Electronic Supplementary Information: An *in situ* XAS study of the activation of precursor-dependent Pd nanoparticles

Christian W. Lopes^{ab}, Jose L. Cerrillo^a, Antonio E. Palomares^a, Fernando Rey^a, Giovanni Agostini^{c*}

^aInstituto de Tecnología Química (Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas), Avda. de Los Naranjos s/n, Valencia 46022, Spain.

^bCAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil.

^cLeibniz-Institut für Katalyse, Albert-Einstein-Straβe 29a, Rostock 18059, Germany.

Contents

Fig. S1. Experimental steps used in the XAS study of Pd-based catalysts: (a) calcination under O_2 /He flow and (b) reduction under H_2 /He flow. Every red dot represents a set of 3 measurements.

Fig. S2. Thermogravimetric analysis (a) and respective derivative (b) of $Pd(OAc)_2$, $PdCl_2$ and $Pd(NO_3)_2$ precursors.

Fig. S3. k³-weighted, phase-uncorrected $\chi(k)$ functions of Pd-based catalysts during reduction in H₂ at 200 °C.

Fig. S4. k³-weighted, $\chi(q)$ functions (q-range = 2.2-3.0 Å) of Pd-based catalysts during reduction in H₂ at 200 °C: (a) PdAl-Ac (b) PdC-Ac (c) PdAl-Cl (d) PdC-Cl (q-range = 1.4-3.0 Å) (e) PdAl-NO₃ (f) PdC-NO₃.

Fig. S5. |FT| of the k³-weighted $\chi(k)$ functions of catalysts during reduction in H₂ at 200 °C: (a) PdAl-Ac (b) PdC-Ac (c) PdAl-Cl (d) PdC-Cl (e) PdAl-NO₃ (f) PdC-NO₃.

Fig. S6. TEM images of as-reduced Pd/Al₂O₃ (top) and Pd/C (bottom) catalysts.

Table S1. Summary of EXAFS fit of the Pd standards.

Table S2. Summary of optimized parameters by fitting EXAFS data of catalysts after reduction in H_2 at 25 °C.

Figures

Fig. S1. Experimental steps used in the XAS study of Pd-based catalysts: (a) calcination under O_2 /He flow and (b) reduction under H_2 /He flow. Every red dot represents a set of 3 measurements.

Fig. S2. Thermogravimetric analysis (a) and respective derivative (b) of $Pd(OAc)_2$, $PdCl_2$ and $Pd(NO_3)_2$ precursors.

Fig. S3. k³-weighted, phase-uncorrected $\chi(k)$ functions of Pd-based catalysts during reduction in H₂ at 200 °C.

Fig. S4. k³-weighted, $\chi(q)$ functions (q-range = 2.2-3.0 Å) of Pd-based catalysts during reduction in H₂ at 200 °C: (a) PdAl-Ac (b) PdC-Ac (c) PdAl-Cl (d) PdC-Cl (q-range = 1.4-3.0 Å) (e) PdAl-NO₃ (f) PdC-NO₃.

Fig. S5. |FT| of the k³-weighted χ(k) functions of catalysts during reduction in H₂ at 200 °C: (a) PdAl-Ac (b) PdC-Ac (c) PdAl-Cl (d) PdC-Cl (e) PdAl-NO₃ (f) PdC-NO₃.

Fig. S6. TEM images of as-reduced Pd/Al_2O_3 (top) and Pd/C (bottom) catalysts according the scheme reported in Fig.S1b.

Tables

Standard	CN	S_0^2	Path	R (Å)	σ^2 (Å ²)	E ₀ (eV)	r-factor
Pd foil ^b	12	0.75 ± 0.07	Pd-Pd	2.743 ± 0.003	0.0053 ± 0.0005	4.3 ± 0.8	0.0013
PdCl ₂ ^c	4	1.07 ± 0.05	Pd-Cl	2.314 ± 0.002	0.0033 ± 0.0003	4.2 ± 0.6	0.0013
PdO ^d	4	0.77 ± 0.08	Pd-O	2.022 ± 0.007	0.0016 ± 0.0010	-0.2 ± 1.4	0.0088
$Pd(OAc)_2^d$	4	0.84 ± 0.13	Pd-O	2.001 ± 0.010	0.0021 ± 0.0008	1.0 ± 1.9	0.0184

Table S1 Summary of EXAFS fit of the Pd standards^a

^aThe fits were performed on the first coordination shell (at different ΔR) over FT of the k³-weighted $\chi(k)$ functions performed in the $\Delta k = 2.3-13.7$ Å⁻¹ interval, resulting into a number of independent parameters of $2\Delta R\Delta k/\pi = 7.0$ (6.8 for Pd foil). Non optimized parameters are recognizable by the absence of the corresponding error bar. ^b $\Delta R = 2.0-3.0$ Å; ^c $\Delta R = 1.4-2.4$ Å; ^d $\Delta R = 1.0-2.0$ Å.

Table S2 Summary of optimized parameters by fitting EXAFS data of catalysts after reduction in H_2 at 25 $^{\circ}C^{a}$

Sample	CN	Path	R (Å)	σ^2 (Å ²)	E ₀ (eV)	r-factor
PdAl-Ac	-		-			-
PdAl-Cl	6.4 ± 0.3	Pd-Pd	2.792 ± 0.003			0.0027
PdAl-NO ₃	12.0 ± 0.6		2.823 ± 0.003	0.0082 ± 0.0003	2.9 ± 0.5 -	0.0041
PdC-Ac	5.6 ± 0.3		2.783 ± 0.003			0.0126
PdC-Cl ^b	3.1 ± 0.2	Pd-Pd	2.775 ± 0.006			0.0559
PdC-NO ₃	7.6 ± 0.4		2.806 ± 0.004			0.0029

^aA simultaneous fit of the spectra was adopted, fixing the σ^2 and E_0 values; the fits were performed on the first coordination shell ($\Delta R = 2.2-3.0$ Å) over FT of the k³-weighted $\chi(k)$ functions performed in the $\Delta k = 2.3-13.7$ Å⁻¹ interval, resulting into a number of independent parameters of $2\Delta R\Delta k/\pi = 33.3$. Non optimized parameters are recognizable by the absence of the corresponding error bar. ^b $\Delta R = 1.4-3.0$ Å.