Electronic Supplementary Information

# Zeolites with isolated-framework and oligomeric-extraframework hafnium species

characterized with pair distribution function analysis

Takayuki Iida<sup>1,2</sup>, Koji Ohara<sup>3</sup>, Yuriy Román-Leshkov<sup>2\*</sup>, and Toru Wakihara<sup>1\*</sup>

1) Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo,

Bunkyo-ku, Tokyo 113-8656, Japan

2) Department of Chemical Engineering, Massachusetts Institute of Technology, 25

Ames Street, Cambridge, Massachusetts 02139, United States of America

3) Japan Synchrotron Radiation Research Institute/SPring-8, Kouto 1-1-1, Sayo-gun,

Hyogo 679-5198, Japan

\*Corresponding Author: yroman@mit.edu, wakihara@chemsys.t.u-tokyo.ac.jp; Phone: Prof. Yuriy Román-Leshkov (+1) 617-253-7090, Prof. Toru Wakihara (+81) 3-5841-7368

# Table of contents

| 1. Experimentals                                                                                     |
|------------------------------------------------------------------------------------------------------|
| 1.1 Reagents                                                                                         |
| 1.2 Synthesis of the catalysts                                                                       |
| 1.3 Catalyst characterization                                                                        |
| 2. Theory and the calculation methods for d-PDF analysis                                             |
| Table S1. Results for elemental analyses of various catalysts    10                                  |
| Table S2. Textural properties of various catalysts                                                   |
| Figure S1. Crystal models of BEA and BEB zeolite polymorphs                                          |
| Figure S2. N <sub>2</sub> adsorption desorption isotherms of zeolite samples12                       |
| Figure S3. Faber-Ziman total structure factors, $S(Q)$ , of the zeolites used in this paper.         |
|                                                                                                      |
| Figure S4. Comparison of the PDFs from different HfO <sub>2</sub> crystal structures14               |
| Figure S5. Assignment of the correlation peaks in the theoretical PDF of HfO2                        |
| (monoclinic phase) made using the PDFgui software15                                                  |
| Figure S6. d-PDF comparison of Hf-beta(post)_AT and Sn-beta(post)_AT (top) in                        |
| reference to the theoretical PDFs of <i>m</i> -HfO <sub>2</sub> and SnO <sub>2</sub> (cassiterite)16 |
| Figure S7. DR UV-vis spectra of various *BEA zeolites with hafnium in reference to that              |
| of bulk <i>m</i> -HfO <sub>2</sub>                                                                   |
| References                                                                                           |

#### 1. Experimentals

#### 1.1 Reagents

Hafnium cyclopentadiene chloride (Hf(Cp)<sub>2</sub>Cl<sub>2</sub>; Sigma-Aldrich), nitric acid (60 wt%; Sigma-Aldrich), aluminosilicate \*BEA zeolite (Si/Al = 12.5, CP814E\*, Zeolyst), HfO<sub>2</sub> (Sigma-Aldrich), benzaldehyde (Wako Chemicals), acetone (Wako Chemicals), toluene (Wako Chemicals), tri-tert-butylbenzene (Wako Chemicals), tetraethoxyorthosilicate (TEOS; Alfa-Aesar), tetraethylammonium hydroxide (35 wt%; Sigma-Aldrich), hydrofluoric acid (48 wt%, Sigma-Aldrich), tin dimethyl dichloride (Me<sub>2</sub>SnCl<sub>2</sub>; Sigma-Aldrich) were used as purchased. Air (dry grade) was purchased from Airgas.

