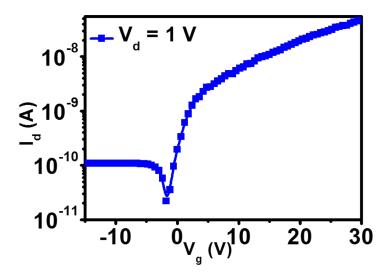

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

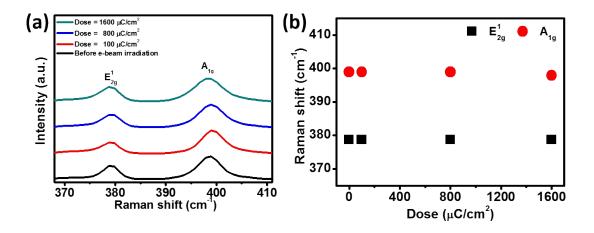
Supporting Information

Time-Evolution of the Electrical Characteristics of MoS₂ Field Effect Transistors After Electron Beam Irradiation

Ming-Yen Lu^{1,*}, Shang-Chi Wu², Hsiang-Chen Wang², and Ming-Pei Lu³


Figure S1 (a) Schematic representation of the setup for CVD growth of MoS₂ flakes. (b) OM images of MoS₂ flakes obtained at various Ar carrier gas flow rates.

¹ Department of Materials Science and Engineering and High Entropy Materials Center, National Tsing Hua University, Hsinchu 300, Taiwan


² Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi 62102, Taiwan

³ National Nano Device Laboratories, Hsinchu 300, Taiwan

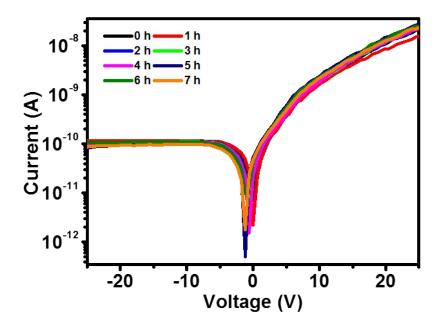

^{*}Corresponding author: mylu@mx.nthu.edu.tw

Figure S2 Transfer characteristic of a non-irradiated MoS_2 FET, measured at a value of V_d of 1 V, plotted on a logarithmic scale.

Figure S3 (a) Raman spectra of MoS_2 recorded before and after e-beam irradiation at various doses. (b) Positions of the $^{E_{2g}^{1}}$ and $^{A_{1g}}$ vibration modes of MoS_2 after e-beam irradiation at various doses; the positions are almost identical, indicating that the MoS_2 did not undergo any significant structural change.

Figure S4 Transfer characteristics of a non-irradiated MoS_2 FET, measured after various periods of time.