Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Electronic Supplementary Information

Photodissociation of C₂F₄I₂ in solid *para*-hydrogen: infrared spectrum of *anti*- and *gauche*-•C₂F₄I radicals

Karolina A. Haupa^{*a*}, Manho Lim^{*b*}, and Yuan-Pern Lee^{*a,c,d*}

^a Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, E-mail: (KAH) karolina.haupa@gmail.com (YPL) yplee@mail.nctu.edu.tw, Tel: +886-3-5131459

^b Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea, E-mail: (ML) mhlim@pusan.ac.kr, Tel: +82-51-510-2243

^c Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.

^d Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan.

Tables and Figures in the ESI:

Comparisons of observed vibrational wavenumbers and IR intensities of *anti*- and *gauche*-CF₂ICF₂I with those calculated with the B3PW91/aug-cc-pVTZ-pp method are presented in Tables S1 and S2, respectively. Vibrational wavenumbers and IR intensities of *bridged*-C₂F₄I calculated with the B3PW91/aug-cc-pVTZ-pp method are presented in Table S3. Mixing ratios (in ppm) of *anti*-CF₂ICF₂I, *gauche*-CF₂ICF₂I, *anti*-•C₂F₄I, *gauche*-•C₂F₄I, and C₂F₄ at various stages of different experiments are listed in Table S4. The vertical excitation energies and oscillator strengths of *anti*-CF₂ICF₂I, *gauche*-CF₂ICF₂I, *anti*-•C₂F₄I, and *gauche*-•C₂F₄I calculated with the CAM-B3LYP/aug-cc-pVTZ-pp method are presented in Table S5.

Geometries of *anti*- and *gauche*-CF₂ICF₂I conformers optimized with the B3PW91/aug-cc-pVTZ-pp method are presented in Fig. S1. Relaxed energy profiles for the internal rotation of CF₂ICF₂I calculated with the B3PW91/aug-cc-pVTZ-pp method is presented in Fig. S2. Linear fit of experimental wavenumbers versus harmonic vibrational wavenumbers of CF₂ICF₂I calculated with the B3PW91/aug-cc-pVTZ-pp method is presented in Fig. S3. Normalized partial difference spectra of a matrix CF₂ICF₂I/*p*-H₂ in the range 1350–1230 cm⁻¹ recorded after irradiation of the matrix with light near 300, 280, and 265 nm are presented in Fig. S4.

Table S1 Comparison of observed vibrational wavenumbers and IR intensities of *anti*-CF₂ICF₂I (*C*_{2h}) with those calculated with the B3PW91/aug-cc-pVTZ-pp method

