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I. METHODS

In, the following we explain the methods used in this work, as far as they are not already described in detail in the
main text in section 2.

A. Force matching (FM)

The force matching procedure has been described in the main text (subsection 2.2) including the set of linear
equations. After solving the set of linear equations with a constrained least-squares solver, the CG interaction
potentials are determined from the CG forces by numerical integration. Before integration, the tabulated two-body
forces are multiplied by an analytic function of the form:

fswitch (r) = cos

(
π

2

r − rsm
rcut − rsm

)
. (I.1)

This is done for all distances greater than rsm = 1.0 to ensure a smooth decay to zero at the short-range cutoff of
rcut = 1.2 nm.

B. Extension of the VOTCA-CSG FM routine to include three-body interactions

As described in the main text, we extend the VOTCA-CSG FM routine in order to complement the two-body CG
interactions with three-body interactions of the Stillinger-Weber (SW) form:

USW =
∑

i,j 6=i,k>j
f (3b) (θijk) exp

(
γijσij

rij − aijσij

)
exp

(
γikσik

rik − aikσik

)
. (I.2)

In this notation, i is the index of the central atom and j and k are the other two atom indices of a triplet of atoms
with an angular interaction term f (3b) (θijk). To obtain the set of linear equations (eq. (4) of the main text), one has
to calculate the force fSW

i = −∇i USW resulting from the SW interaction on each CG bead i, namely:
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)
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(I.3)
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fSW
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(I.5)

As stated in the main text (subsection 2.3), we represent f (3b) (θ) with cubic splines with g1, . . . , gM , M = 2K
spline coefficients (when using K grid points) in the same way as the representation of the two-body force field basis
functions. The derivative ∂

∂θf
(3b) (θ) is the analytical derivative of the cubic spline implementation, meaning the

derivative is represented by a 2nd order polynomial. To obtain a linear set of equations, all terms in eqns. (I.3) to
(I.5) except f (3b) (θ) and ∂

∂θf
(3b) (θ) are treated as prefactors. This implies that the remaining coefficients of the SW

potential (eq. (I.2)), aij , aik, σij , σik, γij , and γik, have to be set beforehand. The procedure is described in the main
text in subsection 2.3. This allows to include eqns. (I.3) to (I.5) into the set of linear equations (eq. (4) of the main
text) which is solved by a constrained least-squares solver.

In contrast to the spline representation of the pair forces, the system of equations now includes f (3b) (θ) and
∂
∂θf

(3b) (θ), due to application of the chain rule when calculating the derivative of USW (see eq. (I.2)). This implies

that in this case the set of spline coefficients determines f (3b) (θ) and ∂
∂θf

(3b) (θ) simultaneously and no numerical
integration is needed.

C. Enthalpy of vaporization

In the main text, we compare the total pressures and enthalpies of vaporization of the atomistic and the CG
simulations to experimental values. All pressures refer to the virial pressures including all two-body, three-body and
electrostatic long-range interactions.1

The molar enthalpies of vaporization ∆H or, in other words, the enthalpy differences between the gas phase and
the liquid phase are calculated according to the formulation in Refs. 2 and 3:

∆H = Hgas −Hliq = 〈Eint,gas + pgasVgas〉 − 〈Eint,liq + pliqVliq〉 = 〈Epot,gas〉+RT − 〈Epot,liq + pliqVliq〉 . (I.6)

The internal energies, Eint,gas = Epot,gas + Ekin,gas and Eint,liq = Epot,liq + Ekin,liq, refer to the total internal
energies of the liquid phase and the gas phase, normalized to one molecule. As we consider the liquid state and
the gas state at the same temperature (T = 300 K), the average kinetic energies 〈Ekin,gas〉 and 〈Ekin,liq〉 cancel
out and only the difference of the average total potential (cohesive) energies is relevant: 〈Epot,gas〉 − 〈Epot,liq〉 (see
eq. (I.6)). In principle, both, consist of inter- and intra-molecular contributions Einter and Eintra. In case of the
all-atom simulations, we determine Epot,gas with gas phase simulations at T = 300 K with one single molecule in a
simulation box of Lbox = 10 nm (see Ref. 2). In doing so, we assume that there is no inter-molecular contribution
to the gas phase potential energy: Epot,gas ' Eintra,gas. In case of a single bead CG representation as used in this
work, there is no intra-molecular potential energy in the gas phase at all and the total potential energy of the gas
phase is assumed to be Epot,gas ' Eintra,gas ' 0. This means, we assume the CG gas to be an ideal gas (following
the argumentation in Ref. 3) with a total enthalpy of Hgas = 2.5RT with 1.5RT attributed to the (canceled out)
kinetic energy Ekin,gas and 1.0RT attributed to 〈pgasVgas = RT 〉 (equation of state of an ideal gas). In the case of
the all-atom NVT MD simulations, the average liquid pressure is basically equal to zero: pliq = 1 bar ' 0. Therefore,
the term 〈pliqVliq〉 can be neglected when evaluating eq. (I.6). In case of the CG NVT MD simulations (which are
conducted at the atomistic density), we have to explicitly evaluate 〈pliqVliq〉.

