Supporting information: Benchmarking triplet-triplet annihilation photon upconversion schemes

Anders S. Gertsen,[†]* Mads Koerstz, and Kurt V. Mikkelsen[‡]*

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark; [†]Present address: Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark; E-mail: [†]askov@dtu.dk; [‡]kmi@chem.ku.dk

Contents

S1	Notes	s on TTET and TTA	S2
S2	Basis	-set investigation	$\mathbf{S5}$
$\mathbf{S3}$	Geom	netries	$\mathbf{S7}$
	S3.1	Biacetyl	S7
	S3.2	ZnP	$\mathbf{S8}$
	S3.3	ZnOEP	S9
	S3.4	PdP	S11
	S3.5	PdOEP	S12
	S3.6	PtP	S14
	S3.7	PtOEP	S15
	S3.8	BI	S17
	S3.9	BI-1	S18
	S3.10	BI-2	S20
	S3.11	$[\operatorname{Ru}(\operatorname{bpy})_3]^{2+} \dots \dots$	S22
	S3.12	$\operatorname{Ir}(\operatorname{ppy})_3$	S24
	S3.13	PPO	S26
	S3.14	DPA	S27
	S3.15	Perylene	S28
	S3.16	1-CBPEA	S29
	S3.17	Pyrene	S30
	S3.18	BA	S31
	S3.19	DBP	S32

S1 Notes on TTET and TTA

Triplet-triplet energy transfer Intermolecular energy transfers are theoretically a combination of Förster resonant energy transfers (FRET) and Dexter-type energy transfers, but in the rapid-diffusion limit, which is a good approximation for all practical purposes of TTA-UC solutions,¹ only the Dexter-type contributes significantly.^{2,3} Furthermore, the long-range dipole-dipole energy transfer mechanism underlying FRET depends on the transition moments of the resulting electronic rearrangements, and with multiplicity changes for both the sensitizer and annihilator during TTET (see upper left inset in Fig. 1 of the main text), the FRET mechanism can be neglected. The underlying mechanism of the Dexter theory is an electron exchange relying on electron density overlap, and it, in addition to obeying the Wigner spin conservation rule, thus requires the sensitizer and annihilator to collide or at least be in close proximity (less than 15 Å).⁴ The rate of Dexter energy transfer falls off exponentially with intermolecular sensitizer annihilator distance $R_{\rm SA}$:⁵

$$k_{\text{Dexter}} \propto J(\lambda) e^{-\frac{2R_{\text{SA}}}{L}}$$
 (1)

where $J(\lambda)$ is the spectral sensitizer-annihilator overlap integral and L is the effective Bohr-radius describing the spatial extent of their wavefunctions. Experiments at different temperatures have shown that sensitizer-annihilator TTET is more efficient at ambient temperature than at 77 K,⁵ proving that TTET has an additional diffusion dependence. The data measured at ambient temperature corresponded very well with the Perrin approximation (within an "active sphere" of radius R_0 related to the effective Bohr-radius L of Eq. (1), the rate of electron transfer is approximated to be infinitely high, while it is set to zero outside), yielding a steady-state TTET rate of:⁵

$$k_{\rm TTET} = 4\pi D R_0 C_{\rm A} \tag{2}$$

where C_A is the annihilator concentration, D is the overall diffusion coefficient given by the Einstein relation:

$$D = \frac{3k_B T}{6\pi\eta} \left(\frac{1}{R_{\rm S}} + \frac{1}{R_{\rm A}}\right) \tag{3}$$

and $R_{\rm S}$ and $R_{\rm A}$ are the effective molecular radii of the sensitizer and annihilator, respectively, while η is the solvent viscosity. Using high relative annihilator concentrations, low viscosity solvents, and small molecular species will thus improve the TTET efficiency,¹ while long-lived sensitizer triplet states are essential too for the triplet exciton diffusion length to be longer than its mean free path.^{1,6}

While many parameters of TTET are not trivially modeled sufficiently accurately theoretically, we are, however, able to model the spectral overlap of sensitizers and annihilators fairly simply. Using TD-DFT, we can determine if a sensitizer/annihilator pair is qualitatively and, if reliably benchmarked, quantitatively suitable for TTA-UC by approximating their triplet energies; remember that the lowest sensitizer triplet state should have a slightly higher energy than the lowest annihilator triplet state (see Fig. 1 of the main text).

Triplet-triplet annihilation Similar to TTET, TTA is for all practical purposes a diffusion controlled event governed exclusively by a Dexter mechanism.^{1,5,7} While examples of utilizing a mixture of two different annihilators exist in the literature,⁸ TTA usually happens between two identical annihilators in the context of TTA-UC as seen in

Fig. 1 of the main text. The possible spin-complexes of two annihilator triplets ${}^{3}A^{*}$ undergoing a diffusion controlled electron exchange (Dexter) mechanism can from a purely spin-statistical view be written as:^{7,9}

$${}^{3}A^{*} + {}^{3}A^{*} \rightarrow \begin{cases} {}^{5}(AA)^{*} \rightleftharpoons {}^{5}A^{*} + {}^{1}A \\ {}^{3}(AA)^{*} \rightleftharpoons {}^{3}A^{*} + {}^{1}A \\ {}^{1}(AA)^{*} \rightleftharpoons {}^{1}A^{*} + {}^{1}A \end{cases}$$
(4)

with probabilities for direct formation of a quintet, triplet, and singlet complex of 5/9, 3/9, and 1/9, respectively. If accurate, this limits the efficiency of TTA to 11.1 % since the excited singlet state is the only desirable one, and TTA can thus be regarded as the limiting step of TTA-UC. In practice, however, the annihilator triplet resulting from the triplet complex can of course be recycled, while the quintet complex might be dissociative (leading back to the two triplets) or the annihilator quintet ${}^{5}A^{*}$ might decay to a triplet. This leads to theoretical efficiencies of TTA of at least 40 %, 10 and up to 33 % has been reported from experiment.¹¹ Correcting for the fact that N annihilator triplets produce N/2 singlet excited annihilators, the theoretical efficiency is at least 20 %, while the highest experimental value corresponds to 16.5 %. In this study (ref 11), the total quantum yield of TTA-UC was calculated to be 16 %, indicating that TTA is indeed the limiting step.

As with TTET, many relevant properties of TTA is not trivially accessible by calculations. It is though possible to model the requirement of the ${}^{1}A^{*}$ state being at least twice as high in energy as the ${}^{3}A^{*}$ state using *e.g.* TD-DFT with the same challenges and approximations as described in the above paragraphs.

References

- A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione, and F. Meinardi, "Low power, non-coherent sensitized photon up-conversion: Modelling and perspectives," *Phys. Chem. Chem. Phys.*, vol. 14, pp. 4322–4332, 2012.
- [2] U. Gösele, M. Hauser, U. K. A. Klein, and R. Frey, "Diffusion and long-range energy transfer," *Chem. Phys. Lett.*, vol. 34, no. 3, pp. 519 – 522, 1975.
- [3] L. Stryer, D. D. Thomas, and C. F. Meares, "Diffusion-enhanced fluorescence energy transfer," Ann. Rev. Biophys. Bioeng., vol. 11, no. 1, pp. 203–222, 1982.
- [4] B. Wardle, Principles and Applications of Photochemistry. John Wiley & Sons Ltd, first ed., 2009.
- [5] A. Monguzzi, R. Tubino, and F. Meinardi, "Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer," *Phys. Rev. B*, vol. 77, p. 155122, 2008.
- [6] J. Zhao, W. Wu, J. Sun, and S. Guo, "Triplet photosensitizers: From molecular design to applications," Chem. Soc. Rev., vol. 42, pp. 5323–5351, 2013.
- [7] S. M. Bachilo and R. B. Weisman, "Determination of triplet quantum yields from triplet-triplet annihilation fluorescence," J. Phys. Chem. A, vol. 104, no. 33, pp. 7711–7714, 2000.
- [8] X. Cao, B. Hu, and P. Zhang, "High upconversion efficiency from hetero triplet-triplet annihilation in multiacceptor systems," J. Phys. Chem. Lett., vol. 4, no. 14, pp. 2334–2338, 2013.
- [9] J. Saltiel and B. W. Atwater, "Spin-statistical factors in diffusion-controlled reactions," in Advances in Photochemistry (D. H. Volman, G. S. Hammond, and K. Gollnick, eds.), vol. 14, pp. 1–90, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007.