Mode ^a Sym.		<i>р</i> -Н ₂		Solution ^{c,d}	Harmonic ^e			Anharmonic				
		ν	Int ^b	ν	ν^{sc}	ν	Int.	ν	Int.	PED (%) ^{f,g}		
		/cm ⁻¹	1 III .	$/cm^{-1}$	$/cm^{-1}$	/cm ⁻¹	/km mol ⁻¹	$/cm^{-1}$	/km mol ⁻¹			
ν_1	Ag				1224	1237	0	1217	0	$-\nu F_{1}C_{1}(11) - \nu F_{2}C_{1}(11) - \nu F_{3}C_{2}(11) - \nu F_{4}C_{2}(11) + \nu C_{1}C_{2}(37)$		
ν_2	A _u	1167.0	30	1159 ^{<i>b</i>} /1169 ^{<i>c</i>}	1176	1188	257	1168	250	$-\nu F_1 C_1 (25) + \nu F_2 C_1 (25) - \nu F_3 C_1 (25) + \nu F_4 C_2 (25)$		
ν_3	B_{g}				1166	1178	0	1156	0	$-vF_1C_1(19) + vF_2C_1(19) + vF_3C_2(19) - vF_4C_2(19)$		
ν_4	B _u	1116.7	31	1109 ^{<i>b</i>} /1116 ^{<i>c</i>}	1125	1135	316	1123	311	$-vF_1C_1(21) - vF_2C_1(21) + vF_3C_2(21) + vF_4C_2(21)$		
v_5	A_{g}			995–997 ^b	965	971	0	958	0	$-\nu C_1 C_2 (17) + \delta F_2 C_1 F_1 (20) + \delta F_4 C_2 F_4 (20)$		
ν_6	Bu	707.8	100	709 ⁶ /709 ^c	704	702	386	697	372	$-\nu I_{1}C_{1}(14) + \nu I_{2}C_{2}(14) + \delta I_{1}C_{1}C_{2}(24) - \delta I_{2}C_{2}C_{1}(24)$		
		/709.6										
v_7	A_{g}			670 ^b	683	681	0	681	0	$vC_1C_2(11) + \delta F_2C_1F_1(12) + \delta F_2C_1F_4(12)$		
ν_8	Bu	574.9	1	575 ⁶ /584 ^c	585	580	4	579	4	$- \delta F_2 C_1 F_1 (37) + \delta F_4 C_2 F_3 (37)$		
V 9	Bg				524	517	0	515	0	$-\gamma F_3 C_1 I_2 C_2 (32) + \gamma F_1 C_2 I_1 C_1 (32)$		
v_{10}	Ag				373	362	0	361	0	$-\nu C_1 C_2 (25) + \delta F_2 C_1 F_1 (31) + \delta F_4 C_2 F_3 (31)$		
v_{11}	A _u				299	286	0	285	0	$- v I_1 C_1 (35) + v I_2 C_2 (35) - \delta I_1 C_1 C_2 (10) + \delta I_2 C_2 C_1 (10)$		
v_{12}	Bg				297	284	0	281	0	$\delta F_1 C_1 I_1 (33) + \delta F_3 C_2 I_2 (33)$		
v_{13}	Ag			268 ^b	281	268	0	266	0	$vI_1C_1(24) + vI_2C_2(24) - \delta I_1C_1C_2(13) - \delta I_2C_2C_1(13)$		
v_{14}	Bg				270	257	0	253	0	$- \delta F_1 C_1 I_1 (42) + \delta F_3 C_2 I_2 (42)$		
v_{15}	A _u				231	216	0	211	0	$-\gamma F_3 C_1 I_2 C_2 (37) - \gamma F_1 C_2 I_1 C_1 (37)$		
v_{16}	A_{g}			133^{b}	148	131	0	130	0	$-vI_1C_1(20) - vI_2C_2(20) - \delta I_1C_1C_2(26) - \delta I_2C_2C_2(26)$		
V ₁₇	Bu				119	101	1	101	1	$-\delta I_1 C_1 C_2 (46) + \delta I_2 C_2 C_1 (46)$		
v_{18}	A _u				70	50	0	43	0	$\tau I_2 C_2 C_1 I_1$ (96)		

^{*a*} For ease of comparison with the other isomers, mode numbers are ordered according to vibrational wavenumbers instead of symmetry. ^{*b*} Percentage IR intensities relative to the most intense line (v_6). ^{*c*} In methanol. M. T. Messina, P. Metrangolo, W. Navarrini, S. Radice, G. Resnati, and G. Zerbi, *J. Mol. Struct.* **2000**, *524*, 87. ^{*d*} In methanol. J. Liang, D. Drake, and M. Roselius, *Appl. Sepctrosc.* **1994**, *48*, 206. ^{*e*} v^{sc} : scaled harmonic vibrational wavenumber, with linear scaling factor: 0.9725x + 20.6; see text. ^{*f*} Terms with percentage coefficient >10 % are included; the percentage coefficients are listed in parentheses. ^{*g*} Mode description: v: stretch, δ : bend, γ : out-of-plane deformation, τ : torsion. Atomic numbering is indicated in Fig. S1.

