Theoretical Study of Radiative and Nonradiative Decay Rates for Cu(I) Complexes with Double Heteroleptic Ligands

Yuannan Chen,^a Aimin Ren,^a Zhongyue Yang,^b Tengfei He,^a Xiaoli Ding,^a Hongxing Zhang,^a and

Luyi Zou^{a*}

^aLaboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin

University, Changchun 130023, P. R.China.

^bDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA

02139, United States.

*Corresponding author. E-mail addresses: zouly@jlu.edu.cn

Fig. S1. Absorption(a) and emission(b) spectra obtained by TDDFT method with different functionals for **3**, together with experimentally (unit: nm).

Fig. S2. Dependence of $E(S_1)$ of **3** on the HF% in TD-DFT functionals.

Fig. S3. *Dushin* program to deal with changes in the electronic state process of reorganization energy diagram.

Fig. S4. Super imposed structures of S_0 (green) and T_1 (red) states of the studied complexes.

Fig. S5. Spin density plot for the lowest T_1 state for the complexes.

Fig. S6. The transition dipole moment vector of the contribution from N^N ligand, P^P ligand and the whole complex is described by the blue, orange and purple arrows, respectively.

Fig. S7. Calculated reorganization energies and the displacement vectors for the normal modes with the largest reorganization energies over 100 cm⁻¹ at high-frequency (inset).

Fig. S8. Calculated reorganization energies and the displacement vectors for the normal modes with the reorganization energies over 200 cm⁻¹ at low-frequency(inset).

			. 0			1
	B3LYP	B3PW91	PBE0	M06	M06-2X	Expt.
Cu-N ₁	2.2870	2.2620	2.2196	2.2216	2.2582	2.2275
Cu-N ₂	2.2388	2.2220	2.2349	2.2116	2.2056	2.1372
Cu-P ₁	2.4094	2.3828	2.3649	2.3297	2.3700	2.2851
Cu-P ₂	2.3932	2.3693	2.3327	2.2768	2.4497	2.2319
N ₁ -Cu-P ₁	109.25	109.13	104.93	102.35	103.24	101.95
N ₁ -Cu-P2	110.44	110.39	114.13	114.15	116.13	112.77
N ₂ -Cu-P ₁	106.02	105.68	100.60	97.84	94.15	98.24
N ₂ -Cu-P ₂	114.56	114.41	116.80	121.28	129.71	120.26
N ₁ -Cu-N ₂	80.37	80.80	81.11	81.35	81.33	82.58
P ₁ -Cu-P ₂	126.61	126.88	128.64	128.85	122.97	130.05
DHA ₁	1.15	1.33	0.90	2.34	0.74	0.62

Table S1 Partial optimized geometric structural parameters of **3** in the ground state by B3LYP, B3PW91, PBE0, M06 and M06-2X functionals, together with the observed experimentally.

Table S2 The maximum absorption spectra $\lambda_{max(nm)}$ (oscillator strengths), emission spectra and experimental values of **3** calculated by different functionals.

		, and es of e	ale alace a cy alle	•		
	B3LYP	B3PW91	PBE0	M06	M06-2X	Expt
	$\lambda_{ m max}/f$	$\lambda_{ m max}/f$	$\lambda_{ m max}/f$	$\lambda_{ m max}/f$	λ_{\max}/f	λ_{max}
$S_0 \rightarrow S_1$	458.2/ 0.0892	463.3/ 0.0930	437.0/ 0.0975	433.7/ 0.0964	339.8/ 0.1490	421
$T_1 \rightarrow S_0$	684.6	698.4	748.8	719.2	426.9	631

Table S3 Calculated $E(S_1)$ /ev using various functionals and LANL2DZ/6–31G(d) basis set in

				DCM s	olution for	: 3 .				
	BLYP	MPWLYP1M	TPSSH	B3LYP*	B3LYP	PBE0	M06	MPW1B95	BMK	M062X
HF%	0	5	10	15	20	25	27	31	42	54
$E(\mathbf{S}_1)$	1.9841	2.1605	2.3735	2.4763	2.7063	2.8500	2.9104	3.0813	3.4524	3.7458