II. LENNARD JONES TEST SYSTEM

In the following, we introduce a single component Lennard-Jones (LJ) test system to verify the correctness of our
FM parametrization scheme. We do this to clarify that the development of a short-range attraction upon including the
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FIG. 1. (a) Pair potentials and (b) angular interaction term f (3b) (θijk) of the SW three-body potential (I.2) for the two-body
only (2-body FM) and two- and three-body (2- and 3-body FM) parametrization of the LJ test system with a one-to-one CG
mapping scheme.

three-body potential (see Fig. 2(a) for water and 5(a) for methanol) is not purely a numerical effect. The simulation
details are as follows: We simulate a 1000 atom single component LJ system,

ULJ = 4 ε

[(σ
r

)12
−
(σ
r

)6]
, (II.1)

with ε = 1.0 kcal/mol, σ = 0.3 nm and a cutoff of 1.2 nm. We use the LAMMPS package.4 We employ a time
step of 2 fs and a chain of three Nose-Hoover thermostats5,6 with a damping parameter of 200 fs when integrating the
equations of motion.7 We first conduct a NPT equilibration run of 20 ns with an additional chain of three Nose-Hoover
barostats with a damping parameter of 1000 fs. This is followed by a 20 ns production run at the average density of
the preceding NPT simulation, resulting in a box length of LBox = 3.13951 nm.

The CG procedure and the CG two-body and three-body SW potentials are described, in detail, in subsections
II.B. and II.C. of the main text and subsections I A and I B of the supporting information. Here, we apply a
cutoff of rc = 1.2 nm for the pair interactions and a = 0.46 nm, σ = 1.0, and γ = 0.08 nm for the three-body
SW parametrization. We perform two different parametrizations. In all cases, we apply a one-to-one CG mapping
scheme. First, we do FM with two-body interactions only (2-body FM). Second, we perform an unconstrained FM
parametrization of two- and three-body interactions together (2-body and 3-body FM).

The results are shown in Fig. 1. One can clearly see that in this test case the pair potentials of the two different
parametrization schemes coincide. They correspond exactly to the input LJ potential. The three-body interaction
term of the two- and three-body optimization f (3b) (θijk) is equal to zero within statistical noise. This confirms the
numerical correctness of the FM parametrization scheme, as in this test case no higher-order interactions are present.

III. ADDITIONAL STRUCTURAL PROPERTIES

In the following, we show CG potentials, distribution functions, and potentials of means force (PMFs) that are not
shown in the main text. All these plots refer to the optimal SW interaction parameter of γ = 0.08 nm. In addition,
we show the average angles between two-body and three-body force components on each CG bead.

A. Liquid water

In this subsection, we provide additional information on liquid SPC/E water.
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FIG. 2. (a) Pair potentials and (b) tabulated angular interaction terms f (3b) (θijk) of the SW three-body potential (I.2) for CG
SPC/E water for all different parametrizations.
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FIG. 3. Average angles Φ̄ between the two-body and three-body force components on each CG bead according to eqns. (7),
and (8) of the main text for different CG parametrization schemes for SPC/E water. The results shown are for the concurrent
two-body and three-body FM parametrization (2- and 3-body FM), the three-body FM using the residual force of the two-body
FM potential (2-body FM and 3-body ∆fFM), and the three-body FM parametrization using the residual force of the two-body
FM potential with additional pressure correction (2-b FM+PC and 3-b ∆fFM).

In Fig. 2(a), we show all different pair potentials for liquid SPC/E water. It complements Fig.1(a) of the main text
by showing the full interaction range until the two-body cutoff radius of 1.2 nm. The first curve refers to the two-body
parametrization (2-body FM). The second curve shows the two-body force matching result with pressure correction
(2-body FM+PC). The pressure correction referes to the simulation of the two-body FM potential together with the
three-body potential parametrized according to the residual force (2-body FM+PC and 3-body ∆fFM). The third
curve shows the two-body part of the concurrent FM two- and three-body parametrization (2- and 3-body FM).