Table S2 Comparison of observed vibrational wavenumbers and IR intensities of *gauche*-CF₂ICF₂I (*C*₂) with those calculated with the B3PW91/aug-cc-pVTZ-pp method

		<i>p</i> -H ₂	2	Solution ^{c,d}	Harmonic ^e			Anharmonic			
Mode ^a	Sym.	$\frac{v}{/cm^{-1}}$ Ir	Int. ^b	ν	ν^{sc}	ν	Int.	ν	Int.	PED (%) ^{f,g}	
				/cm⁻¹	$/cm^{-1}$	/cm ⁻¹ /	km mol ⁻¹	$/\text{cm}^{-1}$ $/\text{km}$ mol $^{-1}$			
ν_1	Α	1216.1	89	1207 ^b /1215 ^c	1204	1217	231	1188	214	$-vF_1C_1(13) - vF_3C_2(13) - vF_2C_1(12) - vF_4C_2(12) + vC_1C_2(31)$	
ν_2	В	1154.1	94		1159	1171	246	1143	231	$-vF_1C_1(40) + vF_3C_2(40)$	
v_3	Α	1144.4	15		1147	1158	55	1129	49	$-vF_{1}C_{1}(19) - vF_{3}C_{2}(19) + vF_{2}C_{1}(22) + vF_{4}C_{2}(22)$	
ν_4	В	1083.0	16		1084	1094	35	1067	31	$-vF_2C_1(34) + vF_4C_2(34)$	
ν_5	Α	983.7	16	974 ⁶ /982 ^c	970	976	247	958	239	$-vF_2C_1(11) - vF_4C_2(11) - vC_1C_2(31)$	
ν_6	В	841.3	100	835 ^b /841 ^c	836	838	248	827	249	$-\gamma F_4 C_1 F_3 C_2 (34) - \gamma F_2 C_2 F_2 C_1 (34)$	
ν_7	А	636.8	4		647	645	11	638	11	$-\nu F_{1}C_{1}(11) - \nu F_{3}C_{2}(11) - \delta F_{2}C_{1}F_{1}(25) - \delta F_{3}C_{2}F_{4}(25)$	
ν_8	В	583.2	1		593	589	15	584	14	$- \delta F_2 C_1 F_1 (32) + \delta F_3 C_2 F_4 (32)$	
ν_9	А				458	450	1	444	1	$-\gamma F_{3}C_{1}I_{2}C_{2}(28) + \gamma F_{1}C_{2}I_{1}C_{1}(28)$	
ν_{10}	Α				342	331	1	326	1	$-\delta F_2 C_1 F_1 (11) + \delta F_3 C_2 F_4 (11) + \gamma F_3 C_1 I_2 C_2 (28) - \gamma F_1 C_2 I_1 C_1 (28)$	
ν_{11}	А				313	301	2	298	2	$-\nu C_1 C_2 (14) - \nu C_1 C_2 (34) + \nu C_1 I_1 (34)$	
ν_{12}	В				296	283	0	279	0	$vC_1C_2(31) + vC_1I_1(31) + vC_2I_2(31)$	
v_{13}	В				292	279	0	276	0	$vC_1C_2(11) + vC_1C_2(23) + vC_1I_1(23)$	
ν_{14}	Α				263	249	0	247	0	$vC_{1}C_{2}(19) - vC_{1}I_{1}(19) + \delta F_{1}C_{1}I_{1}(27) + \delta F_{3}C_{2}I_{2}(27)$	
v_{15}	В				254	240	1	237	1	$\nu C_{1}C_{2}(21) - \nu C_{1}I_{1}(21) - \delta F_{1}C_{1}I_{1}(14) + \delta F_{3}C_{2}I_{2}(14) + \gamma F_{3}C_{1}F_{7}C_{2}(28) - \gamma F_{1}C_{2}F_{1}C_{1}(28)$	
ν_{16}	В				172	156	1	153	1	$- \delta I_1 C_1 C_2 (29) + \delta I_2 C_2 C_1 (29) - \gamma F_3 C_1 I_2 C_2 (14) + \gamma F_1 C_2 I_1 C_1 (14)$	
ν_{17}	А				108	90	0	87	0	$\delta I_1 C_1 C_2 (41) + \delta I_2 C_2 C_1 (41)$	
ν_{18}	А				71	52	0	46	0	$\tau I_2 C_2 C_1 I_1 (94)$	