	PB	E0	M)6
	$\lambda^{Abs}_{max}/Expt$	$\lambda^{Em}_{max}/Expt$	$\lambda^{Abs}_{max}/Expt$	$\lambda^{Em}_{max}\!/\!Expt$
1	$430.2/420^{a}$	834.2/646ª	429.2 /420ª	851.5/646 ^a
2	437.6/425ª	811.9/648 ^a	$435.1/425^{a}$	$742.8/648^{a}$
3	437.0/421ª	$705.1/625^{a}$	433.7/421ª	719.2/625ª

M06 for all, together with experimental values (unit: nm).

Table S4 Absorption and emission values obtained by TD-DFT method with PBE0 and

Table S5 Negative value of the HOMO (- ϵ_{HOMO}) and LUMO (- ϵ_{LUMO}) energies, HOMO-LUMO

gaps calculated by DFT, and the lowest singlet energies (E_{S1}) calculated by TDDFT in eV for

	-E _{HOMO}	-E _{LUMO}	$\Delta E_{ ext{H-L}}$	E_{S1}
1	6.44	2.76	3.68	2.88
2	6.40	2.76	3.64	2.83
3	6.41	2.81	3.60	2.84

these complexes.

Table S6 Molecular orbital compositions of Cu at the optimized S₀ geometries in solvent DCM.

	МО	Energy(eV)	Cu contribution (%)
1	LUMO	-2.76	$2.1(0.90d_{xz}+0.42d_z^2)$
	НОМО	-6.44	$34.0(19.77 d_{xz}+4.25 d_z^2+0.86 d_x^2 - y^2)$
	HOMO-1	-6.79	$42.2(4.78 \text{d}_{xz} + 0.95 \text{d}_{yz} + 2.85 \text{d}_{xy} + 3.03 \text{d}_{z}^{2} + 21.45 \text{d}_{x}^{2}_{-y}^{2})$
	HOMO-2	-7.01	50.7 (38.61 d_{yz} +6.31 d_{xy} +0.77 d_{xz} +2.09 $d_x^2 {}_{-y}^2$)
	HOMO-3	-7.08	$27.4(24.64d_{yz}+0.16d_{xz}+0.25d_{z}^{2}+0.77d_{x}^{2}_{-y}^{2})$
	HOMO-4	-7.29	$2.3(0.45d_{xz}+0.20d_{yz})$
2	LUMO	-2.76	2.0 (0.53d _{xz})
	НОМО	-6.40	$33.3(11.07 d_{xz} + 10.15 d_{z}^{2} + 2.52 d_{x}^{2} g^{2})$
	HOMO-1	-6.80	$41.8(5.38 d_{yz}+2.64 d_{xy}+9.63 d_{xz}+13.21 d_{z}^{2}+1.86 d_{x-y}^{2^{2}})$
	НОМО-2	-6.93	11.7 (7.54 d_{xy} +2.04 d_{xz} + 1.37 d_z^2)
	НОМО-3	-7.03	$51.5(3.91 \text{d}_{yz} + 40.23 \text{d}_{xy} + 3.49 \text{d}_{xz} + 0.74 \text{d}_{z}^{2} + 0.60 \text{d}_{x - y}^{2^{2}})$
	HOMO-4	-7.14	$21.2(0.66 \text{ d}_{yz}+13.87 \text{ d}_{xy}+1.69 \text{ d}_{xz}+1.06 \text{ d}_{z}^{2}+0.65 \text{ d}_{x}^{2}_{-y}^{2})$

3	LUMO+1	-1.66	0.2(0.09d _{yz})
	LUMO	-2.81	1.4(0.61d _{xz})
	НОМО	-6.41	$31.9(10.68d_{xz}+10.37 d_z^2+1.48d_x^2)$
	HOMO-1	-6.67	58.2 $(18.35d_z^2+9.85 d_{xz}+3.89d_x^2)^2$
	HOMO-2	-6.95	$5.0(2.95 d_{yz} + 1.83 d_{yz})$
	HOMO-3	-7.04	$3.4(1.84d_{x}^{2}-y^{2})$
	HOMO-4	-7.23	$66.4(4.92 \text{d}_{yz} + 1.15 \text{d}_{xz} + 58.03 \text{d}_{xy} + 0.05 \text{d}_{z}^{2})$

Table S7 Molecular orbital compositions of Cu at the optimized S_0 geometries in gas phase.