## 1.2 Synthesis of the catalysts

Hf-beta(post) was synthesized as follows. First, removal of framework aluminum from the aluminosilicate \*BEA zeolite was performed by immersing the \*BEA zeolites into nitric acid, and heating the suspension inside a Teflon<sup>®</sup>-lined steel autoclave for overnight. After collecting the solid by filtration and washing with deionized water (the product denoted as DeAl-beta), the zeolite was degassed under vacuum at 400°C for overnight. The dried zeolite was transferred and stored inside a glovebox. Into a Teflon<sup>®</sup>lined autoclave, the degassed DeAl-beta, metal precursor (Hf(Cp)<sub>2</sub>Cl<sub>2</sub> or Me<sub>2</sub>SnCl<sub>2</sub>), and toluene were added, and the container was sealed inside the glovebox. The mixtures were heated at 160°C for 16 h to graft the metal precursor to the framework sites. The solid was collected by filtration, washed with hexane, and calcined in the oven at 550°C for 3 h under dry air flow (100 mL/min) after 3 h of ramping period. A second acid treatment was performed to the product after the calcination treatment following the same procedure described for removing the framework Al.

Si-beta(F), pure silica \*BEA zeolite, was prepared following the procedures reported in previous works<sup>1</sup>, with ingredient molar composition of SiO<sub>2</sub> : TEAOH : HF: H<sub>2</sub>O = 1 : 0.5 : 0.5 : 7.5. For preparing HfO<sub>x</sub>/Si-beta, incipient-wetness impregnation was performed with an ethanol solution containing the desired amount of HfCp<sub>2</sub>Cl<sub>2</sub>. The dried sample was calcined at 550°C for 3 h under dry air flow (100 mL/min).

## 1.3 Catalyst characterization

Powder X-ray diffraction (XRD) patterns were collected using Bruker D8 diffractometer with Nickel-filtered Cu Ka radiation ( $\lambda = 1.5418$  Å) for a  $2\theta$  range of 3°– 50°. N<sub>2</sub> physisorption was carried out on Quantachrome Autosorb iQ-2 automated gas sorption system. All samples were degassed under vacuum prior to use (350°C) and the measurement was conducted at liquid nitrogen temperature (-196°C).

The activity for aldol condensation between benzaldehyde and acetone was measured

using the conditions based on a previous report<sup>2</sup>. GC-FID (Shimadzu 2014) fitted with DB-1701 column (Agilent) was used for quantification of the reactant/products. Tri-tert-butylbenzene was used as an internal standard.

The high-energy X-ray Total Scattering (HEXTS) measurements were performed on powder sample in a quartz capillary at room temperature using a horizontal two-axis diffractometer at the BL04B2 high-energy X-ray diffraction beamline (SPring-8, Japan). The energy of incident X-rays was 61.43 keV ( $\lambda = 0.2018$  Å). The maximum Q ( $Q = 4\pi$ sin  $\theta / \lambda$ ),  $Q_{\text{max}}$ , collected in this study was 20 Å<sup>-1</sup>. The obtained data were subjected to well-established analysis procedures, such as absorption, background, polarization and Compton scattering corrections, and subsequently normalized to give a Faber–Ziman total structure factor  $S(Q)^{3,4}$ . These collected data were used to calculate the (reduced) pair distribution function, G(r), using the following function:

$$G(r) = 4\pi r [\rho(r) - \rho_0] = \frac{2}{\pi} \int_{Qmin}^{Qmax} Q[S(Q) - 1] \sin(Qr) dQ,$$

where  $\rho$  is the atomic number density.

The theoretical PDFs were calculated using PDFgui software<sup>5</sup>, and  $\Box$  information regarding various crystal structures were taken from the following literatures; cubic<sup>6</sup>, monoclinic<sup>7</sup>, orthorhombic<sup>8</sup> HfO<sub>2</sub> and cassiterite<sup>9</sup>.

The following definitions were used to quantify the catalytic testing results:

Conversion [%] = moles of reactant consumed / moles of reactant fed  $\times$  100

Selectivity [%] = moles of product / moles of reactant consumed  $\times$  100

#### 2. Theory and the calculation methods for d-PDF analysis

An unique feature of PDF is its linearity<sup>10</sup>, as shown in eq (1), to describe the pair distribution function, G(r), of a binary phase admixture of pure phase A and pure phase B by a linear addition of each of the pair distribution functions, G(r).