^{*a*} For ease of comparison with the other isomers, mode numbers are ordered according to vibrational wavenumbers instead of symmetry. ^{*b*} Percentage IR intensities relative to the most intense line (v_6). ^{*c*} In methanol. M. T. Messina, P. Metrangolo, W. Navarrini, S. Radice, G. Resnati, and G. Zerbi, *J. Mol. Struct.* **2000**, *524*, 87. ^{*d*} In methanol. J. Liang, D. Drake, and M. Roselius, *Appl. Sepctrosc.* **1994**, *48*, 206. ^{*e*} v^{sc} : scaled harmonic vibrational wavenumber, with linear scaling factor: 0.9725x + 20.6; see text. ^{*f*} Terms with percentage coefficient >10 % are included; the coefficients are listed in parentheses. ^{*g*} Mode description: v: stretch, δ : bend, γ : out-of-plane deformation, τ : torsion. Atomic numbering is indicated in Fig. S1.

			Harmoni	c ^b	Anharmonic		
Mode ^a	Symmetry	ν	ν^{sc}	Int.	ν	Int.	
		$/cm^{-1}$	$/cm^{-1}$	/km mol ⁻¹	$/cm^{-1}$	/km mol ⁻¹	
ν_1	A ₁	1772	1744	810	1726	730	
v_2	A ₂	1390	1373	0	1365	0	
v_3	B ₁	1384	1367	360	1354	351	
ν_4	B ₂	1213	1200	322	1193	317	
v_5	A_1	809	808	19	792	14	
ν_6	B ₂	569	574	3	564	3	
v_7	A ₂	552	558	0	544	0	
ν_8	B ₂	461	469	10	431	7	
v_9	A_1	449	457	3	440	3	
v_{10}	A ₁	393	403	3	388	2	
v_{11}	B ₁	214	229	3	212	3	
v_{12}	A ₂	200	215	0	194	0	
v_{13}	B ₁	86	104	0	79	0	
v_{14}	A_1	78	97	1	73	1	
v_{15}	B ₂	57	76	0	46	0	

Table S3 Vibrational wavenumbers and IR intensities of *bridged*- C_2F_4I ($C_{2\nu}$) calculated with the B3PW91/aug-cc-pVTZ-pp method.

^a For ease of comparison with the other isomers, mode numbers are ordered according to vibrational wavenumbers instead of symmetry. ^b v^{sc} : scaled harmonic vibrational wavenumber, with linear scaling factor: 0.9725x + 20.6; see text.

Expt.	Stage	anti- CF_2ICF_2I	gauche-CF ₂ ICF ₂ I	anti-• C_2F_4I	$gauche-\bullet C_2F_4I$	C_2F_4
Ι	Deposition (4 h)	5.90	1.01	0.00	0.00	0.00
	Irradiation (300 nm, LED, 2 h)	5.30	0.99	0 42	0.22	0 17
		(-0.60)	(-0.02)	0.45	0.22	0.17
	Irradiation (300 nm, LED, 4 h)	4.84	0.98	0.61	0.36	033
		(-1.06)	(-0.03)	0.01	0.50	0.55
II	Deposition (4.5 h)	15.50	3.77	0.00	0.00	0.00
	Irradiation (280 nm, LED, 2h)	14.44	3.68	1 / 5	0.85	0.56
		(-1.06)	(-0.09)	1.45	0.85	0.50
	Irradiation (280 nm, LED, 4 h)	14.20	3.62	1 88	1 21	0 79
		(-1.30)	(-0.15)	1.00	1.21	0.75
II	Deposition (4 h)	12.63	2.60	0.00	0.00	0.00
	Irradiation (265 nm, LED, 2 h)	12.39	2.52	0 13	0.21	0.23
		(-0.24)	(-0.08)	0.15	0.21	0.25
	Irradiation (265 nm, LED, 4 h)	12.13	2.47	0.26	0.51	0.40
		(-0.50)	(-0.13)	0.20	0.01	0110
IV	Deposition (5 h)	15.11	3.56	0.00	0.00	0.00
	Irradiation (281 nm, Laser, 3 min)	11.51	3.06	2.53	2.95	1.88
		(-3.60)	(-0.50)	2.00	2.55	1.00
	Irradiation (267 nm, Laser, 3 min)	11.01	2.94	2.39	3.34	3.27
		(-0.50)	(-0.12)	(-0.14)	(+0.39)	(+1.39)
V	Deposition (5 h)	11.90	2.39	0.00	0.00	0.00
	Irradiation (280 nm, LED, 2h)	9.88	2.26	1.73	1.11	0.81
		(-2.02)	(-0.13)	100		0.01
	Irradiation (265 nm, LED, 2h)	9.74	2.23	1.70	1.18	0.94
		(-0.14)	(-0.03)	(-0.03)	(+0.07)	(+0.13)
	Irradiation (300 nm, LED, 2h)	7.32	2.14	2.37	1.88	2.47
		(-2.42)	(-0.09)	(+0.67)	(+0.70)	(+1.53)
	Irradiation (365 nm, LED, 20 min)	7.18	2.13	1.28	1.89	3.51
		(-0.14)	(-0.01)	(-1.09)	(+0.01)	(+1.04)