МО	Energy(eV)	Cu contribution (%)
LUMO	-4.66	$2.1(0.96d_{xz}+0.44d_{z}^{2})$
НОМО	-8.21	$32.6(18.55 d_{xz}+3.80 d_z^2+0.62 d_{x-y}^2^2)$
HOMO-1	-8.58	$39.39(3.43 d_{xz} + 2.34 d_{xy} + 3.05 d_{z}^{2} + 20.58 d_{x}^{2} _{-y}^{2})$
HOMO-2	-8.86	$55.6 \ (43.22 d_{yz} + 6.57 d_{xy} + 1.29 d_{xz} + 1.47 d_{x - y}^{2})$
HOMO-3	-8.94	21.0(18.89d _{yz})
HOMO-4	-9.09	1.54(0.77d _{xz})
LUMO	-4.47	2.0 (0.54d _{xz})
НОМО	-8.07	$33.5(10.63 \text{d}_{xz} + 1.27 \text{d}_{yz} + 2.46 \text{d}_{z}^{2} + 9.80 \text{d}_{x}^{2} \text{-}_{y}^{2})$
HOMO-1	-8.47	$40.5(5.25d_{yz}+2.26d_{xy}+9.54d_{xz}+12.49d_{z}^{2}+1.80d_{x-y}^{2}^{2})$
HOMO-2	-8.61	$9.63(5.94d_{xy}+1.69d_{xz}+1.29d_{z}^{2})$
НОМО-3	-8.73	$46.73(3.37d_{yz} + 36.81d_{xy} + 3.06d_{xz})$
HOMO-4	-8.82	$28.7(19.97d_{xy}+2.39d_{xz}+1.36d_{z}^{2})$
LUMO+1	-3.36	$0.21(0.09d_{yz})$
LUMO	-4.51	$1.4(0.34d_z^2)$
НОМО	-8.07	$31.3(10.53d_{xz}+0.63d_{xy}+9.72d_z^2+1.51d_x^2_{-y}^2)$
HOMO-1	-8.35	$41.1(17.98d_z^2+9.18 d_{xz}+1.23d_{yz}+3.65d_{x-y}^{2-2})$
НОМО-2	-8.63	4.7(2.70d _{xy} +1.80 d _{yz})
HOMO-3	-8.72	$2.9(0.13d_{xy}+0.12d_{x-y}^{2}^{2})$
HOMO-4	-8.92	$64.9(4.70 \text{ d}_{yz}+1.05 \text{ d}_{xz}+56.97 \text{ d}_{xy})$
	MO LUMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 LUMO HOMO-4 LUMO HOMO-4 LUMO HOMO-1 HOMO-1 HOMO-3 HOMO-4 LUMO HOMO-4 HOMO-4 LUMO HOMO-4 LUMO HOMO-4 LUMO HOMO-4 LUMO HOMO-3 HOMO-1 HOMO-1 HOMO-3 HOMO-1 HOMO-3 HOMO-4	MOEnergy(eV)LUMO-4.66HOMO-8.21HOMO-1-8.58HOMO-2-8.86HOMO-3-8.94HOMO-4-9.09LUMO-4.47HOMO<1-8.07HOMO-1-8.47HOMO-2-8.61HOMO-3-8.73HOMO-4-8.82LUMO-4.51HOMO-1-3.36LUMO-4.51HOMO<1-8.07HOMO-1-8.35HOMO-1-8.35HOMO-2-8.63HOMO-3-8.72HOMO-4-8.72HOMO-4-8.92

