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1. Simulation details

In this work, we first studied the dodecahedral cage formation by the self-assembly of 3-patch 

particles as shown in Figure 1. The angles between the 3 patches are  to 120°, 120° 𝑎𝑛𝑑 108°

mimic the non-polar sp2 carbon atoms in fullerene. The half-opening angle of the patch is . 50°

 and  are 396 and 110 respectively, corresponding to approximately 4.0 MPa for the elastic 𝛼𝑅
𝑖𝑗 𝛼𝐴

𝑖𝑗

modulus and 3.0 kBT for the adhesion energy if the particle size is 10 nm, respectively [1].  𝜈

equals to . We refer this system as the “original system”. To achieve a larger amount of 0.5

dodecahedral conformations, we also changed all the angles between patches to . We refer 108°

this new system as “designed system”. All the simulations were performed by the GALAMOST 

package in the NVT ensemble [2]. At the beginning, 960 patchy particles were solvated in the 

simulation box with size of . Explicit coarse-grained solvent model is used in this 40 × 40 × 40

study. The concentration of patchy particle was set to be 1.5%. The solute-solvent and solute-

solute interactions are describe by the repulsive force in Equation 1 in the main text. The 

Velocity-Verlet algorithm [3] was used to integrate the equation of motions. The time step is 

 and the saving interval for each frame is  steps. The temperature was coupled 𝛿𝑡 = 0.002𝜏 1000

by Nose-Hoover thermostat [4]. We run 60 parallel trajectories with different starting velocities 

with the length of  steps for both of the original and designed systems. 2 × 106

2. Order parameters for state decomposition

In this study, we chose the size of the aggregate, number of pentagonal rings and number of 

hexagonal rings in the aggregate as order parameters to perform the state decomposition. The 

aggregate size is used to monitor the growth of the aggregates. We choose number of pentagonal 

and hexagonal rings as order parameters as they are two characteristic components of the closed 

fullerene-like cage formed by the patchy particles. As shown in Figure S1 (a) and (b), all 

extracted aggregate conformations are projected onto these three defined order parameters. Time 

evolution of these three order parameters of one simulation trajectory are presented in Figure S1 

(c) and (d). More details of these three order parameters could be found in Section 3 & 4. 



3. Extracting the aggregate conformations

We adopt the same method as described in ref [5] to identify aggregates. In particular, two 

patchy particles are considered as connected and belongs to the same aggregate if the distance 

between them is smaller than the distance of the first solvation shell (0.75) of their radial 

distribution functions (see Figure S2). In total, we extracted 10,945,409 and 13,150,914 

aggregate conformations for the original and designed system, respectively.

4. Calculating the number of trigonal, tetragonal, pentagonal and hexagonal rings

The number of trigonal, tetragonal, pentagonal and hexagonal rings are calculated based on the 

“bonded” interaction between inter-particle patches. In this study, we consider that there is a 

“bond” between two inter-particle patches if there is an attractive interaction between these two 

inter-particle patches according to Equation 2 in the main text. If one patch does not have 

interaction with any other patches, we denote this patch as “un-bonded” patch. By this way, we 

could identify all the “bonds” between inter-particle patches in the system. Then one aggregate 

could be considered as a graph in which the node represents the patchy particle, the edge 

represents the “bond”. And the rings in the aggregate could be regarded as the closed chordless 

cycles in the graph. The chordless cycle is a cycle in which two nodes are not connected by an 

edge not belong to the cycle. In this way, a closed cycle formed by the connection of two smaller 

closed cycles will not be counted as a new ring. By applying a greedy algorithm, we detected all 

the rings. 

    The probability of “un-bonded” patches ( ) for each aggregate is calculated as the ratio 𝑃𝑢𝑛𝑏𝑜𝑛𝑑

of the number of “un-bonded” patches to the total number of patches in the aggregate. 

5. State decomposition for the aggregate conformations

The aim of this study is to figure out the molecular mechanisms of the formation of the 

dodecahedral cage. Thus, we divided the aggregate conformations with size not larger than 34 

into different conformational states based on the three order parameters defined in the previous 

section. The detailed protocols are listed below:



Step 1: We first picked up the aggregates with size smaller than 6 and the aggregates which are 

closed cages (with 12 pentagonal rings, N hexagonal rings and size equaling to 20+2N, N=0, 2, 3, 

4, 5, 6, 7). These conformations are grouped as separated conformational states as shown in table 

1. 

Step 2: For the rest of the extracted aggregate conformations, those with the same number of 

pentagonal rings and same number of hexagonal rings are grouped into the same state. 

Step 3: In each state obtained from step 2, the aggregate conformations are further divided into 

sub-states based on the following aggregate size range: 

 and . {1 ‒ 5}, {6 ‒ 10}, {11 ‒ 15}, {16 ‒ 20}, {21 ‒ 25}, {26 ‒ 30} {31 ‒  34}

These sub-states obtained from step 3 and the conformational states obtained from step 1 

constitute all the conformational states. Finally, we obtained 663 and 1026 conformational states 

for the original and designed systems, respectively. 

