or a negatively charged site (such as O of H₂O). Singlet CH₂ interacts with Cl⁻ (-38.58 kcal/mol at the :C face-on configuration), Na⁺ (-24.36 kcal, though still strong on :C tip), and O of H₂O (-13.94 kcal/mol at :C face-on antiparallel configuration). Triplet CH₂ interacts with Cl⁻ (-6.92 kcal/mol on CH end), Na⁺ (-8.99 kcal/mol on :C tip), and H of H₂O (-1.67 kcal/mol on :C tip). Singlet CF₂ interacts with Na⁺ (-13.84 kcal/mol on :C tip), Cl⁻ (-11.65 kcal, though still strong on :C face on configuration), and H of H₂O (-2.96 kcal/mol on :C tip). Triplet CF₂ interacts with Cl⁻ (-21.12 kcal/mol on C tip), Na⁺ (-5.73 kcal/mol on F end), and O of H₂O (-1.71 kcal/mol with

the $O^{\delta-}...C^{\delta+}$ and $F^{\delta-}...H^{\delta+}$ electrostatic interactions between $O^{\delta-}H^{\delta+}$ and $C^{\delta+}F^{\delta-}$ dipoles). Singlet $C(NHCH)_2^{\odot}$ interacts strongly with Na⁺ (-38.87 kcal/mol) at :C tip, moderately with Cl⁻ (-11.68 kcal/mol around two CH ends), and with H of H₂O (-9.67 kcal/mol) at :C tip (assisted by the – NH···O interaction). Triplet-p C(NHCH)₂[©] tends to interact with Na⁺ (-27.44 kcal/mol on the ring-center, -26.69 kcal/mol in the :C face-up configuration), with Cl⁻ (-17.11 kcal/mol at the NH end, -14.48 kcal/mol at ring-center-up), and with H of H₂O (-5.39 kcal/mol at the N lone pair end). As such, the interaction sites of :C vary depending on interacting species as well as the types of carbenes and their singlet/triplet spin states.

Figure S7. Interactions of singlet and triplet-p(parallel) $C(NHCH)_2^{\odot}$ with a Na⁺/Cl⁻ ion and H₂O. E (kcal/mol) is the interaction energy at the CCSD(T)/CBS level on the MP2/aVTZ geometry. d is interatomic distance.

4. Electrostatic Potential (EP) for diverse Carbenes

The EP maps of singlet/triplet states for diverse carbenes (excluding already discussed representative carbenes CH_2 , CF_2 , $C(NHCH)_2^{\odot}$) are shown in Figures S8-11. Singlet highest occupied molecular orbitals (HOMOs) and triplet singly occupied molecular orbitals (SOMOs) are shown in Figures S12-15.

Figure S8. EP maps at the MP2/aVTZ level of singlet/triplet states of CMg₂, CBe₂, CCl₂ CNa₂, and CLi₂.

Figure S9. EP maps at the MP2/aVTZ level of singlet/triplet states of C(BH₂)₂, C(CH₃)₂, C(NH₂)₂, C(AlH₂)₂, C(SiH₃)₂, and C(PH₂)₂.

Figure S10. EP maps at the MP2/aVTZ level of singlet/triplet states of $C(BHCH)_2^{\degree}$, $C(CH_2CH)_2^{\degree}$, $(CH_2)_2^{\degree}$, and $(CH)_2^{\degree}$.

Figure S11. EP maps at the MP2/aVTZ level of singlet/triplet states of $C(CHCH)_2^{\emptyset}$ and $C(NCH)_2^{\emptyset}$

5. Frontier molecular orbitals for diverse Carbenes

Figure S12. Frontier molecular orbitals of CMg₂, CBe₂, CNa₂, CLi₂, CH₂, CF₂ and CCl₂ at the B3LYP/aVTZ level of theory.

Figure S13. Frontier molecular orbitals of $C(BH_2)_2$, $C(CH_3)_2$, $C(NH_2)_2$, $C(AlH_2)_2$, $C(SiH_3)_2$, and : $C(PH_2)_2$ at the B3LYP/aVTZ level of theory.

Figure S14. Frontier molecular orbitals of $C(BHCH)_2^{^{(0)}}$, $C(CH_2CH)_2^{^{(0)}}$, $C(NHCH)_2^{^{(0)}}$, $(CH_2)_2^{^{(0)}}$ and : $(CH)_2^{^{(0)}}$ at the B3LYP/aVTZ level of theory.