- [10] Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, "Kinetic analysis of photochemical upconversion by triplet-triplet annihilation: Beyond any spin statistical limit," *J. Phys. Chem. Lett.*, vol. 1, no. 12, pp. 1795–1799, 2010.
- [11] Y. Y. Cheng, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, "On the efficiency limit of triplet-triplet annihilation for photochemical upconversion," *Phys. Chem. Chem. Phys.*, vol. 12, pp. 66–71, 2010.

S2 Basis-set investigation

We have tested the basis-set dependence for vertical excitation energies and singlet-triplet energy differences for the ZnP/DPA pair. The test-set includes seven different basis-sets (both Pople style and Dunning's correlation consistent basis-sets) which were used in connection with seven different DFT functionals, namely BLYP, B3LYP, CAM-B3LYP, M06-L, M06, M06-2X, and PBE0 for the vertical excitation energies (see Table S1) and BP86-D3BJ, B3LYP-D3BJ, M06-L, PBE0, ω B97X-D, M06, and M06-2X for the singlettriplet energy gaps (see Table S2). Our studies illustrate that using a 6-311++(d,p) Pople style basis-set yields energies which are essentially identical to the ones obtained with the smaller 6-31+G(d) basis-set. It is also clearly illustrated that the inclusion of diffuse functions is essential when calculating the energy differences.

Dunning's correlation consistent basis-sets were tested too, but the inclusion of diffuse functions resulted in severe convergence issues. The cc-pVTZ basis-set yielded results which were virtually identical to the ones obtained with the smaller 6-31+G(d) basisset. The cc-pVDZ basis-set was too small to reproduce the vertical excitations energies obtained with the larger cc-pVTZ and 6-311++G(d,p) basis-sets. However, for singlettriplet energy gaps, the cc-pVDZ basis-set performed well and yielded similar results as both 6-311++G(d) and cc-pVTZ. Further discussion of the dependence of the calculated quantities on the choice of functional can be found in the main text (Computational Considerations) for the vertical excitation energies and in e.g. J. Comput. Chem., vol. 25, pp. 1463-1473, 2004 or Phys. Chem. Chem. Phys., vol. 10, pp. 6615-6620, 2008 for the effects of including dispersion correction in the functionals (relevant for BP86-D3BJ, B3LYP-D3BJ, and ω B97X-D) for geometry optimizations.

$\begin{array}{l} \text{Method} \\ \# \text{ basis func.} \end{array}$	6-31+G(d) 529	6-311G 387	6-311G(d) 514	6-311+G(d) 622	${\begin{array}{c} 6\text{-}311\text{++}G(d,p) \\ 670 \end{array}}$	$\begin{array}{c} \text{cc-pVDZ}\\ 439 \end{array}$	cc-pVTZ 956	cc-pVQZ 1784
BLYP	2.34	2.36	2.32	2.34	2.33	2.36	2.34	2.33
B3LYP	2.46	2.48	2.44	2.46	2.45	2.48	2.45	*
CAM-B3LYP	2.41	2.45	2.38	2.40	2.39	2.43	2.39	2.38
M06-L	2.42	2.44	2.40	2.41	2.41	2.44	2.40	2.40
M06	2.40	2.44	2.38	2.39	2.38	2.41	2.38	2.37
M06-2X	2.50	2.53	2.46	2.48	2.47	2.51	2.47	2.46
PBE0	2.50	2.53	2.47	2.49	2.48	2.51	2.48	2.47

* Indicates that the optimization did not converge.

Table S1: Vertical TD-DFT excitation energies in eV for ZnP optimized in a vacuum using different functionals and basis-sets.

Method	6-31+G(d)	6-311G	6-311G(d,p)	6-311+G(d)	6-311++G(d,p)	cc-pVDZ	cc- $pVTZ$
				ZnP			
# basis func.	529	387	550	622	670	439	956
BP86-D3BJ	1.54	1.52	1.52	1.54	1.54	1.54	1.54
B3LYP-D3BJ	1.54	1.52	1.51	1.58	1.58	1.59	1.54
M06-L	1.56	1.52	1.53	1.56	1.56	1.57	1.57
PBE0	1.54	1.50	1.50	1.54	1.54	1.54	1.54
$\omega B97X-D$	1.41	1.37	1.38	1.44	1.44	1.44	1.46
M06	1.52	1.49	1.51	1.54	1.55	1.52	1.58
M06-2X	1.63	1.57	1.59	1.63	1.63	1.66	1.65
				DPA			
# basis func.	530	392	576	626	698	454	1032
BP86-D3BJ	1.55	1.62	1.58	1.57	1.57	1.57	1.58
B3LYP-D3BJ	1.66	1.70	1.66	1.67	1.65	1.65	1.67
M06-L	1.57	1.58	1.53	1.54	1.54	1.54	1.52
PBE0	1.63	1.66	1.61	1.61	1.61	1.60	1.62
$\omega B97X-D$	1.69	1.75	1.70	1.69	1.69	1.66	1.75
M06	1.56	1.63	1.59	1.60	*	1.53	1.57
M06-2X	1.81	*	1.84	1.79	1.84	1.88	1.83

 \ast Indicates that the optimization did not converge.

Table S2: Energy difference in eV between the optimized ground state (S_0) and the optimized first excited triplet state (T_1) of ZnP and DPA using different functionals and basis-sets.

S3 Geometries

In this section, atom coordinate files and structures for all systems are presented. All atom coordinate files (with values in Angstrom) and figures are of the respective optimized ground state (S_0) structures using the solvent and level of theory stated in the figure captions.

S3.1 Biacetyl

Figure S1: M06-2X/6-311+G(d) optimized ground state geometry of biacetyl in benzene modelled by IEFPCM.

	Х	Y	2	Ζ
C 0.4053	8810 0.6	609330 -	-0.000205	0
O 1.6085	6690 0.6	6067210 -	-0.001155	0
C -0.405	3810 -0	.6609330	0.000205	50
O -1.608	5690 -0	.6067210	0.001155	50
C -0.391	3320 1.	9313680	0.000376	0
H -1.045	2820 1.	9602820	-0.874059	90

H -1.0437430 1.9603700 0.8759650
H 0.2798140 2.7873080 -0.0002410
C 0.3913320 -1.9313680 -0.0003760
H 1.0437430 -1.9603700 -0.8759650
H 1.0452820 -1.9602820 0.8740590
H -0.2798140 -2.7873080 0.0002410

S3.2 ZnP

Figure S2: M06-L/6-311+G(d) optimized ground state geometry of ZnP in PhCl modelled by IEFPCM.

Х	Y	Ζ
C 1.7118970	-3.9433990	-0.0000060
H 2.5710410	-4.6050960	-0.0000060
C 1.7766950	-2.5050600	-0.0000060
C 2.9475780	-1.7462020	-0.0000070
H 3.8839440	-2.3008630	-0.0000040
C 3.0505830	-0.3546240	-0.0000050
C 4.2806740	0.3921320	0.0000190
H 5.2738430	-0.0436430	0.0000350
C 3.9434240	1.7119440 -	-0.0000200
H 4.6051460	2.5710690 ·	-0.0000340
C 2.5050910	1.7767760	0.0000000
C 1.7462030	2.9476390	0.0000010
H 2.3008200	3.8840320	0.0000020
C 0.3546210	3.0505800	0.0000010
C -0.3921310	4.2806800	0.0000290
H 0.0436570	5.2738430	0.0000490
C -1.7119360) 3.9434290	-0.0000240
H -2.5710740	0 4.6051340	-0.0000460

C -2.9476660 1.7462680 0.0000050 H -3.8840200 2.3009500 -0.0000020 C -3.0506570 0.3546950 0.0000040 C -4.2807250 -0.3921020 -0.0000010 H -5.2739030 0.0436500 -0.0000040 C -3.9434210 -1.7118930 0.0000050 H -4.6050980 -2.5710530 0.0000060 C -2.5050700 -1.7766590 0.0000010 C -1.7462630 -2.9475810 -0.0000020 H -2.3009730 -3.8839180 -0.0000020 C -0.3546930 -3.0506250 -0.0000030 C 0.3920960 - 4.2806890 - 0.0000070H -0.0436530 -5.2738680 -0.0000080 N 1.9877590 0.5087790 -0.0000010 N 0.5086690 -1.9877730 -0.0000020 N -1.9877870 -0.5086390 0.0000030 N -0.5087650 1.9877410 0.0000040 Zn 0.0001280 -0.0001120 0.0000010

C -1.7767520 2.5050850 0.0000050

S3.3 ZnOEP

Figure S3: M06-L/6-311+G(d) optimized ground state geometry of ZnOEP in PhCl modelled by IEFPCM.