6. Identifying the self-assembly pathways based on the kinetic network model 

To identify the self-assembly pathways for the formation of dodecahedral cage, we first 

constructed the kinetic network model based on the conformational states. The kinetics between 

different conformational states are characterized by the mass flow [5]. The lag time for calculate 

the mass flow between different conformational states is chosen to be 1000 time steps. Then we 

applied the modified Dijkstra’s algorithm [6] on the net mass flow matrix. The initial state was 

chosen as the states containing aggregates with size smaller than 6 and without pentagonal or 

hexagonal rings (state S1 in Table 1). The final state was chosen as the state containing 

dodecahedral cages with size equaling to 20, 12 pentagonal rings and 0 hexagonal rings (state S2 

in Table 1). In total, we identified 38 and 1860 pathways for the original and designed systems, 

respectively. 

7. Testing the convergence of the kinetic analysis results

To test the convergence of the KNM analysis, 10, 20, 30, 40 and 50 trajectories are randomly 

chosen from all the 60 trajectories for the further analysis. We first examine the convergence of 



the properties of individual conformational state in our KNMs. In particular, we chose five 

representative states at different stage of the self-assembly process as shown in Table 2. We 

show that state properties such as the resident mass flow ( ) and self-transition mass flow (𝑀𝑝

) calculated from different number of trajectories are all within the uncertainty (Figure S4). 𝑇𝑠𝑒𝑙𝑓

Here, the resident mass flow ( ) is defined as the total number of patchy particles (or 𝑀𝑝

accumulative mass of the aggregates) from a particular conformational state, and values of  𝑀𝑝

relative to the averaged values of state A are reported for different number of trajectories in 

(Figure S4).  The self-transition mass flow ( ) of a particular state is the diagonal term of the 𝑇𝑠𝑒𝑙𝑓

mass flow matrix corresponding to that state.

    In addition to state properties, we have also examined the convergence of major self-assembly 

pathways (top pathways contribute to 60% of the total mass flow). As shown in Figure S5, the 

kinetic pathways are more difficult to converge than the state properties.  In particular, top 

pathways computed from 10, 20, 30 and 40 trajectories display substantial difference from those 

calculated from 50 and 60 trajectory particularly at the initial stage of the self-assembly.  

Nevertheless, the kinetic pathways obtained from 50 and 60 trajectories are largely similar, 

indicating the convergence of our sampling. 

8. Calculating the asphericity parameter of aggregates ( )𝐴𝑝

The asphericity parameter is applied to describe the morphology of the aggregate and is defined 

as follows:  

𝐴𝑝 =
(𝜆2

1 ‒ 𝜆2
2)2 + (𝜆2

1 ‒ 𝜆2
3)2 + (𝜆2

3 ‒ 𝜆2
2)2

2(𝜆2
1 + 𝜆2

2 + 𝜆2
3)2 ( S1 )

where  are the three eigenvalues of the gyration tensor A:𝜆1, 𝜆2, 𝜆3

𝐴 = [𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑥𝑧
𝑆𝑦𝑥 𝑆𝑦𝑦 𝑆𝑦𝑧
𝑆𝑧𝑥 𝑆𝑧𝑦 𝑆𝑧𝑧

] ( S2 )



where , N is the aggregate size, namely the number of patchy 
 𝑆𝑥𝑦 =

1
𝑁∑

𝑖
(𝑥𝑖 ‒ 𝑥𝑐)(𝑦𝑖 ‒ 𝑦𝑐)

particles in the aggregate,  is the ith particle’s coordinate and  is the mass (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) (𝑥𝑐, 𝑦𝑐, 𝑧𝑐)

center of the aggregate.  ranges from 0 to 1, 0 for a perfect sphere, 1 for a rod.𝐴𝑝

9. Hexagonal rings mediate the formation of dodecahedral cage structure

Although there is no hexagonal rings in the dodecahedral cage, we observed that hexagonal rings 

are formed in the intermediate states and then disappeared finally in the formation of the 

dodecahedral cage (Figure 2 (a)). We found that the conformational states containing hexagonal 

rings have a higher probability of the “bonded” patches, implying a higher stability of the 

structure. Further inspection of the simulation trajectories showed that the hexagonal rings is 

mainly formed by the coalescence of two tails connected to the same pentagonal ring as shown in 

Figure S6 (b), which is achieved by forming a new “bond” between particle 1 and particle 2. To 

form the dodecahedral structure, the hexagonal ring will convert to the pentagonal ring in the 

later stage as shown in Figure S6 (c), which is achieved by breaking the “bond” between particle 

3 and particle 4 and forming a new “bond” between particle 3 and particle 5. Thus, we believe 

that the formation of hexagonal ring is an important intermediate state that mediates the 

formation of dodecahedral structure. 