Figure S15. Frontier molecular orbitals of $C(CHCH)_2^{\emptyset}$, and $C(NCH)_2^{\emptyset}$ at the B3LYP/aVTZ level of theory.

6. Singlet-Triplet Energy Gap for diverse Carbenes

Table S4. HOMO-LUMO/SOMO1-SOMO2 energy gap/difference (E^{L-H}/E^{S1-2}) in the singlet/triplet state at the B3LYP/aVTZ, and the relative energy of the triplet with respect to the singlet (ΔE^{T-S}) in diverse carbones.

carbenes	Singlet	Triplet	
carbenes	E ^{L-H} (eV)	E ^{S1-2} (eV)	ET-S (kcal/mol)
CH ₂	3.27	0.92	-9.23
CLi ₂	2.34	0.00	-2.37
+17.77 ^{©b}	1.30		
CNa ₂	1.86	0.00	-8.50
+11.32 ^{©b}	1.65		
CBe ₂ ©	1.93	0.25	21.05
CMg_2^{\odot}	1.55	1.73	14.88
CF_2	5.96	3.88	56.88
CCl_2	3.78	1.79	20.14
$C(BH_2)_2$	4.69	0.00	27.24
$C(CH_3)_2$	3.50	1.13	1.51
$C(NH_2)_2$	5.21	1.17	56.23
$C(AlH_2)_2$	2.32	0.00	-8.19
C(SiH ₃) ₂	2.23	0.00	-22.24
$C(PH_2)_2$	3.63	0.18	13.12
$C(CH_2)_2^{\mathbb{C}}$	3.71	1.30	15.34
C(CH)2 [©]	5.29	1.72	54.13
C(BHCH)2 [©]	4.86	0.08	18.59
$C(CH_2CH)_2^{\odot}$	3.67	1.70	7.66
C(NHCH)2 [©]	5.64	3.49	86.94
		3.87	86.84
C(CHCH)2 ^Ø	2.49	0.12	-5.87 ^d
+2.15 ^{Øb}	3.12		
C(NCH)2 ^Ø	3.78	0.27	0.46

7. Geometries of diverse carbenes

${\rm CH_2}^{\ast}$

			Triplet				
T)/aV5Z = -39	9.07547337 h	artree	(U)CCSD(T)/aV5Z = -39.09030046 hartree				
0.000000	0.000000	0.173574	C	0.000000	0.000000	0.107237	
0.000000	0.858992	-0.520723	Н	0.000000	0.984730	-0.321711	
0.000000	-0.858992	-0.520723	Н	0.000000	-0.984730	-0.321711	
	$\frac{aV5Z = -39}{0.000000}$ 0.000000 0.000000 0.000000	$\begin{array}{l} \hline)/aV5Z = -39.07547337 \ h\\ \hline 0.000000 & 0.000000\\ \hline 0.000000 & 0.858992\\ \hline 0.000000 & -0.858992 \end{array}$	aV5Z = -39.07547337 hartree 0.000000 0.000000 0.000000 0.858992 -0.520723 0.000000 -0.858992	D/aV5Z = -39.07547337 hartreeTriplet (U)CCSD(T)0.0000000.0000000.1735740.0000000.858992-0.5207230.000000-0.858992-0.520723H0.000000-0.858992	Triplet (U)/ $aV5Z = -39.07547337$ hartreeTriplet (U)CCSD(T)/ $aV5Z = -39.07547337$ hartree0.0000000.0000000.173574C0.0000000.0000000.858992-0.520723H0.0000000.000000-0.858992-0.520723H0.000000	Triplet (U)CCSD(T)/aV5Z = -39.07547337 hartree (U)CCSD(T)/aV5Z = -39.09030046 h 0.000000 0.000000 0.173574 C 0.000000 0.000000 0.000000 0.858992 -0.520723 H 0.000000 0.984730 0.000000 -0.858992 -0.520723 H 0.000000 -0.984730	

*CCSD(T)/aV5Z geometry.