	МО	Energy(eV)	Cu contribution (%)
1	LUMO	-3.10	$3.8(0.96 d_z^2 + 0.87 d_{yz})$
	НОМО	-5.80	36.1(19.78 d _{xy} +9. 85d _{xz})
	HOMO-1	-6.76	$41.3(1.23d_{z}^{2}+2.18d_{xy}+7.27 d_{xz}+2.20d_{yz}+10.91d_{x}^{2}{_{-y}^{2}})$
	HOMO-2	-6.82	53.5 $(15.60d_z^2 + 14.37 d_{xz} + 9.80 d_x^2 - y^2)$
	HOMO-5	-7.41	$9.5(1.79d_z^2+2.80d_{xz}+2.18d_{xy}+2.20d_{yz})$
2	LUMO	-3.12	3.7(2.37 d _{xz})
	НОМО	-5.83	$36.7(25.39 d_{xy} + 5.55 d_{xz})$
	HOMO-1	-6.68	$36.0(7.64d_{z}^{2}+1.35d_{xy}+0.85~d_{xz}+17.23d_{yz})$
	HOMO-2	-6.76	58.4(33.26 d _{xy} +19.69 d _{xz})
	HOMO-5	-7.42	$0.2(0.06 d_{x^{2}-y}^{2}+0.04 d_{xz})$
3	LUMO+1	-1.82	0.3(0.14d _{yz})
	LUMO	-3.09	$2.3(1.48d_{xz})$
	НОМО	-6.16	$30.9 (15.39 d_{xz} + 6.64 d_{xy} + 2.68 d_z^2)$
	HOMO-1	-6.63	$39.3(11.58d_{yz}+1.37d_{xz}+16.75d_{z}^{2}+2.21d_{x-y}^{2})$
	HOMO-2	-6.81	$5.6 (0.05 d_z^2)$
	HOMO-5	-7.33	$0.1(3.17d_{yz}+3.11d_z^2)$

Table S8 Molecular orbital compositions of Cu at the optimized T_1 geometries in solvent DCM.

Table S9 Frontier molecular orbital energies(eV) and compositions (%) of different fragments in the ground state for the complexes.

МО	E/eV	MC	compositio	Assign		
		Cu	N^N	P^P		
1						
LUMO+5	-0.95	5.5	4.3	90.2	$\pi^*(P^P)$	
LUMO+4	-1.09	3.3	1.8	95.0	π* (P^P)	
LUMO+3	-1.15	3.2	2.6	94.2	π* (P^P)	
LUMO+2	-1.42	1.6	94.5	3.9	$\pi^{*}(N^{N})$	
LUMO+1	-1.71	0.3	96.6	3.1	$\pi^{*}(N^{N})$	
LUMO	-2.76	2.1	94.2	3.7	$\pi^{*}(N^{N})$	
HOMO	-6.44	34.0	5.6	60.4	$d(Cu)+\pi(P^P)$	

