SUPPORTING INFORMATION

Cs-137 immobilization in C-S-H gel nanopores

Eduardo Duque-Redondo^a, Kazuo Yamada^b, Iñigo López-Arbeloa^a and Hegoi Manzano^c

^{a.} Molecular Spectroscopy Laboratory, Department of Physical Chemistry, University of the Basque Country UPV/EHU, Aptdo. 664, 48080, Bilbao, Spain.

^{b.} Fukushima Branch, National Institute for Environmental Studies, Miharu, Tamura, Fukushima, 963-7700, Japan.

^c Department of Condensed Matter Physics, University of the Basque Country UPV/EHU, Aptdo. 664, Bilbao, Spain.

Topological analysis

As a consequence of the chemical and structural relaxation done with the reactive force field ReaxF¹ the local environment of the atoms changes. Thus, it is necessary to carry out a topological analysis, leading to 1 type of silicon, 2 types of calciums, 6 types of oxygens and 3 types of hydrogens (see Figure S1). Ca1 and Ca2 correspond to the intralaminar and interlaminar Ca ions of C-S-H. O1 and H1 are the oxygen and hydrogen atoms of silanol groups, O2 corresponds to the bridging oxygen atoms of silicate chains, while O3 and O4 are terminal oxygen atoms from the inner and outer faces of the silicate chains. O5 and H5 are the oxygen and hydrogen atoms of hydroxyl groups, whereas O6 and H6 are the oxygen and hydroxyl atoms of water molecules. Moreover, Cs corresponds to the cesium cations under study.

Figure S1. Schematic representation of a C-S-H layer with the label of the different atom types after the topological analysis.

Partial charges

The partial charges employed in the simulation of the C-S-H systems are given in Table S1.

Table S1. Partial charge of species provided by CSHFF², ClayFF³ and flexible SCP water model⁴.

Atom type	Charge
Ca1	+1.430
Ca2	+2.000
Cs	+1.000
H1	+0.290
H5	+0.425
H6	+0.410
01	-1.000
02	-1.140
O3	-1.07016
04	-1.07016
05	-0.950
O6	-0.410
Si	+1.720

Potential parameters

The potential parameters employed in the simulation of the C-S-H systems are given in Table S2.

Table S2. Potential parameters for the species in our samples.

spec _i	spec _j	ε (kCal/mol)	σ (Å)
Ca1	Ca1	0.0000050298	5.567
Ca2	Ca2	0.1000	2.872
Cs	Cs	0.1000	3.831
H1	H1	0.0000	0.000
H5	H5	0.0000	0.000
H6	H6	0.0000	0.000
01	01	0.0618	3.448
02	02	0.0618	3.448
03	O3	1.2430	2.735
04	04	1.2430	2.735
05	05	0.1554	3.166
O 6	O 6	0.1554	3.166
Si	Si	0.0000018405	3.302

Bond stretch and angle bend parameters

The potential parameters employed in the simulation of the C-S-H systems are given in Table S3.

Table S3. Bond stretch and angle bend parameters.

spec _i	spec _j	k ₁ (kCal/mol Å ²)	r ₀ (Å)	_	spec _i	spec _j	spec _k	k ₂ (kCal/mol θ ²)	θ ₀ (°)
H1	01	554.135	1.000		H6	06	H6	45.770	109.47
H5	05	554.135	1.000						
H6	06	554.135	1.000						

Bibliography

- 1 K. Chenoweth, A. C. T. van Duin and W. A. Goddard, J. Phys. Chem. A, 2008, **112**, 1040–1053.
- 2 R. Shahsavari, R. J.-M. Pellenq and F.-J. Ulm, *Phys. Chem. Chem. Phys.*, 2011, **13**, 1002–1011.
- 3 R. T. Cygan, J.-J. Liang and A. G. Kalinichev, J. Phys. Chem. B, 2004, 108, 1255–1266.
- 4 L. X. Dang and B. M. Pettitt, J. Phys. Chem., 1987, **91**, 3349–3354.