${CF_2}^*$

Singlet				Triplet			
(U)CCSD(1	T)/aV5Z = -23	37.52114803	hartree	(U)CCSD(1	T)/aV5Z = -23	37.43061058	hartree
C	0.529384	0.000000	0.066173	C	0.000000	0.000000	0.500951
F	-0.264692	1.031109	0.066173	F	0.000000	1.134367	-0.166984
F	-0.264692	-1.031109	0.066173	F	0.000000	-1.134367	-0.166984

*CCSD(T)/aV5Z geometry.

CLi₂

Closed Sing	glet			Triplet			
(U)CCSD(1	T)/aVTZ = -5	2.76207075 h	artree	(U)CCSD(T)/aVTZ = -52.79479034 hartree			
С	0.000000	0.000000	0.598063	C	0.000000	0.000000	0.006184
Li	0.000000	1.667700	-0.510309	Li	0.000000	1.968093	-0.002886
Li	0.000000	-1.667700	-0.510309	Li	0.000000	-1.968093	-0.002886
Open Singl	et						
(U)CCSD(1	T)/aVTZ = -5	2.7835295 ha	rtree				
С	0.000000	0.000000	0.000000				
Li	0.000000	0.000000	1.964577]			
Li	0.000000	0.000000	-1.964577				

CNa₂

Closed Sing	glet			Triplet			
(U)CCSD(T)/aVTZ = -361.56930762 hartree				(U)CCSD(T)/aVTZ = -361.601091 hartree			
С	0.000000	0.000000	1.248443	C	0.000000	0.000000	0.000000
Na	0.000000	1.848988	-0.348090	Na	0.000000	0.000000	2.340000
Na	0.000000	-1.848988	-0.348090	Na	0.000000	0.000000	-2.340000
Open Singl	et						
(U)CCSD(1	T)/aVTZ = -3	61.5881342 ha	rtree				
С	0.000000	-0.000467	0.000000				
Na	2.338375	0.000127	0.000000				
Na	-2.338375	0.000127	0.000000				

CMg₂

Singlet				Triplet			
(U)CCSD(1	T)/aVTZ = -4	37.16820622 h	artree	(U)CCSD(T)/aVTZ = -437.14419067 hartree			
С	0.000000	0.000000	1.109266	C	0.000000	0.000000	0.000000
Mg	0.000000	1.489720	-0.278501	Mg	0.000000	0.000000	2.003809
Mg	0.000000	-1.489720	-0.278501	Mg	0.000000	0.000000	-2.003809

CCl₂

Singlet				Triplet			
(U)CCSD(1	T)/aVTZ = -92	57.40113630 h	artree	(U)CCSD(T)/aVTZ = -957.36862128 hartree			
C	0.000000	0.000000	0.851280	C	0.000000	0.000000	0.633942
Cl	0.000000	-1.407873	-0.152065	Cl	0.000000	-1.509575	-0.112795
Cl	0.000000	1.407873	-0.152065	Cl	0.000000	1.509575	-0.112795

C(BH₂)₂

Singlet				Triplet				
(U)CCSD(1	T)/aVTZ = -8	9.90271524 ha	rtree	(U)CCSD(T)/aVTZ = -89.86106166 hartree				
С	0.000000	0.000000	-0.000002	C	0.000000	0.000000	0.000000	
В	1.435015	0.000089	0.000023	В	1.495892	0.000000	0.000000	
В	-1.435015	-0.000089	-0.000021	В	-1.495893	0.000000	0.000000	
Н	-2.009290	1.047851	0.000448	Н	-2.090980	-0.977989	0.344738	
Н	-2.008221	-1.048673	-0.000504	Н	-2.090979	0.977990	-0.344738	
Н	2.009292	-1.047850	0.000510	Н	2.090979	-0.344738	-0.977989	
Н	2.008219	1.048674	-0.000443	Н	2.090979	0.344739	0.977990	

C(CH₃)₂

Singlet				Triplet				
(U)CCSD(1	T/aVTZ = -1	17.57968186 h	artree	(U)CCSD(T)/aVTZ = -117.57836204 hartree				
С	-0.036658	-0.677958	0.000000	C	0.000067	-0.497161	0.000000	
С	-0.018391	0.155538	1.227410	C	0.000005	0.112371	1.346402	
С	-0.018391	0.155538	-1.227410	С	0.000005	0.112371	-1.346402	
Н	1.068787	0.239648	-1.413133	Н	0.886799	0.744111	-1.502330	
Н	-0.419193	-0.364009	-2.098964	Н	0.000239	-0.653983	-2.125288	
Н	-0.422612	1.174548	-1.143030	Н	-0.887061	0.743697	-1.502457	
Н	-0.419193	-0.364009	2.098964	Н	0.000239	-0.653983	2.125288	
Н	1.068787	0.239648	1.413133	Н	0.886799	0.744111	1.502330	
Н	-0.422612	1.174548	1.143030	Н	-0.887061	0.743697	1.502457	