HOMO-1	-6.79	42.2	11.7	46.1	$d(Cu)+\pi(N^N+P^P)$
HOMO-2	-7.01	50.7	43.8	5.6	$d(Cu)+\pi(N^N)$
HOMO-3	-7.08	27.4	67.2	5.4	$d(Cu)+\pi(N^N)$
HOMO-4	-7.29	2.3	72.	25.7	$\pi(N^N+P^P)$
HOMO-5	-7.42	0.5	91.1	8.5	π(N^N)
2					
LUMO+5	-0.951	5.5	5.1	89.4	$\pi^*(P^P)$
LUMO+4	-1.05	1.9	14.8	83.3	$\pi^*(N^N)+\pi^*(P^P)$
LUMO+3	-1.17	2.1	6.0	92.0	π* (P ^ P)
LUMO+2	-1.44	1.8	94.0	4.2	$\pi^*(N^N)$
LUMO+1	-1.86	0.5	97.7	1.7	π*(N^N)
LUMO	-2.76	2.0	95.5	2.5	$\pi^*(N^N)$
НОМО	-6.40	34.1	9.7	56.1	$d(Cu)+\pi(P^P)$
HOMO-1	-6.79	41.8	16.3	41.9	$d(Cu)+\pi(N^N+P^P)$
HOMO-2	-6.93	11.7	83.9	4.3	$d(Cu)+\pi(N^N)$
HOMO-3	-7.03	51.5	44.7	3.8	$d(Cu)+\pi(N^N)$
HOMO-4	-7.14	21.2	66.6	12.2	$d(Cu)+\pi(N^N+P^P)$
HOMO-5	-7.38	0.4	95.1	4.5	$\pi(N^N)$
3					
LUMO+5	-0.95	5.8	3.4	90.9	$\pi^*(P^P)$
LUMO+4	-1.05	2.0	2.9	95.1	$\pi^*(P^P)$
LUMO+3	-1.15	1.4	2.9	95.7	$\pi^*(P^P)$
LUMO+2	-1.30	1.9	92.5	5.6	π* (N^N)
LUMO+1	-1.66	0.2	98.6	1.2	$\pi^*(N^N)$
LUMO	-2.81	1.4	96.2	2.4	$\pi^*(N^N)$
НОМО	-6.41	31.9	10.5	57.6	$d(Cu)+\pi(N^N+P^P)$
HOMO-1	-6.67	42.3	14.1	43.6	$d(Cu)+\pi(N^N+P^P)$
HOMO-2	-6.95	5.0	92.9	2.1	$\pi(N^N)$
HOMO-3	-7.04	3.4	84.0	12.6	π (N^N+P^P)
HOMO-4	-7.23	66.4	27.2	6.3	$d(Cu)+\pi(N^N)$
HOMO-5	-7.27	4.6	92.5	2.9	π(N^N)

MO	E/eV	MC	compositio	Assign	
		Cu	N^N	P^P	
1					
LUMO+5	-0.92	5.0	4.1	90.8	$\pi^*(P^P)$
LUMO+4	-1.02	1.6	1.5	97.0	$\pi^*(P^P)$
LUMO+3	-1.12	5.5	3.9	90.7	$\pi^*(P^P)$
LUMO+2	-1.45	1.5	91.8	6.8	$\pi^*(N^N)$
LUMO+1	-1.78	0.6	96.3	3.1	$\pi^*(N^N)$
LUMO	-3.10	3.8	90.9	5.3	$\pi^*(N^N)$
HOMO	-5.80	36.1	14.4	49.5	$d(Cu)+\pi(N^N+P^P)$
HOMO-1	-6.76	41.3	15.7	43.0	$d(Cu)+\pi(N^N+P^P)$
HOMO-2	-6.83	53.5	25.7	20.8	$d(Cu)+\pi(N^N+P^P)$
HOMO-3	-7.00	9.0	78.6	12.4	$\pi(N^N+P^P)$
HOMO-4	-7.29	7.2	63.3	29.5	$\pi(N^N+P^P)$
HOMO-5	-7.41	9.5	47.4	43.1	$\pi(N^N+P^P)$
2					
LUMO+5	-0.96	3.6	13.9	82.5	π* (N^N)+ π* (P^P)
LUMO+4	-0.99	2.6	20.3	77.1	π* (N^N)+ π* (P^P)
LUMO+3	-1.10	5.9	6.5	87.6	π* (P^P)
LUMO+2	-1.51	1.6	94.0	4.4	π* (N^N)
LUMO+1	-1.91	0.5	97.8	1.7	π* (N^N)
LUMO	-3.12	3.7	92.2	4.1	$\pi^*(N^N)$
HOMO	-5.83	36.7	16.5	46.8	$d(Cu)+\pi(N^N+P^P)$
HOMO-1	-6.68	36.0	17.3	46.7	$d(Cu)+\pi(N^N+P^P)$
HOMO-2	-6.76	58.4	28.3	13.3	$d(Cu)+\pi(N^N+P^P)$
HOMO-3	-6.88	7.8	83.5	8.7	π(N^N)
HOMO-4	-7.13	7.2	75.7	17.1	$\pi(N^N+P^P)$
HOMO-5	-7.42	0.2	95.8	4.1	$\pi(P^{P})$
3					
LUMO+5	-0.94	2.5	2.7	94.9	$\pi^*(P^P)$
LUMO+4	-1.02	1.8	3.9	94.3	$\pi^*(P^P)$
LUMO+3	-1.04	3.3	4.1	92.6	$\pi^*(P^P)$

Table S10 Frontier molecular orbital energies (eV) and compositions (%) of different fragments in the triplet state for the complexes.