H -6.0505260 0.1716230 2.1723640 C -2.9162490 -4.8512290 -0.0247320 C -3.4986580 -5.0333730 -1.4241850 H -3.6970460 -4.4659780 0.6446930 H -2.6427270 -5.8317530 0.3840240 H -4.3724620 -5.6917560 -1.4125450 H -3.8102180 -4.0772190 -1.8569130 H -2.7633440 -5.4701240 -2.1068960 C 0.2002220 -5.6554720 -0.0630610 C 0.6627400 -6.0517400 -1.4632040 H -0.5267780 -6.3919590 0.3006330 H 1.0502640 -5.7202320 0.6296500 H 1.1053290 -7.0523640 -1.4710440 H -0.1707230 -6.0517180 -2.1722920 H 1.4128810 -5.3546740 -1.8502210 C 4.8513200 -2.9162370 0.0245910 C 5.0338690 -3.4982260 1.4241690 H 5.8317310 -2.6428150 -0.3844980 H 4.4659090 - 3.6972260 - 0.6445170 H 5.6923030 -4.3719950 1.4126150 H 5.4707620 -2.7626810 2.1065410 H 4.0778530 - 3.8097180 1.8572470 C 5.6555180 0.2002090 0.0634200 C 6.0514550 0.6624470 1.4637500 H 5.7204600 1.0503690 -0.6291310 H 6.3920800 -0.5267460 -0.3002140 H 7.0520910 1.1050000 1.4719300 H 5.3543160 1.4125230 1.8507660 H 6.0512270 -0.1711740 2.1726550 C 2.9163220 4.8512690 -0.0237690 C 3.4989150 5.0336920 -1.4231080 H 3.6970280 4.4658770 0.6456810 H 2.6427550 5.8317120 0.3851480 H 4.3727020 5.6920940 -1.4112230 H 3.8105590 4.0776280 -1.8559760 H 2.7636850 5.4705560 -2.1058370 C -0.2001410 5.6555260 -0.0626040 C -0.6624650 6.0518950 -1.4627810 H 0.5268170 6.3919770 0.3012450 H -1.0502800 5.7202440 0.6299910 H -1.1050790 7.0525070 -1.4706070 H 0.1710980 6.0519480 -2.1717530 H -1.4125330 5.3548380 -1.8499570

Х Υ Ζ C -3.9479180 1.7287600 -0.0043210 C -2.5021290 1.7806820 -0.0057800 C -1.7360660 2.9466230 -0.0141080 H -2.2883760 3.8849900 -0.0201250 C -0.3447630 3.0514000 -0.0114930 C 0.4009460 4.2908580 -0.0094010 C 1.7287890 3.9479370 0.0040810 C 1.7806720 2.5021600 0.0054770 C 2.9466040 1.7361150 0.0140640 H 3.8849690 2.2884360 0.0203210 C 3.0514000 0.3448150 0.0115600 C 4.2908680 -0.4008810 0.0098090 C 3.9479610 -1.7287300 -0.0036700 C 2.5021800 -1.7806300 -0.0054080 C 1.7361270 -2.9465650 -0.0139800 H 2.2884430 - 3.8849310 - 0.0199980 C 0.3448240 -3.0513480 -0.0116490 C -0.4008830 -4.2908120 -0.0098380 C -1.7287270 -3.9478960 0.0034500 C -1.7806170 -2.5021180 0.0050180 C -2.9465520 -1.7360820 0.0135140 H -3.8849180 -2.2884070 0.0196080 C -3.0513500 -0.3447800 0.0110740 C -4.2908180 0.4009060 0.0092340 N 0.5132890 1.9853700 -0.0022930 N -1.9853360 0.5132980 0.0017850 N -0.5132370 -1.9853220 -0.0024600 N 1.9853830 -0.5132540 0.0021370 Zn 0.0000180 0.0000210 -0.0002820 C -4.8513710 2.9162000 0.0239890 C -5.0353610 3.4968900 1.4239220 H -5.8313620 2.6430730 -0.3863040 H -4.4653580 3.6977890 -0.6440630 H -5.6938480 4.3706200 1.4125410 H -5.4728850 2.7606590 2.1051540 H-4.0797970 3.8080350 1.8582370 C -5.6554820 -0.2001350 0.0631010 C -6.0511320 -0.6621270 1.4636100 H -5.7206130 -1.0503780 -0.6293330 H -6.3920750 0.5268260 -0.3004580 H -7.0518470 -1.1044960 1.4721580 H -5.3540100 -1.4122560 1.8505400

S3.4 PdP

Figure S4: M06-L/6-311+G(d)/aug-cc-pVTZ-PP optimized ground state geometry of PdP in PhCl modelled by IEFPCM.

	Х	Y		Ζ
C 2.7955	730 3.2	2391180 -	-0.00049	20
H 3.0118	360 4.3	8012130 -	-0.00070	40
C 1.4732	060 2.6	6778900 ·	-0.00014	90
C 0.2943	870 3.4	4093130 -	-0.00006	10
H 0.3878	5720 4.4	4927270 -	-0.00016	70
C -0.992	$5610\ 2.$	8907520	0.00003	80
C -2.199	$0250 \ 3.$	6705270	0.00009	70
H -2.230	1120 4.	7539890	0.00008	10
C -3.239	$1540\ 2.$	7954600	0.00003	10
H -4.301	2220 3.	0118220	-0.0000	390
C -2.677	9420 1.	4732400	0.00002	00
C -3.409	$3230 \ 0.$	2943450	-0.0001	030
H -4.492	7330 0.	3878590	-0.0001	740
C -2.890	7250 -0	.9924830) -0.0001	1780
C -3.670	5600 -2	2.1990460) -0.0002	2850
H -4.754	0330 -2	2.2299870	0-0.0003	3260
C -2.795	5700 -3	8.2391200) -0.0004	1890
H -3.011	8330 -4	.3012150) -0.0007	7010

C -1.4732030 -2.6778910 -0.0001470 C -0.2943870 -3.4093150 -0.0000610 H -0.3878720 -4.4927280 -0.0001670 C 0.9925580 -2.8907540 0.0000380 C 2.1990220 -3.6705280 0.0000960 H 2.2301080 -4.7539900 0.0000800 C 3.2391500 -2.7954620 0.0000290 H 4.3012180 -3.0118240 -0.0000410 C 2.6779390 -1.4732420 0.0000180 C 3.4093230 -0.2943480 -0.0001050 H 4.4927320 -0.3878640 -0.0001770 C 2.8907280 0.9924810 -0.0001810 C 3.6705640 2.1990430 -0.0002880 H 4.7540360 2.2299840 -0.0003300 N -1.3091920 1.5564170 0.0001580 N 1.5564220 1.3091520 -0.0001040 N 1.3091880 -1.5564180 0.0001570 N -1.5564170 -1.3091530 -0.0001020 Pd 0.000000 0.000030 0.0003250

S3.5 PdOEP

Figure S5: M06-L/6-311+G(d)/aug-cc-pVTZ-PP optimized ground state geometry of PdOEP in a vacuum.