C(NH₂)₂

Singlet				Triplet				
(U)CCSD(T)/aVTZ = -149.74083426 hartree				(U)CCSD(T)/aVTZ = -149.65343492 hartree				
С	0.000000	0.000000	0.612142	C	0.000000	0.000000	0.480585	
N	-0.000040	1.114980	-0.140100	N	-0.004730	1.223448	-0.188832	
N	0.000040	-1.114980	-0.140100	N	0.004730	-1.223448	-0.188832	
Н	-0.000133	-2.006457	0.318482	Н	0.493886	-1.947760	0.318541	
Н	-0.000137	-1.125040	-1.157144	Н	-0.914447	-1.556658	-0.472591	
Н	0.000133	2.006457	0.318482	Н	-0.493886	1.947760	0.318541	
Н	0.000137	1.125040	-1.157144	Н	0.914447	1.556658	-0.472591	

C(AlH₂)₂

Singlet	Singlet				Triplet				
(U)CCSD(T)/aVTZ = -524.28068086 hartree			(U)CCSD(T)/aVTZ = -524.29765857 hartree						
С	0.000000	0.000000	0.000000	C	0.000000	0.000000	0.000000		
Al	0.000000	0.000000	1.910873	Al	0.000000	0.000000	1.938234		
Al	0.000000	0.000000	-1.910873	Al	0.000000	0.000000	-1.938234		
Н	0.000000	-1.413961	-2.626433	Н	-1.381158	0.000000	-2.718672		
Н	0.000000	1.413961	-2.626433	Н	1.381158	0.000000	-2.718672		
Н	0.000000	1.413961	2.626433	Н	0.000000	1.381158	2.718672		
Н	0.000000	-1.413961	2.626433	Н	0.000000	-1.381158	2.718672		

C(SiH₃)₂

Singlet				Triplet				
(U)CCSD(T)/aVTZ = -619.59026584 hartree				(U)CCSD(T)/aVTZ = -619.62629417 hartree				
C	0.028564	-0.790188	0.000000	C	0.000000	-0.000058	0.000000	
Si	-0.008358	0.088414	1.640870	Si	0.000000	-0.000061	1.838355	
Si	-0.008358	0.088414	-1.640870	Si	0.000000	-0.000061	-1.838355	
Н	1.456290	0.379501	-1.723351	Н	-1.209183	-0.698012	-2.347293	
Н	-0.412957	-0.814171	-2.745769	Н	0.000000	1.396113	-2.347285	
Н	-0.776737	1.359960	-1.759547	Н	1.209183	-0.698012	-2.347293	
Н	-0.412957	-0.814171	2.745769	Н	0.000000	1.396113	2.347285	
Н	1.456290	0.379501	1.723351	Н	-1.209183	-0.698012	2.347293	
Н	-0.776737	1.359960	1.759547	Н	1.209183	-0.698012	2.347293	

C(PH₂)₂

Singlet				Triplet				
(U)CCSD(T)/aVTZ = -722.13745614 hartree				(U)CCSD(T)/aVTZ = -722.11951765 hartree				
С	-0.086985	-0.726970	0.126136	C	0.000000	0.000000	0.522707	
Р	-1.589062	0.029496	0.418434	Р	-0.001454	1.635349	-0.164654	
Р	1.405738	0.080272	-0.056228	Р	0.001454	-1.635349	-0.164654	
Н	1.512198	1.321283	0.626508	Н	0.341168	-2.363877	1.004338	
Н	2.384957	-0.683330	0.604324	Н	-1.387445	-1.947391	-0.108227	
Н	-2.558954	-0.645032	-0.344723	Н	-0.341168	2.363877	1.004338	
Н	-1.709708	1.352428	-0.084279	Н	1.387445	1.947391	-0.108227	

C(CH₂)₂[©]