In Fig. 2(b), we show the tabulated angular part of the short-range three-body SW potential (I.2) f (3b) (θijk)
for all different CG parametrizations. One can clearly see that the parametrization according to the residual force
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FIG. 4. Decomposition of the CG two-body PMF for different CG parametrization schemes for SPC/E water. The results
shown are for the concurrent two-body and three-body FM parametrization (2- and 3-body FM), and the three-body FM using
the residual force of the two-body FM potential with additional pressure correction (2-body FM+PC and 3-body ∆fFM).

(2-body FM and 3-body ∆fFM) mainly leads to a vertical shift of f (3b) (θ) compared to the concurrent two-body
and three-body CG parametrization (2- and 3-body FM). The angular part of the parametrization including pressure
correction (2-body FM+PC and 3-body ∆fFM) corresponds to the uncorrected one (2-body FM and 3-body ∆fFM),
as the pressure correction is only applied to the two-body FM potential.

In Fig. 3, we show the average angle Φ̄ corresponding to the inner product p of the different force field contributions
(see eqns.(7), (8) of the main text). This corresponds to the average angle on each CG bead between the two-body and
three-body SW force components. We show the results for varying SW interaction parameter γ (see eqn. (I.2)) for the
concurrent two-body and three-body FM parametrization (2- and 3-body FM), the three-body FM using the residual
force of the two-body FM potential (2-body FM and 3-body ∆fFM), and the three-body FM parametrization using
the residual force of the two-body FM potential with additional pressure correction (2-b FM+PC and 3-b ∆fFM).

In Fig. 4, we show the splitting of the total two-body PMF into the two-body and three-body contributions for
SPC/E water. Here, the splitting of the parametrization using the residual force of the two-body FM potential with
additional pressure correction (2-body FM+PC and 3-body ∆fIBI) is compared to the concurrent two-body and three-
body parametrization (2-body and 3-body FM). This complements Fig.4(a) of the main text. One can clearly see
that the pressure correction does not change the results of the residual force parametrization without the correction.

B. Liquid methanol

In this subsection, we give additional information for liquid methanol.
In Fig. 5(a), we show all different pair potentials for liquid methanol. It complements Fig.2(a) of the main text by

showing the full interaction range until the two-body cutoff radius of 1.2 nm. The first curve refers to the two-body
parametrization (2-body FM). The second curve shows the two-body force matching result with pressure correction
(2-body FM+PC). The pressure correction referes to the simulation of the two-body FM potential together with the
three-body potential parametrized according to the residual force (2-body FM+PC and 3-body ∆fFM). The third
curve shows the two-body part of the concurrent FM two- and three-body parametrization (2- and 3-body FM).

In Fig. 5(b), we show the tabulated angular part of the short-range three-body SW potential (I.2) f (3b) (θijk) for
all different CG parametrizations of liquid methanol. One can clearly see that the parametrization according to the
residual force (2-body FM and 3-body ∆fFM) mainly leads to a vertical shift of f (3b) (θ). The angular part of the
parametrization including pressure correction (2-body FM+PC and 3-body ∆fFM) corresponds to the uncorrected
one (2-body FM and 3-body ∆fFM), as the pressure correction is only applied to the two-body FM potential.

In Fig. 6, we show the radial distribution functions for all different CG force-fields of methanol. The two-body
parametrization (2-body FM) and concurrent FM two- and three-body parametrization (2- and 3-body FM) lead to
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FIG. 5. (a) Pair potentials and (b) tabulated angular interaction terms f (3b) (θijk) of the SW three-body potential (I.2) for CG
methanol for all different parametrizations.
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FIG. 6. Radial distribution functions of CG methanol. The different CG parametrizations refer to: FM with a (tabulated) pair
potential only (2-body FM), concurrent two-body and three-body FM parametrization (2- and 3-body FM), the three-body
FM parametrization using the residual force of the two-body FM potential (2-b FM and 3-b ∆fFM), and the three-body FM
parametrization using the residual force of the two-body FM potential with additional pressure correction (2-b FM+PC and
3-b ∆fFM).

nearly identical results. The parametrizations of the three-body interactions according to the residual force with and
without pressure correction (2-body FM and 3-body ∆fFM, and 2-b FM+PC and 3-b ∆fFM) show a slight decrease
of the height of first- and increase of the second-neighbor peak compared to the atomistic reference curve. This is
attributed to the short-range repulsion of the additional three-body SW potential.