C -1.5563740 5.4150540 0.1078320
C -2.1068820 5.6648130 1.5095130
H -2.3923820 5.2798980 -0.5922440
H -1.0303580 6.3115310 -0.2426890
H -2.7868490 6.5219130 1.5299100
H -2.6561150 4.7954280 1.8847510
H -1.3014810 5.8633350 2.2232610
C 1.6720230 5.3802040 0.1033640
C 2.2489390 5.6048750 1.4988570
H 1.1601150 6.2915380 -0.2298350
H 2 4946040 5 2355690 -0 6108330
H 2 9511690 6 4439640 1 5148780
H 1 4596710 5 8193420 2 2258070
H 2 7810830 4 7194160 1 8608010
C = 5.4151480 + 5565280 - 0.1082270
C 5 6637030 2 109/630 -1 5091800
Н 6 3110460 1 0200610 0 2406210
H 5 2806110 2 3013060 0 5033 460
H 6 5207540 2 7805060 1 5200470
H 5 8617110 1 3053820 2 9245320
H $4.7040200.2.6502270$ 1.8828050
$\begin{array}{c} 11 \ 4.7940500 \ 2.0595270 \ -1.002000 \\ C \ 5 \ 2002170 \ 1 \ 6721840 \ 0 \ 1022540 \\ \end{array}$
C = 5.054050 + 2.2406660 + 4.085400
U = 5.0054950 - 2.2490000 - 1.4985400 U = 5.252700 - 2.4045010 - 0.6110640
$\begin{array}{c} \text{II} \ 5.2552700 \ -2.4945010 \ 0.0110040 \\ \text{II} \ 6.2015020 \ 1.1602260 \ 0.2200650 \end{array}$
$\begin{array}{c} H & 0.2913920 \\ -1.1003200 & 0.2300030 \\ H & 6.4444110 \\ -2.0591170 \\ -1.5128870 \\ \end{array}$
H = 0.4444110 - 2.9321170 - 1.3138870
H 4.7200890 -2.7817310 -1.8007220
H $5.8205320 - 1.4007720 - 2.2257110$
C = 1.5500280 - 5.4151770 = 0.1079180
C 2.1082330 -5.6642620 1.5092910
H 2.3921180 -5.2803310 -0.5928440
H 1.0303810 -6.3118350 -0.2417840
H 2.7882360 -6.5213370 1.5295370
H 2.6577510 -4.7947070 1.8837090
H 1.3034250 -5.8624790 2.2237820
C -1.6718840 -5.3803810 0.1036070
C -2.2489030 -5.6050280 1.4990640
H -1.1599980 -6.2917320 -0.2295720
H -2.4944280 -5.2357290 -0.6106270
H -2.9511840 -6.4440760 1.5150210
H -1.4597220 -5.8195510 2.2260850
H -2.7810290 -4.7195440 1.8609720
Pd 0.0000560 -0.0000980 -0.0005580

Х Υ Ζ C -4.2408440 -0.6389240 -0.0396210 C -2.8618280 -1.0673890 -0.0187350 C -2.4392250 -2.3882390 -0.0046050 H -3.2165560 -3.1495010 -0.0077900 C -1.1278320 -2.8383000 0.0144790 C -0.7282930 -4.2267490 0.0378290 C 0.6389260 -4.2409850 0.0405970 C 1.0673700 -2.8619650 0.0190340 C 2.3882120 -2.4393630 0.0046140 H 3.1494570 - 3.2167000 0.0081570 C 2.8382720 -1.1279830 -0.0149580 C 4.2267410 -0.7284610 -0.0382210 C 4.2409820 0.6387630 -0.0411590 C 2.8619530 1.0672090 -0.0197210 C 2.4393560 2.3880480 -0.0051900 H 3.2166740 3.1493190 -0.0082750 C 1.1279760 2.8381020 0.0142510 C 0.7284620 4.2265540 0.0376040 C -0.6387490 4.2408100 0.0404470 C -1.0672190 2.8618020 0.0190660 C -2.3880680 2.4392140 0.0050360 H -3.1493140 3.2165530 0.0086970 C -2.8381410 1.1278310 -0.0142010 C -4.2265980 0.7282870 -0.0369750 N -0.0215520 -2.0332940 0.0047770 N -2.0331430 0.0215350 -0.0048940 N 0.0216900 2.0331030 0.0047030 N 2.0332650 -0.0217020 -0.0055340 C -5.4151820 -1.5564450 -0.1066040 C -5.6665200 -2.1053390 -1.5086350 H -6.3112420 -1.0307340 0.2454220 H -5.2793410 -2.3931890 0.5924540 H -6.5236600 -2.7852590 -1.5288730 H -5.8658160 -1.2990590 -2.2211960 H -4.7975460 -2.6541380 -1.8854660 C -5.3803330 1.6717520 -0.1026250 C -5.6058290 2.2476990 -1.4983940 H -5.2354600 2.4947450 0.6110530 H -6.2914460 1.1599090 0.2312590 H -6.4451660 2.9496300 -1.5145250 H -4.7207330 2.7798700 -1.8611640 H -5.8203610 1.4578110 -2.2246590

S3.6 PtP

Figure S6: M06-L/6-311+G(d)/aug-cc-pVTZ-PP optimized ground state geometry of PtP in PhCl modelled by IEFPCM.

	Х	Y	Ζ	
C 3.0710	580 -2.9	9769390	-0.000182	0
H 3.3801	370 -4.0	0155590	-0.000360	0
C 1.7044	270 -2.5	5374470	0.0000850	
C 0.5956	560 -3.3	3691260	0.0000800	
H 0.7853	450 -4.4	4398880	0.0000180	
C -0.7306	5180 -2.	9681640	-0.000030)()
C -1.8634	4390 -3.	8494660	-0.000035	50
H -1.7978	8070 -4.	.9313600	0.000056	0
C -2.9769	9460 -3.	0710590	-0.000365	50
H -4.0154	4300 -3.	3806520	-0.000542	20
C -2.5375	5790 -1.	7043110	0.000038	0
C -3.3692	2290 -0.	5956010	0.000149	0
H -4.4400	0280 -0.	7850730	0.000138	0
C -2.9682	$2130 \ 0.7$	7307170	0.0001010	
C -3.8495	5280 1.8	8634250	0.0002380	
H -4.9313	$3850\ 1.7$	7973090	0.0004010	
C -3.0710	$0470 \ 2.9$	9769460	-0.000187	0
H -3.380	1240 4.0	0155680	-0.000371	0

C -1.7044190 2.5374480 0.0000860 C -0.5956550 3.3691230 0.0000790 H -0.7853440 4.4398860 0.0000180 C 0.7306100 2.9681620 -0.0000320 C 1.8634260 3.8494700 -0.0000250 H 1.7977920 4.9313640 0.0000750 C 2.9769340 3.0710680 -0.0003810 H 4.0154160 3.3806660 -0.0005710 C 2.5375710 1.7043180 0.0000390 C 3.3692280 0.5956100 0.0001490 H 4.4400260 0.7850840 0.0001320 C 2.9682180 -0.7307080 0.0001000 C 3.8495370 -1.8634130 0.0002260 H 4.9313940 -1.7972920 0.0003810 N -1.1634960 -1.6636290 -0.0001220 N 1.6636930 -1.1634330 -0.0000030 N 1.1634880 1.6636270 -0.0001220 N -1.6636840 1.1634330 -0.0000020 Pt 0.0000010 -0.0000050 0.0000200

S3.7 PtOEP

Figure S7: M06-L/6-311+G(d)/aug-cc-pVTZ-PP optimized ground state geometry of PtOEP in PhCl modelled by IEFPCM.

C -5.5156950 -1.1626290 -0.0450300 C -6.0276140 -0.8330060 -1.4449400 H -5.7728130 -0.3424950 0.6389130 H -6.0514070 -2.0384850 0.3406740 H -7.1039890 -0.6366320 -1.4422740 H -5.5308350 0.0510820 -1.8573700 H -5.8424030 -1.6578740 -2.1397730 C -3.9752450 -3.9958540 -0.0564110 C -3.9447890 -4.6111000 -1.4533500 H -5.0103140 -3.9654420 0.3045460 H -3.4441010 -4.6557700 0.6429180 H -4.3704310 -5.6190410 -1.4563090 H -4.5154090 -4.0077030 -2.1660760 H -2.9230180 -4.6824180 -1.8397520 C 1.1625330 -5.5157280 0.0453750 C 0.8333780 -6.0275950 1.4454130 H 2.0382390 -6.0514820 -0.3406160 H 0.3421570 -5.7728400 -0.6382720 H 0.6369870 -7.1039680 1.4428520 H 1.6584930 -5.8423760 2.1399380 H -0.0505570 -5.5307870 1.8581320 C 3.9957750 -3.9753510 0.0569620 C 4.6108630 -3.9446040 1.4539690 H 4.6557860 -3.4443640 -0.6423980 H 3.9653900 -5.0104990 -0.3037750 H 5.6187820 -4.3702980 1.4571470 H 4.6821900 -2.9227520 1.8401450 H 4.0073550 -4.5150230 2.1667570 C 5.5157930 1.1625640 -0.0448760 C 6.0278080 0.8330820 -1.4447820 H 5.7728480 0.3423530 0.6389980 H 6.0514900 2.0383710 0.3409590 H 7.1041800 0.6366910 -1.4420610 H 5.5310430 -0.0509540 -1.8573400 H 5.8426600 1.6580280 -2.1395390 C 3.9753020 3.9959090 -0.0563140 C 3.9450150 4.6111410 -1.4532640 H 5.0103260 3.9655100 0.3047700 H 3.4440690 4.6558310 0.6429420 H 4.3706850 5.6190700 -1.4561870 H 4.5156950 4.0077210 -2.1659230 H 2.9232890 4.6824850 -1.8397790 Pt 0.0000170 0.0000170 -0.0005570