Table S4 Mixing ratios (in ppm) of *anti*-CF₂ICF₂I, *gauche*-CF₂ICF₂I, *anti*- \bullet C₂F₄I, *gauche*- \bullet C₂F₄I, and C₂F₄ at various stages in experiments I–V.

^a All experiments were performed on matrices with $CF_2ICF_2I / p-H_2 = ~1/20\ 000$. The smaller mixing ratio of the precursor in Experiment I is because of the lack of passivation.

Table S5 Vertical excitation energies (ΔE) and oscillator strengths (f) of the first eight singlet transitions of anti-CF₂ICF₂I, gauche-CF₂ICF₂I, anti-•C₂F₄I and gauche-•C₂F₄I calculated with the CAM-B3LYP/aug-cc-pVTZpp method at the B3PW91/aug-cc-pVTZ-pp optimized geometry.

Transition	anti-CF	2ICF2I	gauche-C	CF ₂ ICF ₂ I	anti-•	C_2F_4I	$gauche-\bullet C_2F_4I$	
Transition	∆ <i>E</i> /nm	$f/10^{-3}$	Δ <i>E</i> /nm	$f/10^{-3}$	∆ <i>E</i> /nm	$f/10^{-3}$	Δ <i>E</i> /nm	$f/10^{-3}$
$S_0 \rightarrow S_1$	285	4.0	275	0.9	388	0.0	320	0.0
$S_1 \rightarrow S_2$	283	0.0	269	0.1	382	0.7	317	0.0
$S_2 \rightarrow S_3$	278	0.0	267	0.0	294	26.6	274	1.2
$S_3 \rightarrow S_4$	273	0.0	265	0.0	276	0.0	267	0.1
$S_4 \rightarrow S_5$	189	0.0	201	4.2	272	0.0	253	5.7
$S_5 \rightarrow S_6$	189	605.6	200	0.7	227	180.6	251	1.6
$S_6 \rightarrow S_7$	188	0.0	199	2.0	213	0.3	249	4.2
$S_7 \rightarrow S_8$	186	0.4	196	11.4	210	56.1	232	0.1

Fig. S1 Geometries of $CF_2|CF_2|$ conformers: (a) *anti*- $CF_2|CF_2|$ and (b) *gauche*- $CF_2|CF_2|$. The structures were optimized with the B3PW91/aug-cc-pVTZ-pp method; bond lengths are in Å and angles in degree.

Fig. S2 Relaxed energy profiles for the internal rotation ($\Phi I_1 C_1 C_2 I_2$) of CF₂ICF₂I calculated with the B3PW91/aug-cc-pVTZ-pp method; the open circles denote energies of the optimized structures.

Fig. S3 Linear fit of experimental wavenumbers versus harmonic vibrational wavenumbers of CF₂ICF₂I calculated with the B3PW91/aug-cc-pVTZ-pp method. The data corresponding to both isomers were used.

Fig. S4 Partial difference spectra of a matrix $CF_2ICF_2I/p-H_2$ (~1/20 000) in the range 1350-1230 cm⁻¹ recorded after irradiation of the matrix with light near 300 nm for 3 h (a), 280 nm for 3 h (b), and 265 nm for 3 h (c). The spectra were normalized to the line of *anti*-•C₂F₄I near 1285 cm⁻¹. Lines of *anti*- and *gauche*-•C₂F₄I are marked with arrows and labels.