In Fig. 7, we show the average angle Φ̄ corresponding to the inner product p of the different force field contributions
(see eqns.(7), (8) of the main text). This corresponds to the average angle on each CG bead between the two-body
and three-body SW force components. We show the results for varying SW interaction parameter γ (see eqn. (I.2)) for
concurrent two-body and three-body FM parametrization (2- and 3-body FM), the three-body FM using the residual
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force of the two-body FM potential (2-body FM and 3-body ∆fFM), and the three-body FM parametrization using
the residual force of the two-body FM potential with additional pressure correction (2-b FM+PC and 3-b ∆fFM).

In Fig. 8, we show the splitting of the total two-body PMF into the two-body and three-body contributions for
methanol. Here, the splitting of the parametrization using the residual force of the two-body FM potential with
additional pressure correction (2-body FM+PC and 3-body ∆fIBI) is compared to the concurrent two-body and
three-body parametrization (2-body and 3-body FM). This complements Fig.4(b) of the main text. One can clearly
see that the pressure correction does not change the results of the residual force parametrization without the correction.
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water methanol

γ [nm] A [kcal/mol] γ [nm] A [kcal/mol]

0.001 0.107313694 0.001 0.27605193

0.01 0.103011586 0.01 0.278680996

0.02 0.087954208 0.02 0.28202708

0.03 0.072179812 0.03 0.285851176

0.04 0.059273488 0.04 0.289675272

0.05 0.050430266 0.05 0.293260362

0.06 0.045172134 0.06 0.296128434

0.07 0.043260086 0.07 0.298279488

0.08 0.043738098 0.08 0.299713524

0.09 0.046367164 0.09 0.300430542

0.10 0.05019126 0.10 0.29636744

0.11 0.055210386 0.11 0.300430542

0.12 0.060707524 0.12 0.299713524

TABLE I. Magnitudes A of the pressure corrections applied to the two-body FM potentials of CG SPC/E water and methanol
for all different interaction parameters γ.

IV. DETAILS OF THE PRESSURE CORRECTION SCHEME

As stated in the main text, we apply a pressure correction scheme8,9 to the constrained parametrizations. We add
a small linear perturbation to the two-body FM potential:

∆UPC = −A
(

1− r

rcut

)
, rcut = 1.2 nm. (IV.1)

The constants A have to be adjusted for each interaction parameter γ in order to shift shift the pressure of the total
interaction potential (2-b FM+PC and 3-b ∆fFM) to zero. The numerical values of A in units of kcal/mol are shown
in Tab. I.

V. TABULATED POTENTIAL FILES

As described in subsection I B and subsection 2.3 of the main text, we employ cubic splines to represent the
nonbonded pair potentials and the angular part of the SW potential f (3b) (θ) in the FM procedure. This results
in tabulated potential files which are used in LAMMPS to run the CG simulations with the pair style table (pair
potentials) and the new pair style sw/table (SW parameters and angular potentials). The corresponding files for the
interaction parameter γ = 0.08 nm are:
“Methanol 2body only FM pair potential.txt”: 2-body only FM of liquid methanol
“Methanol 2body only FM PC pair potential.txt”: 2-body only FM of liquid methanol with applied pressure cor-
rection. Has to be used togehter with the “Methanol 3body FM after 2body FM angular potential.txt” angular
potential.
“Methanol 2body and 3body together FM pair potential.txt”: concurrent 2-body and 3-body FM of liquid methanol
pair potential
“Methanol 2body and 3body together FM angular potential.txt”: concurrent 2-body and 3-body FM of liquid
methanol angular potential
“Methanol 3body FM after 2body FM angular potential.txt”: 2-body FM and 3-body ∆fFM of liquid methanol an-
gular potential (pair potential is identical to 2-body only FM potential). If used together with the “Methanol 2body only FM PC pair potential.txt”
pair potential this refers to the 2-body FM+PC and 3-body ∆fFM parametrization.
“Water 2body only FM pair potential.txt”: 2-body only FM of liquid SPC/E water
“Water 2body only FM PC pair potential.txt”: 2-body only FM of liquid SPC/E with applied pressure correction.
Has to be used togehter with the “Water 3body FM after 2body FM angular potential.txt” angular potential.
“Water 2body and 3body together FM pair potential.txt”: concurrent 2-body and 3-body FM of liquid SPC/E water
pair potential
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“Water 2body and 3body together FM angular potential.txt”: concurrent 2-body and 3-body FM of liquid SPC/E
water angular potential
“Water 3body FM after 2body FM angular potential.txt”: 2-body FM and 3-body ∆fFM of liquid SPC/E wa-
ter angular potential (pair potential is identical to 2-body only FM potential). If used together with the “Wa-
ter 2body only FM PC pair potential.txt” pair potential this refers to the 2-body FM+PC and 3-body ∆fFM
parametrization.
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