Х Υ Ζ C -1.4214980 4.0470690 0.0043680 C -0.3955790 3.0313400 0.0023470 C 0.9685770 3.2745690 -0.0032320 H 1.2778850 4.3175130 -0.0040070 C 1.9807460 2.3278950 -0.0066790 C 3.3935960 2.6229680 -0.0075150 C 4.0471020 1.4214850 -0.0040860 C 3.0313550 0.3955590 -0.0023690 C 3.2745660 -0.9686180 0.0032150 H 4.3175070 -1.2779310 0.0042010 C 2.3278400 -1.9807810 0.0066630 C 2.6228610 -3.3936200 0.0078180 C 1.4214530 -4.0470500 0.0043560 C 0.3955630 -3.0313070 0.0023710 C -0.9685670 -3.2745240 -0.0031700 H -1.2778550 -4.3174750 -0.0038720 C -1.9807130 -2.3278580 -0.0066570 C -3.3935430 -2.6229210 -0.0075590 C -4.0470100 -1.4215270 -0.0041610 C -3.0312900 -0.3955970 -0.0023880 C -3.2745310 0.9685830 0.0032590 H -4.3174800 1.2778620 0.0041980 C -2.3278280 1.9807760 0.0067780 C -2.6228870 3.3936100 0.0079040 N 1.7842000 0.9692320 -0.0026950 N -0.9692100 1.7842060 0.0025130 N -1.7841540 -0.9692310 -0.0026740 N 0.9692170 -1.7841840 0.0024540 C -1.1626070 5.5157590 0.0452620 C -0.8338570 6.0279030 1.4452850 H -2.0382140 6.0514400 -0.3410430 H -0.3420690 5.7727670 -0.6382270 H -0.6374350 7.1042700 1.4425520 H -1.6592050 5.8428680 2.1395760 H 0.0499170 5.5311620 1.8584120 C -3.9958290 3.9752690 0.0571010 C -4.6111430 3.9440230 1.4539930 H -4.6557190 3.4445220 -0.6425620 H -3.9654380 5.0105600 -0.3032280 H -5.6190930 4.3696400 1.4571090 H -4.6824680 2.9220670 1.8398920 H -4.0078100 4.5142890 2.1670510

S3.8 BI

Figure S8: M06-2X/6-311+G(d)/aug-cc-pVTZ-PP optimized ground state geometry of BI in MeCN modelled by IEFPCM.

Х	Y	Z
C 2.5125690 -1.	5680790	-0.0630580
C 2.5646670 0.7	136720 (0.0370360
С 3.3489840 -0.4	4329380	-0.0059440
C 1.2181060 0.2	432060 -	0.0120490
C -0.0000010 0.9	9303690	0.0000540
C -1.2181300 0.2	2432370	0.0121610
C -2.5646890 0.	7137170	-0.0369610
C -3.3490190 -0	.4328860	0.0059500
C -2.5126210 -1	.5680340	0.0631440
N 1.2419060 -1.	1515650	-0.0626560
N -1.2419530 -1	.1515350	0.0628260
B -0.0000320 -2	.0734740	0.0001230
F -0.0713540 -2.	8845140	-1.1383130
F 0.0712770 -2.8	8844210	1.1386270
C 3.0731400 2.1	170200 0	0.1289940
H 3.0795040 2.5	972640 -	0.8528040
H 2.4616200 2.7	320910 (0.7883540
H 4.0963690 2.1	138640 (0.5053640
C -2.9188350 -2	.9995580	0.0938860
Н -3.7053040 -3	.1488410	0.8361710
Н -3.3267120 -3	.2938650	-0.8772700

H -2.0788710 -3.6481470 0.3300390 C -3.0731640 2.1170620 -0.1289640 H -2.4616400 2.7321150 -0.7883370 H -4.0963880 2.1138900 -0.5053460 H -3.0795430 2.5973360 0.8528180 C 2.9187670 -2.9996080 -0.0938290 H 2.0787770 - 3.6481930 - 0.3298990 Н 3.7051670 - 3.1489050 - 0.8361840 H 3.3267300 - 3.2939110 0.8772930 C 0.0000440 2.4153410 0.0000450 C -0.3223730 3.1111480 1.1645630 C 0.3225410 3.1111010 -1.1644780 C -0.3139530 4.5017940 1.1650760 H -0.5743090 2.5618600 2.0658350 C 0.3142350 4.5017490 -1.1650150 H 0.5744420 2.5617770 -2.0657380 C 0.0001660 5.1976810 0.0000230 H -0.5566540 5.0417080 2.0730760 H 0.5569880 5.0416270 -2.0730220 H 0.0002130 6.2816040 0.0000150 I -5.4186950 -0.5403400 -0.0207690 I 5.4186610 -0.5404100 0.0206030

S3.9 BI-1

Figure S9: M06-2X/6-311+G(d)/aug-cc-pVTZ-PP optimized ground state geometry of BI-1 in toluene modelled by IEFPCM.

H -4.4790630 2.5990340 0.8761940 C 1.3743530 -3.1277690 0.1953260 H 0.6770880 -3.6800060 -0.4334070 H 2.3900070 - 3.2646620 - 0.1760580 H 1.3185000 -3.5514830 1.2021860 C -1.3776400 2.3606320 0.1627720 C -1.7421100 3.0562140 1.3146620 C -0.9713160 3.0580810 -0.9739360 C -1.6947210 4.4457160 1.3304470 H -2.0546170 2.5047300 2.1955890 C -0.9395440 4.4482320 -0.9604310 H -0.6881270 2.5080430 -1.8655090 C -1.2974800 5.1426200 0.1921380 H -1.9698000 4.9848880 2.2297660 H -0.6331520 4.9893840 -1.8484440 C 3.3597370 -0.6893200 0.4833110 C 4.0712200 -1.5174920 1.3071900 S 4.4354700 0.2273010 -0.5337760 C 5.4830100 -1.4148340 1.1427220 H 3.5971090 -2.1748590 2.0256460 C 5.8211750 -0.5064150 0.1853140 H 6.2085110 -1.9792610 1.7124820 H -1.2670420 6.2261100 0.2032530 I 7.7383810 0.0230370 -0.3935430 I -6.8544610 -0.4583520 -0.2599700

Х Υ Ζ C 1.0299920 -1.6789810 0.2244370 C 1.1337780 0.5888910 0.3475930 C 1.9084960 -0.5728110 0.3546400 C -0.2165240 0.1608660 0.1975220 C -1.4165610 0.8760870 0.1448090 C -2.6494840 0.2203770 0.0701690 C -3.9796160 0.7264430 -0.0482750 C -4.7899190 -0.3999760 -0.0978160 C -3.9833140 -1.5575950 -0.0279320 N -0.2238510 -1.2322970 0.1349070 N -2.7087400 -1.1736850 0.0728200 B -1.4839910 -2.1293740 0.0485430 F -1.4894770 -2.8608430 -1.1403390 F -1.5145550 -3.0006690 1.1372690 C 1.6679360 1.9768710 0.5275970 H 1.7974550 2.4853170 -0.4317010 H 1.0054510 2.5947950 1.1327740 H 2.6425120 1.9351330 1.0156730 C -4.4218200 -2.9788430 -0.0815530 H -5.2328190 -3.1469110 0.6301950 H -4.8082460 -3.2110650 -1.0778620 H -3.6026980 -3.6571960 0.1430250 C -4.4488160 2.1450750 -0.1174840 H -3.7990980 2.7632580 -0.7367940 H -5.4578340 2.1795980 -0.5288830

S3.10 BI-2

Figure S10: M06-2X/6-311+G(d)/aug-cc-pVTZ-PP optimized ground state geometry of BI-2 in toluene modelled by IEFPCM.