Singlet				Triplet				
(U)CCSD(T)/aVTZ = -116.33501857 hartree				(U)CCSD(T)/aVTZ = -116.31119988 hartree				
C	-0.003796	0.808526	0.000000	C	0.000608	0.850125	0.000000	
C	0.577695	-0.565683	0.000000	C	0.499789	-0.687692	0.000000	
C	-0.918296	-0.388573	0.000000	C	-0.893267	-0.289957	0.000000	
Н	-0.007737	1.397607	0.911253	Н	0.190706	1.403357	0.916731	
Н	-0.007737	1.397607	-0.911253	Н	0.190706	1.403357	-0.916731	
Н	0.997777	-0.978675	0.911253	Н	0.978571	-1.023803	0.916731	
Н	0.997777	-0.978675	-0.911253	Н	0.978571	-1.023803	-0.916731	

C(CH)₂^Ø

Singlet	Singlet				Triplet				
(U)CCSD(T)/aVTZ = -115.05764141 hartree				(U)CCSD(T)/aVTZ = -115.14244039 hartree					
С	-0.726948	-0.301258	0.006670	C	-0.000627	0.739805	0.000000		
С	0.825338	-0.251258	-0.146058	C	0.582514	-0.456058	0.000000		
С	-0.097473	0.845000	0.040833	C	-0.844665	-0.411885	0.000000		
Н	-1.535890	-1.006234	0.039591	Н	0.077223	1.815093	0.000000		
Н	1.544341	-0.705465	0.533049	Н	1.477684	-1.056870	0.000000		

C(BHCH)₂[©]

Singlet				Triplet					
U)CCSD(1	(U)CCSD(T)/aVTZ = -165.94722486 hartree				(U)CCSD(T)/aVTZ = -165.91918133 hartree				
С	0.000001	-1.049166	0.668412	C	0.000000	0.000000	1.395195		
C	-0.691485	0.867304	-0.037929	C	0.000000	0.687398	-0.955031		
С	0.691481	0.867306	-0.037929	C	0.000000	-0.687398	-0.955031		
В	1.158114	-0.627524	-0.182306	В	0.000000	1.273291	0.520213		
В	-1.158113	-0.627527	-0.182307	В	0.000000	-1.273291	0.520213		
Н	2.053049	-1.192637	-0.712706	Н	0.000000	-2.423005	0.828384		
Н	-2.053045	-1.192643	-0.712708	Н	0.000000	2.423005	0.828384		
Н	-1.276836	1.722649	0.295895	Н	0.000000	1.256353	-1.882772		
Н	1.276829	1.722653	0.295895	Н	0.000000	-1.256353	-1.882772		

C(CH₂CH)₂[©]

Singlet				Triplet				
(U)CCSD(1	T)/aVTZ = -1	93.63493424 h	artree	(U)CCSD(T)/aVTZ = -193.62371091 hartree				
С	-0.000043	-1.351632	-0.000444	С	0.000000	0.000000	-1.264616	
C	-0.670688	1.003839	-0.000061	C	0.000000	0.671732	0.946558	
C	0.670752	1.003797	-0.000072	C	0.000000	-0.671732	0.946558	
С	-1.181402	-0.422296	0.000191	C	0.000000	1.262204	-0.456657	
С	1.181376	-0.422370	0.000038	С	0.000000	-1.262204	-0.456657	
Н	-1.808097	-0.683335	0.866296	Н	-0.881599	1.890980	-0.636258	
Н	1.808578	-0.683497	0.865721	Н	-0.881599	-1.890980	-0.636258	
Н	1.809783	-0.683380	-0.864761	Н	0.881599	-1.890980	-0.636258	
Н	-1.810349	-0.683314	-0.864186	Н	0.881599	1.890980	-0.636258	
Н	-1.303375	1.883138	-0.000052	Н	0.000000	1.289618	1.837047	
Н	1.303495	1.883056	-0.000085	Н	0.000000	-1.289618	1.837047	

C(NHCH)2[©]