    In the later stage, the hexagonal rings need to be converted to pentagonal rings in order to 

form the closed dodecahedral cage, which are only consisted of pentagon rings. This could be 

explained by the flexibility of the “bonds” formed between different patchy particles due to the 

relatively large size of the patches (see the patch opening angle defined in Figure 1). Though the 

angle between two patches within individual patchy patch is preciously 120° or 108°, the angles 

between two “bonds” formed by different patchy particles are not exactly 120° or 108°. Such 

flexibility allows the transition from the hexagonal ring to the pentagonal ring. Besides, to form 

the closed dodecahedral cage, an increase in the curvature of the structure also favors pentagonal 

rings.



10. The kinetics of the designed system differs from the original system

We found that the aggregates grow slower after we changed the angles as shown in Figure S8 (a). 

The growth of aggregates are controlled by two parameters: the adhesion rate characterizing the 

speed for forming larger aggregates and the dissociation rate characterizing the speed of the 

conversion from larger aggregates to smaller aggregates. We found the dissociation probabilities 

for the two systems are the same as shown in Figure S8 (b). Meanwhile,  of the designed 𝑃𝑢𝑛𝑏𝑜𝑛𝑑

system decreases more rapidly than the original system (Figure S8 (c)). These observations 

suggest that more aggregates with smaller size and smaller number of “un-bonded” patches are 

formed in the designed system than in the original system which in turn result in a smaller 

adhesion rate for the designed system. This indicates that we inhibit the formation of other 

aggregates larger than 20 to some extent by altering these 3 angles. We further identified the 

self-assembly pathways for the designed system as shown in Figure S9. Unlike the pathways in 

the original system, the aggregate size increasing stage is accompanied with the structure 

rearrangement process in the designed system. 



Figure S1. Projections of aggregate conformations onto the defined order parameters: (a) size 

and number of pentagonal ring; (b) size and number of hexagonal ring. The time evolution of (c) 

the mean aggregate size and (d) the number of the pentagonal and hexagonal rings in one 

simulation trajectory.



Figure S2. Radial distribution functions (RDF) of the patchy particles at different time points in 

the simulation. Each RDF plot is calculated based on one frame at the specified time point. 



Table 1. Conformational states with specific size and number of pentagonal and hexagonal rings.

State label Size
No. of pentagonal 

ring

No. of hexagonal 

ring

S1 0-5 0 0

S2 20 12 0

S3 24 12 2

S4 26 12 3

S5 28 12 4

S6 30 12 5

S7 32 12 6

S8 34 12 7



Figure S3. The top 10 pathways projected onto the size and the number of pentagonal rings. The 
corresponding mass flow of each pathway is labeled in the figure. Since the conformational state 
is defined based on the size, the number of pentagonal rings and the number hexagonal rings, we 
could see self-transition and reverse transition in the pathways projected onto the aggregate size 
and the number of pentagonal rings. 



Table 2. Five representative states at different stage of the self-assembly process were chosen for 
the convergence test.

State label Size No. of pentagonal 
rings

No. of hexagonal 
rings

A 1-5 0 0

B 6-10 0 0

C 6-10 1 0

D 11-15 1 0

E 16-20 1 0



Figure S4. The relative mass of patchy particles ( ) in the five conformational states and self-𝑀𝑝

transition mass flow ( ) of these five states. We calculated  and  by using different 𝑇𝑠𝑒𝑙𝑓 𝑀𝑝 𝑇𝑠𝑒𝑙𝑓

number of trajectories, namely 10, 20, 30, 40, 50 and 60 trajectories. The error bars were 
estimated by the bootstrapping method. Specifically, we bootstrapped 10 times, and at each time 
10, 20, 30, 40 and 50 non-repeating trajectories were randomly chosen, respectively. The error 
bar for the data calculated from 60 trajectories is 0 as the total number of trajectories is 60. The 
values of  and  of State A were set to 1 and those of other states were scaled accordingly.𝑀𝑝 𝑇𝑠𝑒𝑙𝑓



Figure S5. Top pathways conveying about 60% of the total mass flow are identified from the 
different KNMs constructed based on different number of trajectories.



Figure S6. (a) Probability of “bonded” patches ( ) in the aggregate of the 𝑃𝑏𝑜𝑛𝑑 = 1 ‒ 𝑃𝑢𝑛𝑏𝑜𝑛𝑑

states projected onto the number of pentagonal rings and hexagonal rings. Conformations 

extracted from the simulation trajectory show: (b) the formation of a hexagonal ring and (c) the 

conversion from a hexagonal ring to a pentagonal ring.



Figure S7. Projection of the aggregates onto the size and the number of “unbonded” patches, the 

number of pentagonal rings, the number of the hexagonal rings for the original system (a)(c)(e) 

and designed system (b)(d)(f), respectively. 



Figure S8. Time evolution of (a) mean aggregate size, (b) the dissociation probability, (c) the 

probability of un-bonded the patches.



Figure S9. Top 600 pathways for the designed system projected onto size and the number of 

pentagonal rings. These top 600 pathways convey 62% of the mass flow of the system. The line 

width of the path segment connecting two states is proportional to the total flux in the top 600 

paths that passes through these two states. Line width corresponding to flux less than 5% is set to 

be the line width corresponding to flux=5%. The path segment is colored blue if the 

corresponding flux is larger than 10%.  
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