H 3.5988070 - 3.2741600 0.1915220 H 2.6225540 -3.3541270 1.6641660 C 0.2100160 2.5999330 0.2515320 C -0.0435290 3.4106120 1.3570320 C 0.5811540 3.1752710 -0.9628260 C 0.0795730 4.7913810 1.2487510 H -0.3318930 2.9551260 2.2989760 C 0.6885010 4.5572680 -1.0726700 H 0.7791070 2.5377740 -1.8185390 C 0.4414920 5.3661700 0.0333950 H -0.1115810 5.4185980 2.1121430 H 0.9684350 5.0023190 -2.0207010 C -4.8467300 0.1496040 0.4190700 C -5.6446100 1.0153060 1.1160880 S -5.8122250 -0.8631970 -0.6181610 C -7.0339730 0.8674540 0.8366970 H -5.2456440 1.7301120 1.8254180 C -7.2686950 -0.1141650 -0.0786000 H -7.8174340 1.4518910 1.2999600 C 4.7674230 -0.7186610 0.5166620 C 5.5037810 -1.4839830 1.3784540 S 5.7952220 -0.0078700 -0.6951560 C 6.8991400 -1.4959030 1.0857530 H 5.0589710 -2.0146610 2.2114370 C 7.1976440 -0.7368200 -0.0057070 H 7.6407770 -2.0331270 1.6616120 H 0.5304930 6.4433160 -0.0517540 I 9.0741270 -0.4076530 -0.8197920 I -9.1129720 -0.7336920 -0.7903970

Х Υ Ζ C 2.3686070 -1.5717420 0.5237800 C 2.6187210 0.6855760 0.4245200 C 3.3193000 -0.5203350 0.4875470 C 1.2378700 0.3380240 0.4055700 C 0.0828640 1.1256920 0.3658570 C -1.1891470 0.5493510 0.4277570 C -2.4905120 1.1213890 0.3337330 C -3.3885800 0.0570960 0.4356890 C -2.6321350 -1.1354070 0.5692560 N 1.1406340 -1.0519280 0.4751560 N -1.3331210 -0.8321110 0.5654470 B -0.1751880 -1.8648420 0.5795010 F -0.3139850 -2.7294830 -0.5070240 F-0.1733540-2.5992940 1.7670090 C 3.2499090 2.0440720 0.4436690 H 3.3250360 2.4700190 -0.5602230 H 2.6818610 2.7479350 1.0511640 H 4.2588940 1.9736750 0.8518760 C -3.1367490 -2.5329760 0.6860970 H -4.0920890 -2.5462270 1.2116830 H -3.2927390 -2.9650020 -0.3066260 H -2.4242920 -3.1622190 1.2163600 C -2.8783520 2.5501340 0.1099920 H -2.2098600 3.0493250 -0.5911470 H -3.8945350 2.5937280 -0.2839480 H -2.8558610 3.1253870 1.0394600 C 2.6240540 -3.0360580 0.6176720 H 1.8489850 -3.5995480 0.1000730

S3.11 $[\mathbf{Ru(bpy)}_3]^{2+}$

Figure S11: M06-L/6-311+G(d)/aug-cc-pVTZ-PP optimized ground state geometry of $[{\rm Ru(bpy)}_3]^{2+}$ in MeCN modelled by IEFPCM.

C 1.0435380 -4.1373830 -2.3139410 H 2.5910310 -4.2940200 -0.8356990 C -0.0178120 -3.3630110 -2.7694320 H -1.1366280 -1.5500570 -2.4313410 H 1.3102540 -5.0646060 -2.8117260 H -0.6103190 -3.6586010 -3.6288330 C -2.7648690 -0.8415220 0.5769300 C -1.3028630 -1.7824300 2.1284560 C -3.8445240 -1.4745930 1.1886570 C -2.8840920 0.0315490 -0.5890110 C -2.3372930 -2.4333860 2.7768520 H -0.2762470 -1.8734450 2.4704100 C -3.6333850 -2.2775830 2.2979180 H -4.8468840 -1.3396490 0.7969670 C -4.0904280 0.3265650 -1.2200820 H -2.1211610 -3.0513700 3.6419820 H -4.4689200 -2.7745210 2.7813320 C -1.7327780 1.3696920 -2.1103960 C -4.1031560 1.1649590 -2.3231230 H -5.0164690 -0.0986610 -0.8486190 C -2.9008960 1.6974930 -2.7754390 H -0.7713790 1.7572650 -2.4338660 H -5.0383830 1.3993200 -2.8223070 H -2.8594310 2.3598040 -3.6337700 N -1.7086960 0.5521430 -1.0422470 N -1.4972460 -0.9986490 1.0526250 N 0.3724050 -1.7567470 -1.0356260 N 1.6125680 -0.7908500 1.0559720 N -0.1245820 1.8003850 1.0454180 N 1.3370550 1.1970680 -1.0401400 Ru -0.0021010 0.0005820 0.0089490

Х Υ Ζ C 0.6554700 2.8136760 0.5734200 C -0.9121190 2.0335330 2.1107700 C 0.6471370 4.0678410 1.1796690 C 1.4796190 2.4738780 -0.5848950 C -0.9602750 3.2583890 2.7524520 H -1.5133050 1.1952570 2.4499440 C -0.1655960 4.2962980 2.2783610 H 1.2736890 4.8635450 0.7917100 C 2.3515440 3.3645290 -1.2071030 H -1.6141580 3.3879020 3.6084470 H -0.1783240 5.2707070 2.7570530 C 2.0608540 0.8057330 -2.1044560 C 3.0897710 2.9520890 -2.3046680 H 2.4527460 4.3772620 -0.8323990 C 2.9410840 1.6471380 -2.7612890 H 1.9108480 -0.2190730 -2.4304820 H 3.7715320 3.6397800 -2.7956070 H 3.4975210 1.2769180 -3.6158760 C 2.1066210 -1.9709970 0.5853770 C 2.1957610 -0.2283180 2.1298200 C 3.1916280 -2.5911440 1.2006050 C 1.4106420 -2.5132930 -0.5797870 C 3.2745690 -0.7999640 2.7810100 H 1.7637720 0.7087290 2.4685520 C 3.7831050 -2.0044370 2.3076650 H 3.5730250 -3.5302560 0.8146600 C 1.7601750 -3.7057480 -1.2094550 H 3.7032430 -0.3017720 3.6442060 H 4.6286590 -2.4812820 2.7938960 C -0.3202320 -2.1875920 -2.1056230

S3.12 $Ir(ppy)_3$

Figure S12: M06-L/6-311+G(d)/aug-cc-pVTZ-PP optimized ground state geometry of $Ir(ppy)_3$ in DCM modelled by IEFPCM.