Singlet				Triplet - p				
(U)CCSD(1	T)/aVTZ = -22	25.80871641 h	artree	(U)CCSD(T)/aVTZ = -225.67210234 hartree				
С	-0.000029	-1.275831	-0.000151	C	-0.000261	-1.195895	-0.127952	
С	-0.681203	0.932381	-0.000057	C	-0.673446	0.907041	-0.003526	
С	0.681246	0.932353	-0.000122	C	0.673897	0.906781	-0.003661	
N	-1.046767	-0.398386	-0.000044	N	-1.172597	-0.421146	-0.033639	
Ν	1.046749	-0.398429	-0.000035	N	1.172368	-0.421594	-0.033551	
Н	1.997760	-0.723729	0.001064	Н	1.847144	-0.652902	0.690864	
Н	-1.997792	-0.723645	0.000880	Н	-1.847517	-0.652241	0.690724	
Н	-1.383350	1.745857	0.000356	Н	-1.343649	1.748664	-0.050072	
Н	1.383429	1.745798	0.000235	Н	1.344487	1.748092	-0.050357	

Triplet - a	T)/aVTZ = -2^{2}	25 67225378 h	artree
		0.000000	1,210686
C	-0.002215	0.672326	-0.913301
C	0.002215	-0.672326	-0.913301
N	0.060882	1.179494	0.423669
N	-0.060882	-1.179494	0.423669
Н	0.650815	-1.871720	0.635873
Н	-0.650815	1.871720	0.635873
Н	-0.029699	1.349057	-1.752117
Н	0.029699	-1.349057	-1.752117

C(CHCH)2^Ø

Closed Sing	Closed Singlet							
(U)CCSD(T	T/aVTZ = -1	92.40590194 h	artree	(U)CCSD(T	T)/aVTZ = -19	92.41905133 h	artree	
С	-0.241346	-1.130519	0.000000	C	0.000000	0.000000	1.222852	
С	0.005145	0.847290	-0.741805	С	0.000000	0.742221	-0.874577	
С	0.005145	0.847290	0.741805	С	0.000000	-0.742221	-0.874577	
С	0.112963	-0.452471	-1.200003	N	0.000000	1.190639	0.426030	
С	0.112963	-0.452471	1.200003	N	0.000000	-1.190639	0.426030	
Н	0.080645	-0.818450	-2.212218	Н	0.000000	2.209286	0.778142	
Н	0.080645	-0.818450	2.212218	Н	0.000000	-2.209286	0.778142	
Н	-0.289204	1.705064	-1.334524	Н	0.000000	1.356875	-1.764626	
Н	-0.289204	1.705064	1.334524	Н	0.000000	-1.356875	-1.764626	
Open Singl	et*							
(U)CCSD/a	VTZ = -192.3	3687017 hartre	e	(U)CCSD/aVTZ = -192.3779954 hartree				
C	0.000000	0.000000	1.257140	С	0.000000	1.186903	0.423472	
C	0.000000	1.141616	0.472496	С	0.000000	0.741000	-0.869826	
С	0.000000	-1.141616	0.472496	С	0.000000	-0.741000	-0.869826	
С	0.000000	0.677049	-0.934983	С	0.000000	-1.186903	0.423472	
C	0.000000	-0.677049	-0.934983	С	0.000000	0.000000	1.220915	
Н	0.000000	2.169441	0.797154	Н	0.000000	2.203786	0.774043	
Н	0.000000	-2.169441	0.797154	Н	0.000000	1.353228	-1.758662	
Н	0.000000	1.328909	-1.793655	Н	0.000000	-1.353228	-1.758662	
Н	0.000000	-1.328909	-1.793655	Н	0.000000	-2.203786	0.774043	

*CCSD/aVTZ geometry.

C(NCH)₂^Ø

Singlet	Singlet				Triplet				
(U)CCSD(T)/aVTZ = -224.49708443 hartree				(U)CCSD(T)/aVTZ = -224.49811150 hartree					
С	0.000000	0.693225	-0.833679	С	0.000000	0.737592	-0.811496		
С	0.000000	-0.693225	-0.833679	С	0.000000	-0.737592	-0.811496		
С	0.000000	0.000000	0.924048	C	0.000000	0.000000	1.129466		
N	0.000000	-1.195540	0.547269	N	0.000000	-1.174070	0.444813		
N	0.000000	1.195540	0.547269	N	0.000000	1.174070	0.444813		
Н	0.000000	1.416474	-1.633074	Н	0.000000	1.406424	-1.661678		
Н	0.000000	-1.416474	-1.633074	Н	0.000000	-1.406424	-1.661678		