$$G_{Mixture}(r) = x_A G_A(r) + x_B G_B(r) + x_{A-B} G_{A-B}(r) \cdots (1)$$

Where  $x_A$ ,  $x_B$ , and  $x_{A-B}$  are coefficients and  $G_{Mixture}(r)$ ,  $G_A(r)$ ,  $G_B(r)$ , and  $G_{A-B}(r)$  represent the pair distribution functions describing the structure of the mixture, phase A, phase B, and the interatomic correlations between phases A and B. When the phases are totally independent (for example, having no atomic connectivity by chemical bondings), the following approximation holds<sup>11</sup>;

$$G_{A-B}(r) = 0\cdots(2)$$

By modifying this equation as shown in Eq (3) below, and calculating the difference in the PDFs of mixture and B (as shown in the right side eq (3)), the structure of phase A can be extracted:

 $x_A G_A(r) \cong G_{Mixture}(r) - x_B G_B(r) \cdots (3)$ 

There are two things to be taken into account for the calculation of d-PDFs regarding heteroatom-containing zeolites.

1) For heteroatom-containing zeolites, the assumption made in eq (2) does not hold

because there is a direct connectivity between the heteroatom and the zeolite, and thereby, the PDF describing the surrounding environment of the heteroatom (for example Hf) including the interatomic correlations with the zeolite framework,  $G_{Hf-}(r)$ , is extracted from the right side of eq (3). That is, eq (3) can be fixed to the following form.

$$x_A G_{Hf-}(r) = G_{Mixture}(r) - x_B G_{Zeolite}(r) \cdots (4)$$

2) In X-ray experiments, the scattering factors are functions of wavenumber vector Q, and thereby, assumption that  $x_B$  stays constant does not hold in the strict sense. Thereby, in this work,  $x_B G_{Zeolite}(r)$  was calculated by the following Fourier transformation equation;

$$x_{B}G_{Zeolite}(r) = \frac{2}{\pi} \int_{Qmin}^{Qmax} Q \left[ \frac{c_{B}^{2} < f_{B}(Q) > 2}{< f_{Mixture}(Q) > 2} F_{Zeolite}(Q) \right] \sin(Qr) dQ \cdots (5)$$

Where,

$$F_{Zeolite}(Q) = S_{Zeolite}(Q) - 1\cdots(6)$$

 $c_B$  represents the total the atomic composition of elements in phase B (in this case zeolites) out of the whole mixture (that is the mixture of zeolite and hafnium oxide phases), and  $< f_B(Q) > < f_{Mixture}(Q) >$  can be calculated based on the following equations.

$$< f_B(Q)^2 > = (\sum_{i}^{B} c_i f_i)^2 \cdots (7)$$

 $\langle f_{Mixture}(Q) \rangle^2 = (\sum_{i}^{Mixture} c_i f_i)^2 \cdots (8)$ 

Where  $c_i$  represents the atomic composition of element *i*, and  $f_i$  represents the X-ray scattering factor of element *i*.

| Catalyst                     | Si/Hf | Si/Sn | Si/Al |
|------------------------------|-------|-------|-------|
| Hf-beta(post)                | 37    | -     | >1000 |
| Hf-beta(post)_AT             | 180   | -     | >1000 |
| HfO <sub>x</sub> /Si-beta(F) | 230   | -     | >1000 |
| Sn-beta(post)                | -     | 59    | >1000 |
| Sn-beta(post)_AT             | -     | 93    | >1000 |

Table S1. Results for elemental analyses of various catalysts

| Catalyst                     | BET specific surface area [m <sup>2</sup> g <sup>-1</sup> ] | Micropore volume<br>[cc g <sup>-1</sup> ] |
|------------------------------|-------------------------------------------------------------|-------------------------------------------|
| Al-beta                      | 644                                                         | 0.17                                      |
| DeAl-beta                    | 513                                                         | 0.14                                      |
| Hf-beta(post)                | 547                                                         | 0.16                                      |
| Hf-beta(post)_AT             | 577                                                         | 0.17                                      |
| Si-beta(F)                   | 554                                                         | 0.21                                      |
| HfO <sub>x</sub> /Si-beta(F) | 531                                                         | 0.20                                      |

 Table S2. Textural properties of various catalysts

\*Calculated using *t*-plot method



Figure S1. Crystal models of BEA and BEB zeolite polymorphs.

