Electronic Supplementary Information (ESI):

Exploring the methanol decomposition mechanism on Pt₃Ni(100) surface: a periodic density functional theory study

Pan Du,^{a,b} Yuan Gao,^a Ping Wu,*^a and Chenxin Cai*^a

^{*a*} Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210097, P.R. China.

^b College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, P.R. China.

* Corresponding author, E-mail: <u>wuping@njnu.edu.cn</u> (P. Wu); <u>cxcai@njnu.edu.cn</u> (C. Cai); Tel: 86 25 85891780.

CONTENTS

- 1. Slab model of $Pt_3Ni(100)$ with (3×3) unit cell
- 2. Detailed descriptions of the structures and sites of the methanol and its intermediates
- 3. Detailed descriptions of each H abstraction from methanol and its intermediates
- 4. Figures

1. Slab model of $Pt_3Ni(100)$ with (3×3) unit cell

Fig. S1. Slab models of the $Pt_3Ni(100 \text{ with } (3 \times 3) \text{ surfaces.}$ Atomic color code: yellow, platinum; green, nickel.

2. Detailed descriptions of the structures and sites of the methanol and its intermediates

Adsorption of CH_3OH . CH_3OH prefers a Ni top site of $Pt_3Ni(100)$ surface via donation of the lone-pair electrons from oxygen to the metallic surface (Fig. S2), with an E_{ads} of -0.81 eV. The C–O bond is inclined at an angle of 25° from the surface normal, and the O–H bond is oriented toward a hollow site, facilitating the binding of CH_3OH to the surface via the oxygen lone-pair orbital. The large O–surface distance (2.07 Å), as well as small changes in the structure of CH_3OH upon adsorption, suggest the relatively weak adsorption of CH_3OH on $Pt_3Ni(100)$.

Adsorption of CH_xO (x = 0-3). The methoxy (CH₃O) formed from O–H bond scission of CH₃OH also prefers the Pt–Ni bridge site, with an E_{ads} of –2.42 eV, which is much greater than that of CH₃OH due to the abstraction of one H. One effect of the adsorption is substantial stretching of the C–O bond (1.43 Å vs 1.34 Å) of CH₃O due to electron donation from the metallic 4d orbitals to the π^* orbital of C–O in CH₃O. The other effect of the adsorption may be CH₃O binding with Pt₃Ni(100) via η^2 (O) modes. The removal of one H atom from CH₃O generates formaldehyde (CH₂O), which is a critical intermediate in CH₃OH decomposition and synthesis. CH₂O is apt to adsorb on the Pt–Ni bridge site via the η^1 (C)- η^2 (O) mode, with the O atom binding to Pt and Ni atom while the CH₂ group pointing to a Pt atom. The E_{ads} is -1.17 eV. Similar to CH₂O, formyl (CHO) prefers to adsorb on the Pt–Ni bridge site via η^1 (C)- η^1 (O) mode, simultaneously forming Pt–C (1.95 Å) and Ni–O (1.93 Å) bonds. The alloying strengthens the adsorption of CHO, with an E_{ads} of –3.49 eV.

Adsorption of CH_xOH (x = 0-2). Hydroxymethyl (CH₂OH), formed by C–H scission of CH₃OH, prefers to bond at the Pt–Ni bridge site on Pt₃Ni(100) via $\eta^1(C)-\eta^1(O)$ mode with the O atom binding to a Ni atom and the C atom binding with a Pt atom. The C–O axis is parallel to the Pt₃Ni(100) surface ($\alpha =$ 90 °), and an E_{ads} of –2.31 eV is obtained. Although hydroxymethylene (CHOH) has a closed-shell electronic configuration, its CH end is still active and can bind stably at the Pt–Ni bridge site through its C atom (in $\eta^2(C)$ mode), with a high E_{ads} of –3.80 eV. Hydroxymethylidyne (COH) also prefers to bind to the Pt–Ni bridge site ($\eta^2(C)$ mode) through its carbon atom, with an E_{ads} of –4.17 eV, indicating a strong interaction between the C atom and Pt₃Ni because the C atoms have no H neighbors. Adsorption of CO and Atomic H. CO interacts with the Pt₃Ni(100) surface through the carbon atom via η^2 (C) mode, forming Pt–C (2.02 Å) and Ni–C (1.87 Å) bonds. The E_{ads} is –2.14 eV. The H atom prefers the fourfold site with a distance of 0.96 Å to the surface. The E_{ads} is –2.78 eV.

Adsorption of CH₃ and OH. Methyl (CH₃), formed by the scission of the C–O bond in CH₃OH, sits at the Pt top site, with an E_{ads} of –3.03 eV. The hydroxyl radical adsorbs preferentially on the Pt–Ni bridge site (in η^2 (O) mode), and the distances of the oxygen to Pt and Ni are 2.11 and 1.93 Å, respectively. The E_{ads} is –3.99 eV.