LUMO+2	-1.33	2.7	91.6	5.8	π* (N^N)
LUMO+1	-1.82	0.3	98.9	0.8	π*(N^N)
LUMO	-3.09	2.3	94.5	3.2	$\pi^*(N^N)$
HOMO	-6.16	30.9	15.1	54.0	$d(Cu)+\pi(N^N+P^P)$
HOMO-1	-6.63	39.3	13.5	47.2	$d(Cu)+\pi(N^N+P^P)$
HOMO-2	-6.81	5.6	85.3	9.0	$\pi(N^N)$
HOMO-3	-7.01	11.3	82.0	6.7	$d(Cu)+\pi(N^N)$
HOMO-4	-7.05	65.7	26.3	8.0	$d(Cu)+\pi(N^N)$
HOMO-5	-7.33	0.1	99.5	0.5	$\pi(N^N)$

Table S11 SOC matrix elements $< T_1^{\alpha}|H_{SOC}|S_m>(cm^{-1})$, the transition dipole moment $M_{S_{m,j}}$ of **1** calculated at the T_1^{opt} optimized geometry with DCM included. The radiative decay rate constant (k_r/s^{-1}) is also given.

$E(\mathbf{T}_1)=1$	1988cm ⁻¹								
S _m	$M_{S_{m,j}}$	M _{Sm,j}	M _{Sm,j}	$< T_1^x H_{SOC} S_m>$		$< T_1^{y} H_{SOC} S_m>$		$< T_1^{z} H_{SOC} S_m>$	
				Re	Im	Re	Im	Im	
\mathbf{S}_1	0.0008	-0.6330	-0.4067	-8.0561	-30.8048	-8.0561	30.8048	8.8035	
S_2	0.0773	0.5922	0.5199	127.6256	-8.6501	127.6256	8.6501	-55.9092	
S_3	0.1912	-0.5392	-0.0193	57.2251	-58.3964	57. 2251	58.3964	166.6064	
\mathbf{S}_4	-0.6639	-0.2856	0.1479	0.8508	-8.9057	0.8508	8.9057	-3.7694	
S_5	-0.6324	-0.3100	0.3045	10.0211	-88.8470	10.0211	88.8470	-104.9409	
S_6	0.0419	0.4374	0.0835	4.5139	9.8495	4.5139	-9.8495	15.8400	
S_7	-0.7361	0.0936	0.4877	89.0185	174.5850	89.0185	-174.5850	426.6527	
S_8	0.1658	0.2371	-0.0366	76.1690	-11.8938	76.1690	11.8938	-0.8565	
S_9	-0.1707	-0.2073	0.1563	0.6071	-52.4358	0.6071	52.4358	4.0796	
S_{10}	1.2138	0.9098	-0.7204	-16.4388	-9.8422	-16.4388	9.8422	6.4022	
k_m^x				598	5.70				
k_m^{y}		5985.70							
k_m^{z}								2568.82	
k _r		4846.74							

a $M_{S_{m,j}}$ is the *j*-axis $(j \in x, y, z)$ ojection of the $S_m \rightarrow S_0$ transition dipole moment.

b the superscript α denotes the spin sub-level (x, y, or z) of the T₁ excited state.

$$c k_r(T_1 \to S_0) = \frac{1}{3} \sum_{\alpha} k_r^{\alpha}$$

d (T_1^{α}) is the energy shift (cm⁻¹) of the spin sub-level α ($\alpha = x, y, \text{ or } z$) due to SOC with the Sm excited state. $E(T_1)$ is taken as the reference point.