\*BEA zeolites are obtained as an intermixture of both BEA and BEB crystal structure polymorphs. Information of the crystal structures were obtained from International Zeolite Association Structure Commission Database.

(http://www.iza-structure.org/databases/)

BEA crystal; (a = 12.66139 Å, b = 12.66139 Å, c = 26.40612Å,  $\alpha = \beta = \gamma = 90^{\circ}$ )

BEB crystal; (a = 17.89654 Å, b = 17.92002 Å, c = 14.32815 Å,  $\alpha = 90^{\circ}, \beta = 114.803^{\circ}, \gamma =$ 

90°)



Figure S2. N<sub>2</sub> adsorption desorption isotherms of zeolite samples.



Figure S3. Faber-Ziman total structure factors, S(Q), of the zeolites used in this paper.



Figure S4. Comparison of the PDFs from different HfO<sub>2</sub> crystal structures.

The calculations were performed using PDFgui software<sup>5</sup>.



Figure S5. Assignment of the correlation peaks in the theoretical PDF of  $HfO_2$  (monoclinic phase) made using the PDFgui software<sup>5</sup>.

For example, Hf-Hf shows the probability of finding Hf-Hf distance at a given distance,

r. Most correlations visible were found to originate from Hf-Hf or Hf-O correlations (at

2.0 and 4.4 Å) due to the relatively large X-ray scattering factor by Hf compared to O.



**Figure S6.** d-PDF comparison of Hf-beta(post)\_AT and Sn-beta(post)\_AT (top) in reference to the theoretical PDFs of m-HfO<sub>2</sub> and SnO<sub>2</sub> (cassiterite).

The blue dashed lines compare the peak positions in the d-PDF analysis, and with the correlations originating from m-HfO<sub>2</sub> in the distances between 3 ~ 4.5 Å. The black dashed lines compare the peak positions in the d-PDF analysis between Hf-beta(post)\_AT and Sn-beta(post)\_AT at the other distances.



Figure S7. DR UV-vis spectra of various \*BEA zeolites with hafnium in reference to that

of bulk *m*-HfO<sub>2</sub>.

# References

- 1 M. A. Camblor, A. Corma and S. Valencia, Spontaneous nucleation and growth of pure silica zeolite-β free of connectivity defects, *Chem. Commun.*, 1996, 2365.
- J. D. Lewis, S. Van De Vyver and Y. Román-Leshkov, Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization, *Angew. Chem. Int. Ed.*, 2015, 54, 9835–9838.
- 3 T. E. Faber and J. M. Ziman, A theory of the electrical properties of liquid metals, *Philos. Mag.*, 1965, **11**, 153–173.
- 4 S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi and M. Takata, Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions, *J. Phys. Condens. Matter*, 2007, **19**, 506101.
- 5 C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Božin, J. Bloch, T. Proffen and S. J. L. Billinge, PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals., *J. Phys. Condens. Matter*, 2007, **19**, 335219.
- 6 R. W. G. Wyckoff, Crystal Structures Second Edition, 1965.
- R. Ruh and P. W. R. Corfield, Crystal structure of monoclinic hafnia and comparison with monoclinic zirconia Locality: synthetic, *J. Am. Ceram. Soc.*, 1970, 53, 126–129.
- 8 O. Ohtaka, T. Yamanaka and S. Kume, Synthesis and X-ray structural analysis by the Rietveld method of orthorhombic hafnia, *Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi*, 1991, **99**, 826–827.
- W. H. Baur and A. A. Khan, Rutile-Type Compounds. VI. Si O2, Ge O2 and a Comparison with other Rutile-Type Structures, *Acta Crystallogr. B*, 1971, 27, 2133–2139.
- S. J. L. Billinge, Nanoscale structural order from the atomic pair distribution function (PDF): There's plenty of room in the middle, *J. Solid State Chem.*, 2008, 181, 1695–1700.
- T. Proffen, S. J. L. Billinge, T. Egami and D. Louca, Structural analysis of complex materials using the atomic pair distribution function a practical guide, *Zeitschrift für Krist.*, 2003, 218, 132–143.