3. Detailed descriptions of each H abstraction from methanol and its intermediates

3.1. The O–H bond scission

*R1. CH*₃*OH* → *CH*₃*O* + *H*: The IS is the Ni top adsorbed CH₃OH, while coadsorbed CH₃O and H are the FS. In this process, the reaction coordinate begins with an O–H stretch vibration at 3346 cm⁻¹ and ends with CH₃O bound through the O atom at Pt–Ni bridge site and H adsorbed to an adjacent Pt–Ni bridge site (step (a) in Fig. S3). The activated O–H distance is elongated from 0.992 Å in the IS to 2.006 Å in the TS (TS1 in Fig. S3). The distance from the C atom to the catalyst surface is 2.67 Å, much shorter than its initial value in CH₃OH (2.83 Å), which indicates that a portion of the CH₃O in the TS moves closer to the catalyst surface. Beyond the TS, the CH₃O formed is left at the Pt–Ni bridge site, while the H atom moves to an adjacent Pt–Ni bridge site. This step has an E_a of 0.19 eV and is exothermic by –0.42 eV.

R2. $CH_2OH \rightarrow CH_2O + H$: Hydroxyl H abstraction from CH₂OH affords coadsorbed formaldehyde and hydrogen. The IS is also selected as the most stable CH₂OH configuration, and the FS consists of a hydrogen atom at Pt top site and CH₂O adsorbed on the Pt–Ni bridge site via the $\eta^1(C)$ - $\eta^1(O)$ mode, as shown in Fig. S3 (step (b)). The TS (TS2 in Fig. S3) is similar to the structure of FS. This step has a small E_a of 0.18 eV, and the reaction is exothermic by –0.34 eV.

R3. CHOH \rightarrow *CHO* + *H*: The process of dehydrogenation of CHOH to CHO is relatively facile. One hydrogen atom moves away from CHOH by breaking the O–H bond with a reaction barrier (0.41 eV) and the distance of the O and H is 1.875 Å at the TS (TS3 in Fig. S3). The dissociation is exothermic with reaction energy of –0.11 eV.

R4. COH → *CO* + *H*: After COH is formed, it may yield the desired final products CO and H via O–H bond scission. This process begins with an O–H stretch vibration at 3600 cm⁻¹, and COH forms a bidentate structure through the C atom. After the TS (TS4 in Fig. S3), the O atom moves to the top of the C atom, which forms bonds with the Pt and Ni atoms. The H atom departs from C and adsorbs stably at a Pt–Ni bridge site in the FS. This step has an E_a of 0.44 eV and is exothermic by –0.88 eV.

3.2. The C–H bond scission

R5. $CH_3OH \rightarrow CH_2OH + H$: The IS is also the Ni top adsorbed CH₃OH, while coadsorbed CH₂OH and H are the FS. In this process, the reaction coordinate begins with an C–H stretch vibration at 3126 cm⁻¹ and ends with CH₂OH via $\eta^1(C)$ - $\eta^1(O)$ mode with the O atom binding to a Ni atom and the C atom binding with a Pt atom and H adsorbed to an adjacent Pt top site (step (a) in Fig. S4). The activated C–H distance is elongated from 1.091 Å in the IS to 2.584 Å in the TS (TS5 in Fig. S4), indicating that the C–H bond becomes weaker in the TS. This step has an E_a of 0.46 eV and is exothermic by −0.56 eV.

*R6. CH*₂*OH* → *CHOH* + *H*: For C–H scission, methyl H abstraction from CH₂OH affords coadsorbed hydroxymethylene and hydrogen. The IS is selected as the most stable CH₂OH configuration (Pt–Ni bridge), and the FS consists of a hydrogen atom at Pt–Ni bridge site and hydroxymethylene on an adjacent Pt top site, as shown in Fig. S4 (step (b)). In this process, the reaction coordinate begins with an C–H stretch vibration at 3058 cm⁻¹. The TS (TS6 in Fig. S4) is formaldehyde-like, with the other hydrogen atom essentially moving straight away from the initial location in the CH₂OH radical to the final Pt–Ni bridge site. This step has an E_a of 0.77 eV, and the reaction is exothermic by –0.30 eV.

R7. CHOH → *COH* + *H*: After CHOH has been produced on the Pt₃Ni(100) surface, it can produce COH and H via C–H scission. This step begins with a C–H stretch vibration at 2991 cm⁻¹ and ends with COH and H (step (c) in Fig. S4), with an E_a is 0.67 eV, and the reaction is exothermic by –0.23 eV.