C 1.5042460 4.0514920 -2.3508110 H 0.3691430 5.0542180 -0.8326850 C 1.9208560 2.8141230 -2.8378270 H 1.8054420 0.6833480 -2.5026450 H 1.8070880 4.9711130 -2.8451440 H 2.5553270 2.7294140 -3.7144900 C 2.7131040 -0.9545890 0.6072080 C 2.0409330 0.6758390 2.2439110 C 3.9398280 -1.1049700 1.2712800 C 2.3804480 -1.7113360 -0.5938100 C 3.2589050 0.5234520 2.8974320 H 1.3114790 1.3769290 2.6489870 C 4.2161330 -0.3721110 2.4147540 H 4.6872340 -1.8029280 0.8971160 C 3.2222650 -2.6222040 -1.2427490 H 3.4680370 1.1053310 3.7945200 H 5.1671640 -0.4947410 2.9278050 C 0.7240690 -2.1076620 -2.1948150 C 2.7932100 - 3.2738540 - 2.3859510 H 4.2144870 -2.8156180 -0.8468550 C 1.5152840 -3.0143680 -2.8775490 H -0.2836720 -1.8692570 -2.5297120 H 3.4472630 - 3.9801740 - 2.8910610 H 1.1356440 -3.5048790 -3.7683330 N 1.1351210 -1.4668380 -1.0902550 N 0.7225550 1.7113280 -1.0819600 N -1.8334110 -0.2374630 -1.1032560 Ir -0.0005600 -0.0023460 0.0324410 C -0.8295800 1.5155140 1.0712440 C 1.7175950 -0.0561870 1.0877850 C -0.9141140 -1.4734500 1.0665280

Х Υ Ζ C -2.1895150 -1.8767150 0.5770880 C -0.4461430 -2.1369040 2.2147090 C -2.9363290 -2.8725120 1.2247790 C -2.6741820 -1.1928150 -0.6158460 C -1.1905310 -3.1232340 2.8522430 H 0.5253080 -1.8640320 2.6260880 C -2.4439900 -3.4954470 2.3607750 H -3.9130960 -3.1650380 0.8425090 C -3.8874860 -1.4494520 -1.2649340 H -0.7944970 -3.6086220 3.7436710 H -3.0280320 -4.2648580 2.8603980 C -2.1800400 0.4536970 -2.1994490 C -4.2349970 -0.7359420 -2.3987870 H -4.5560440 -2.2115070 -0.8764770 C -3.3647770 0.2395780 -2.8814550 H -1.4638880 1.2041100 -2.5290500 H -5.1769110 -0.9355660 -2.9035410 H -3.5974270 0.8260680 -3.7647030 C -0.5371480 2.8255410 0.5943050 C -1.6509220 1.4329410 2.2095050 C -1.0332220 3.9649220 1.2457700 C 0.3093500 2.9132620 -0.5897320 C -2.1406400 2.5656960 2.8504170 H -1.9048720 0.4519130 2.6102970 C -1.8310220 3.8410990 2.3722920 H -0.7942610 4.9601640 0.8742470 C 0.6996750 4.0976860 -1.2256230 H -2.7692000 2.4582110 3.7338380 H -2.2104940 4.7275950 2.8751350 C 1.5074090 1.6756140 -2.1692810

S3.13 PPO

Figure S13: M06-2X/6-311+G(d) optimized ground state geometry of PPO in benzene modelled by IEFPCM.

- Х Υ Ζ C -1.0766780 -0.7392130 0.0001670 C 0.6122300 -2.0217320 0.0003630 C 1.0884920 -0.7481260 0.0001240 O 0.0002070 0.0765100 0.0002840 H 1.1622740 -2.9490860 0.0004380 N -0.7680310 -1.9975780 -0.0001100 C 2.4141310 -0.1428020 0.0000120 C 2.5634750 1.2469170 -0.0002630 C 3.5551310 -0.9535460 0.0002060 C 3.8325580 1.8138330 -0.0003620 H 1.6841490 1.8802270 -0.0003940 C 4.8192470 -0.3820150 0.0000880 H 3.4518010 -2.0332730 0.0004500 C 4.9636620 1.0039030 -0.0001950
- H 3.9370670 2.8929010 -0.0005760H 5.6960400 -1.0196470 0.0002280H 5.9525670 1.4476920 -0.0002770C -2.4056760 -0.1307210 0.0000710C -2.5571670 1.2574990 0.0002730C -3.5340270 -0.9554440 -0.0002560C -3.8299390 1.8151910 0.0001520H -1.6808310 1.8950710 0.0005280C -4.8020380 -0.3913690 -0.0003670H -3.4015770 -2.0310130 -0.0004230C -4.9535560 0.9938030 -0.0001650H -3.9444800 2.8930860 0.0003110H -5.6758680 -1.0329130 -0.0006250H -5.9456590 1.4308460 -0.0002590

S3.14 DPA

Figure S14: M06-2X/6-311+G(d) optimized ground state geometry of DPA in PhCl modelled by IEFPCM.

Х	Υ	\mathbf{Z}
C 0.7118270 -3.65	640730 -0.02	244240
C 1.4002150 -2.47	/88610 -0.03	368910
C 0.7185370 -1.21	74180 -0.00	065570
C -0.7185390 -1.2	174180 0.00	064030
C -1.4002190 -2.4	788630 0.03	365950
C -0.7118330 -3.6	540750 0.02	239950
C 1.4197790 -0.00	00010 -0.00	000100
C -1.4197790 0.00	00010 -0.00	000070
C -0.7185370 1.21	74190 -0.00	064220
C 0.7185390 1.21	74170 0.006	55340
C 1.4002190 2.478	88590 0.036	58640
H 2.4830280 2.48	$62700 \ 0.072$	27420
C 0.7118340 3.654	40720 0.024	13970
C -0.7118260 3.65	540760 -0.02	240190
C -1.4002140 2.47	88660 -0.03	366150
H 1.2468630 -4.59	67310 -0.04	496230
H 2.4830230 -2.48	862750 -0.0	727700
Н -2.4830270 -2.4	862790 0.0	724750
Н -1.2468710 -4.5	967340 0.04	490860
H 1.2468720 4.59	$67290 \ 0.049$	95930
H -1.2468620 4.59	67360 -0.04	491110
Н -2.4830220 2.48	362840 -0.0'	724930

C -2.9118470 0.0000020 0.0000040 C -3.6198630 0.2996810 1.1655310 C -3.6198850 -0.2996760 -1.1655100 C -5.0116930 0.2988640 1.1666120 H -3.0734800 0.5350630 2.0733890 C -5.0117160 -0.2988610 -1.1665630 H -3.0735200 -0.5350570 -2.0733790 C -5.7104180 0.0000010 0.0000310 H -5.5500140 0.5312460 2.0787520 H -5.5500550 -0.5312430 -2.0786930 H -6.7945590 0.0000000 0.0000420 C 2.9118470 -0.0000020 -0.0000030 C 3.6198820 0.2997880 -1.1654900 C 3.6198650 -0.2997930 1.1654940 C 5.0117120 0.2989730 -1.1665480 H 3.0735130 0.5352540 -2.0733350 C 5.0116960 -0.2989760 1.1665720 H 3.0734830 -0.5352590 2.0733310 C 5.7104170 -0.0000020 0.0000170 H 5.5500500 0.5314400 -2.0786560 H 5.5500210 -0.5314440 2.0786870 H 6.7945580 -0.0000010 0.0000250

S3.15 Perylene

Figure S15: M06-2X/6-311+G(d) optimized ground state geometry of perylene in MeCN modelled by IEFPCM.

Х	Y	\mathbf{Z}
C 0.0000000	2.4152280	2.8806720
C 0.0000000	1.2301950	3.5666410
C 0.0000000	0.0000000	2.8637410
C 0.0000000	0.0000000	1.4383260
C 0.0000000	1.2476870	0.7397650
C 0.0000000	2.4199600	1.4730960
H 0.0000000	-1.2140850	4.6514590
H 0.000000	3.3587560	3.4142170
H 0.0000000	1.2140850	4.6514590
C 0.0000000	-1.2301950	3.5666410
C 0.0000000	-1.2476870	0.7397650
H 0.0000000	3.3804670	0.9748150
C 0.0000000	-2.4199600	1.4730960
C 0.0000000	-2.4152280	2.8806720
H 0.0000000	-3.3804670	0.9748150
H 0.0000000	-3.3587560	3.4142170

C 0.0000000 -1.2476870 -0.7397650 C 0.0000000 0.0000000 -1.4383260 C 0.0000000 -2.4199600 -1.4730960 C 0.0000000 1.2476870 -0.7397650 C 0.0000000 0.0000000 -2.8637410 C 0.0000000 -2.4152280 -2.8806720 H 0.0000000 -3.3804670 -0.9748150 C 0.0000000 2.4199600 -1.4730960 C 0.0000000 1.2301950 -3.5666410 C 0.0000000 -1.2301950 -3.5666410 H 0.0000000 -3.3587560 -3.4142170 C 0.0000000 2.4152280 -2.8806720 H 0.0000000 3.3804670 -0.9748150 H 0.0000000 1.2140850 -4.6514590 H 0.0000000 -1.2140850 -4.6514590 H 0.0000000 3.3587560 -3.4142170

S3.16 1-CBPEA

Figure S16: M06-2X/6-311+G(d) optimized ground state geometry of 1-CBPEA in MeCN modelled by IEFPCM.