Table S12 SOC matrix elements $< T_1^{\alpha}|H_{SOC}|S_m>(cm^{-1})$, the transition dipole moment $M_{S_{m,j}}$ of **2** calculated at the T_1^{opt} optimized geometry with DCM included. The radiative decay rate constant

 (k_r/s^{-1}) is also given.

 $E(T_1) = 12371 \text{ cm}^{-1}$

S_{m}	$M_{S_{m,j}}$	$M_{S_{m,j}}$	$M_{S_{m,j}}$	$< T_1^x H_{SOC} S_m>$		$< T_1^{y} H_{SOC} S_m>$		$< T_1^{z} H_{SOC} S_m>$	
				Re	Im	Re	Im	Im	
\mathbf{S}_1	-1.0561	0.0438	0.0486	32.0066	4.1489	32.0066	-4.1489	2.7563	
S_2	1.2269	0.0339	0.0725	15.8802	-136.1803	15.8802	136.1803	41.6169	
S_3	0.5371	-0.1055	-0.3296	105.6034	21.3574	105.6034	-21.3574	-81.2957	
\mathbf{S}_4	0.1742	-0.1292	-0.2380	-2.4138	2.1208	-2.4138	-2.1208	21.2989	
S_5	0.0610	-0.7402	0.0191	-39.1828	-79.6429	-39.1828	79.6429	-174.1596	
S_6	-1.2169	-0.0655	-0.0502	-2.4743	-1.1103	-2.4743	1.1103	-2.4205	
S_7	0.4284	-1.2015	0.2444	42.5899	42.7375	42.5899	-42.7375	514.7130	
S_8	0.1043	1.0373	-0.2440	37.2695	-22.2640	37.2695	22.2640	9.3032	
S ₉	-0.0062	1.3071	-0.2028	-9.1107	-20.0546	-9.1107	20.0546	60.8538	
S_{10}	0.1307	1.2340	-0.1321	-0.4287	-10.5200	-0.4287	10.5200	-9.6280	
k_m^x	4908.30								
k_m^{y}	4908.30								
k_m^{z}								9514.32	
k_r		6443.64							

$E(T_1) = 14182 \text{ cm}^{-1}$								
S _m	M _{Sm,j}	M _{Sm,j}	M _{Sm,j}	$< T_1^x H_{SOC} S_m>$		$< T_1^{y} H_{SOC} S_m>$		$< T_1^z H_{SOC} S_m>$
				Re	Im	Re	Im	Im
\mathbf{S}_1	-1.5978	0.0092	-0.1665	88.6776	-49.0399	88.6776	49.0399	-7.9374
S_2	0.3655	-0.1326	-0.3594	12.2639	114.9570	12.2639	-144.9570	-52.7289
S_3	0.4827	-0.0437	0.0686	114.9070	-61.8399	114.9070	61.8399	18.5976
\mathbf{S}_4	0.7062	0.4484	-0.0807	65.3256	-24.8984	65.3256	24.8984	-198.1577
S_5	1.0978	-0.4620	0.1104	12.0904	-165.7141	12.0904	165.7141	-365.5163
S_6	0.0497	2.1554	-0.4749	-2.4853	-5.6882	-2.4853	5.6882	8.3283
S_7	0.3610	-1.4467	0.3576	-2.1243	-4.1736	-2.1243	4.1736	-1.5673
S_8	0.0026	-0.0263	0.0119	-12.9428	14.8570	-12.9428	-14.8570	-23.4307
S_9	0.0550	-0.4595	0.0008	-14.0689	14.1006	-14.0689	-14.1006	11.3669
\mathbf{S}_{10}	0.0697	-0.2017	0.1314	-9.9454	-19.9932	-9.9454	19.9932	50.9251
k_m^{x}				656	5.84			
k_m^{y}						656	5.84	
k_m^{z}								35154.51
k_r						1609	5.39	

Table S13 SOC matrix elements $< T_1^{\alpha}|H_{SOC}|S_m>(cm^{-1})$, the transition dipole moment $M_{S_{m,j}}$ of **3** calculated at the T_1^{opt} optimized geometry with DCM included. The radiative decay rate constant

 (k_r/s^{-1}) is also given.