R8. $CH_3O \rightarrow CH_2O + H$: Methyl H abstraction from CH₃O affords coadsorbed formaldehyde and hydrogen. The IS is selected as the most stable CH₃O configuration (Pt–Ni bridge), and the FS consists of a hydrogen atom at Pt–Ni bridge site and formaldehyde on an adjacent Pt–Ni bridge site, as shown in Fig. S4 (step (d)), which guarantees that the repulsion between them is smaller. This process begins with a C–H stretch vibration at 2902 cm⁻¹. To favor C–H bond activation and scission, the C–O bond inclines and brings the hydrogen atom close to the surface (the angle α changes from 25° in the IS to 28° in the TS). The TS (TS8 in Fig. S4) is formaldehyde-like, with the other hydrogen atom essentially moving straight away from the initial location in the CH₃O radical to the final Pt–Ni bridge site, and the formaldehyde part rises from the surface, as indicated by the angle α of 15° in the FS. This step has a small E_a of 0.65 eV, and the reaction is exothermic by -0.48 eV.

*R9. CH*₂*O* → *CHO* + *H*: In the formation of CHO, we use CH₂O as the IS, CHO as its favorable site (i.e., Pt–Ni bridge site) and hydrogen at the Ni top site as the FS (step (e) in Fig. S4. This process begins with a C–H stretch vibration at 2839 cm⁻¹. Since the TS (TS9, Fig. S4) has little change in geometry relative to the IS, this step has a low E_a (0.49 eV). This step is exothermic, with ΔH of –0.07 eV.

R10. CHO → *CO* + *H*: The C–H bond scission in formyl begins with a C–H stretch vibration at 2637 cm⁻¹ and ends with CO and H (step (f) in Fig. S4), with an E_a is 0.56 eV. In the TS (TS10 in Fig. S4), the C–H bond is elongated, and the departing H atom is located at the adjacent Pt–Ni bridge site. The Ni–O bond is broken at a distance of 3.05 Å, and CHO forms a bidentate structure through the C atom. After the TS, the O atom moves to the top of the C atom, which forms bonds with the Pt and Ni atoms. The H atom departs from C and adsorbs stably at a Pt–Ni bridge site in the FS. This process is exothermic, with ΔH of −1.00 eV.

3.3. The C–O bond scission

 $R11. CH_3OH \rightarrow CH_3 + OH$: The adsorbed CH₃OH species also has a high (1.59 eV) barrier for C–O bond cleavage, which is exothermic by –0.76 eV. After decomposition, CH₃ locates on the top site of Pt atom and OH adsorbs on the Pt–Ni bridge site. (step (a) in Fig. S5)

R12. $CH_2OH \rightarrow CH_2 + OH$: The C–O bond breaking in CH₂OH leads to the production of CH₂ and OH. This step has an energy barrier and endothermicity of 1.19 and 0.56 eV. The distance of the scissile C–O bond is 3.000 Å in the transition state (TS12 in Fig. S5), while after dissociation this value change to be 4.349 Å and CH₂/OH coadsorb at their preferred sites.

R13. $CH_3O \rightarrow CH_3 + O$: The C–O bond scission in CH₃O has an E_a of 1.65 eV. The TS for the C–O bond scission in CH₃O is depicted in Fig. S5, the length of the cleaving C–O bond is calculated to be 2.013 Å in the transition state. In the final state, CH₃ group located on the Pt site through C, while O group located on the bridge of Pt and Ni atoms.

 $R14. CH_2O \rightarrow CH_2 + O$: We also perform a similar calculation for the C–O bond scission in CH₂O. The E_a is 1.36 eV (TS14 in Fig. S5), which is much higher than that of the C–H bond-breaking reaction, suggesting this step is not a possible pathway in CH₃OH decomposition. To the best of our knowledge, there is no experimental result confirming the existence of the CH₂ species in methanol decomposition.

Fig. S2. The most stable adsorption configurations of CH_3OH and its intermediates involved in CH_3OH decomposition on the $Pt_3Ni(100)$ surface. Atomic color code: yellow, platinum; green, nickel; gray, carbon; red, oxygen; and white, hydrogen.

(a) CH3OH \rightarrow CH3O + H

(b) CH₂OH \rightarrow CH₂O + H

(c) CHOH \rightarrow CHO + H

Fig. S3. The structures of the IS, TS, and FS for each elementary step of O–H bond scission in CH₃OH. Atomic color code: yellow, platinum; green, nickel; gray, carbon; red, oxygen; and white, hydrogen.

(a) CH₃OH \rightarrow CH₂OH + H

(b) $CH_2OH \rightarrow CHOH + H$

CHOH + H

(c) CHOH \rightarrow COH + H

TS7

COH + H

(d) CH₃O \rightarrow CH₂O + H

CHOH

(e) $CH_{2}O \rightarrow CHO + H$

(f) CHO \rightarrow CO + H

TS9

Fig. S4. The structures of the IS, TS, and FS for each elementary step of O–H bond scission in CH₃OH. Atomic color code: yellow, platinum; green, nickel; gray, carbon; red, oxygen; and white, hydrogen.

(a) CH₃OH \rightarrow CH₃ + OH

Fig. S5. The structures of the IS, TS, and FS for each elementary step of O–H bond scission in CH₃OH. Atomic color code: yellow, platinum; green, nickel; gray, carbon; red, oxygen; and white, hydrogen.