Ζ Х Υ C -0.9077860 -3.7346590 -0.2095990 C -1.5998180 -2.5622220 -0.1572270 C -0.9171420 -1.3079110 -0.1242050 C 0.5091850 -1.2883840 -0.1475760 C 1.1963620 -2.5416600 -0.1926980 C 0.5137340 -3.7216750 -0.2267640 C -1.6209060 -0.0895250 -0.0494190 C 1.2137080 -0.0536350 -0.1234260 C 0.5060620 1.1760510 -0.1189650 C -0.9334750 1.1444110 -0.0424400 C -1.6794210 2.3581170 0.0449440 H -2.7580300 2.2974520 0.1171210 C -1.0580340 3.5666750 0.0367350 C 0.3496430 3.6300370 -0.0965990 C 1.0949820 2.4910860 -0.1816610 H -1.4378440 -4.6796190 -0.2372070 H -2.6830950 -2.5640110 -0.1405240 H 2.2780390 -2.5449740 -0.2060630 H 1.0577030 -4.6583130 -0.2682340 H -1.6274580 4.4854410 0.1074700 H 0.8448570 4.5913730 -0.1523950 C 2.6343700 -0.1454940 -0.0520640 C -3.0435600 -0.1080780 0.0130750 C 3.8216830 -0.3462160 0.0459170

C -4.2507720 -0.1351970 0.0629370 C 5.2388550 -0.4891620 0.1525470 C 6.0270200 0.6202880 0.4927150 C 5.8545620 -1.7265970 -0.0829310 C 7.4057890 0.4894990 0.5941030 H 5.5489370 1.5757540 0.6767430 C 7.2341650 -1.8482020 0.0202030 H 5.2463120 -2.5842190 -0.3475220 C 8.0123860 -0.7426160 0.3579850 H 8.0085660 1.3506750 0.8589750 H 7.7037340 -2.8079660 -0.1625770 H 9.0889790 -0.8416440 0.4379370 C -5.6782910 -0.1661420 0.1164020 C -6.3572130 -1.3927470 0.1197090 C -6.4099120 1.0292260 0.1619530 C -7.7448710 -1.4189430 0.1671390 H -5.7900180 -2.3160040 0.0847570 C -7.7973850 0.9934410 0.2093010 H -5.8831860 1.9768160 0.1591170 C -8.4672450 -0.2282470 0.2117140 H -8.2642790 -2.3702390 0.1690440 H -8.3574830 1.9207640 0.2437270 H -9.5502840 -0.2524210 0.2481110 Cl 2.8055590 2.7477650 -0.4470180

S3.17 Pyrene

Figure S17: M06-2X/6-311+G(d) optimized ground state geometry of pyrene in DCM modelled by IEFPCM.

	Х	Y	Ζ
C 3.512	26090 -0.	0000100	0.0003320
C 2.823	51540 -1.	2077900	0.0002780
C 1.424	2830 -1.	2297420	0.0001590
C 0.714	±0090 -0.	0000010	0.0000860
C 1.424	2960 1.2	2297430	0.0001560
C 2.823	$51510 \ 1.2$	2077870	0.0002790
C 0.676	6860 -2.	4619350	0.0001100
C -0.71	40090 -0	0.0000020) -0.0000640
C -1.42	42850 -1	.2297400	0 -0.0001240
C -0.67	66910 -2	2.4619330) -0.0000220
C -2.82	31590 -1	.2077870) -0.0002860
Н -3.36	83650 -2	2.1460120) -0.0003360
C -3.51	26080 -0	0.0000070) -0.0003900

C -1.4242930 1.2297460 -0.0001610 C -0.6766830 2.4619400 -0.0000840 C 0.6766880 2.4619390 0.0000760 H 1.2278990 3.3967740 0.0001440 H -1.2278900 3.3967770 -0.0001560 H 1.2278980 -3.3967690 0.0001810 H 4.5966740 -0.0000020 0.0004080 H 3.3683650 -2.1460130 0.0003200 H 3.3683720 2.1460040 0.0003250 H -1.2278970 -3.3967710 -0.0000570 H -4.5966740 0.000080 -0.0005210 H -3.3683780 2.1460020 -0.0004130

C -2.8231470 1.2077910 -0.0003260

S3.18 BA

Figure S18: M06-2X/6-311+G(d) optimized ground state geometry of BA in toluene modelled by IEFPCM.

Х	Υ	Ζ
C -4.3497950	-1.3760260 -0	.0003390
C -3.0276250	-1.7166300 -0	.0003990
C -2.0159120	-0.7113210 -0	.0001140
C -2.4098240	0.6597960 0.0	001490
C -3.7993710	0.9802090 0.0	002260
C -4.7414380	-0.0077180 0.	0000050
C -0.6485690	-1.0349960 -0	.0001080
C -1.4112200	1.6440720 0.0	002690
C -0.0637390	1.3155480 0.0	002100
C 0.3392000 ·	-0.0615210 0.0	001130
C 2.2549710	2.0494750 -0.0	002310
C 0.9420410	2.3513870 0.00	00850
H -5.1108500	-2.1480790 -0	.0005470
H -2.7263230	-2.7594620 -0	.0006760
H -4.0931910	2.0250450 0.0	004910

H -5.7957520 0.2446910 0.0000800
H 3.0029110 2.8358280 -0.0003560
H 0.6106180 3.3848410 0.0002260
H -1.7004340 2.6913560 0.0003560
H -0.3870860 -2.0867890 -0.0003570
C 2.7097480 0.6782410 -0.0002500
C 4.0871880 0.3898890 -0.0005150
C 1.7705290 -0.3781450 0.0001660
C 4.5394070 -0.9124770 -0.0002350
H 4.7927200 1.2148490 -0.0009210
C 2.2576410 -1.6985660 0.0005970
C 3.6128910 -1.9636220 0.0004090
H 5.6027600 -1.1228380 -0.0004700
H 1.5689450 -2.5340240 0.0011680

H 3.9589370 -2.9909830 0.0007890

S3.19 DBP

Figure S19: M06-2X/6-311+G(d) optimized ground state geometry of DBP in toluene modelled by IEFPCM.

	Х	Y	Z	
C -1.2746	6920 -1	.7082780	-0.000521	0
C -0.1094	4710 -0	.9829130	-0.000287	0
C -0.1929	9570 0.4	4535800	0.0000410	
C -1.4487	7230 1.0	0944050	0.0001400	
C 1.0126	180 1.2	364990 ().0001780	
C 2.2932	790 0.6	171360 (0.0001710	
C 3.4239	210 1.4	273650 ().0003100	
H 4.4129	400 0.9	900330 (0.0002760	
C 3.3303	140 2.8	218110 (0.0004760	
C 2.0961	480 3.4	320470 ().0004910	
C 0.9265	180 2.6	535090 (0.0003470	
C -0.3609	9820 3.5	2700900	0.0003280	
C -1.4929	9290 2.	5256530	0.0002390	
H -2.4477	7850 3.	0335980	0.0001720	
Н -0.4163	3540 4.3	3539060	0.0003630	
H -1.2576	5100 -2	.7907780	-0.000827	0
H 4.2359	520 3.4	176600 (0.0005810	
H 2.0109	$680 \ 4.5$	138030 (0.0006130	
C 2.3863	650 -0.8	8522120	-0.0000320	

C 3.6331530 -1.5048260 0.0000710 C 1.2133650 -1.6325640 -0.0003410 C 3.7315560 -2.8809240 -0.0001960 H 4.5488610 -0.9292410 0.0003730 C 1.3368670 - 3.0343210 - 0.0006360 C 2.5690030 -3.6549380 -0.0005940 H 4.7068400 -3.3540490 -0.0001060 H 0.4538540 -3.6588620 -0.0009030 H 2.6293180 -4.7372600 -0.0008380 C -2.6588900 0.3143430 0.0000720 C -3.9594880 0.8824860 0.0004290 C -2.5522420 -1.0988080 -0.0003150 C -5.0810730 0.0918500 0.0002930 H -4.0878620 1.9568550 0.0008760 C -3.7275720 -1.8949230 -0.0004850 C -4.9680560 -1.3163140 -0.0001840 H -6.0626470 0.5522800 0.0006010 H -3.6217740 -2.9753390 -0.0008320 H -5.8608870 -1.9311140 -0.0003120