Supplementary information

Cyano-tryptophans as dual infrared and fluorescence spectroscopic labels to assess structural dynamics in proteins

L. J. G. W. van Wilderen,^a H. Brunst,^a H. Gustmann,^b J. Wachtveitl,^b J. Broos,^c and J. Bredenbeck^{a,†}

^{a.} Institute of Biophysics, Johann-Wolfgang-Goethe Universität, Frankfurt am Main, Germany.

^{b.} Institute of Physical and Theoretical Chemistry, Johann-Wolfgang-Goethe Universität, Frankfurt am Main, Germany.

^{c.} Laboratory of Biophysical Chemistry and GBB (Groningen Biomolecular Science and Biotechnology Institute), University of Groningen, Groningen, The Netherlands.

⁺ Corresponding author: bredenbeck@biophysik.uni-frankfurt.de.

Figure S1. Ultrafast time-resolved infrared data. The raw data and their (global) fits are shown. The stars represent the collected data points of the maximum and minimum difference signal, the continuous lines the fits. The time axis is linear up to 2 ps, logarithmic thereafter. The small panel under each main panel shows the residuals of the fits, i.e. the sum of (data-fit) for all collected time traces.

Figure S2. Raw data from the measurements shown in Figure 6. In addition, the corresponding residuals to the multi-exponential fits are shown (see Table 3 for the corresponding lifetimes).

Table S1.	Extension of table 1	with errors of the	e frequencies a	nd widths,	determined	with lorentzian	fits of the	measured	data.

Compound		5CNI		Ac5CNTrp		4CNI				Ac4CNTrp	
Solvent	Dielectric constant	Vc	fwhm	ν_{c}	fwhm	ν_c peak 1	fwhm	ν_c peak 2	fwhm	ν_{c}	fwhm
	ε ³⁷	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹						
Aprotic											
PCE	2.27	2226.49 (0.05)	9.1 (0.2)	2218.8 (0.3)	11.8 (0.8)	2218.1 (0.2)	12.5 (0.6)	2232.55 (0.08)	9.8 (0.3)		
Chloroform	4.81	2224.40 (0.07)	11.9 (0.3)	2218.67 (0.08)	15.1 (0.04)	2216.8 (0.2)	11.1 (0.4)	2231.9 (0.1)	12.1 (0.4)	2218.30 (0.07)	9.8 (0.3)
THF	7.52	2220.64 (0.03) ^a	7.88 (0.09)	2220.16 (0.03) ^b	7.5 (0.1)	2215.27 (0.07) ^c	9.0 (0.3)	2229.55 (0.08) ^c	10.4 (0.3)	2216.46 (0.04)	6.6 (0.2)
DCM	8.93	2223.26 (0.07)	11.5 (0.3)	2218.91 (0.07)	14.9 (0.3)	2216.7 (0.3) ^c	13.0 (0.7)	2230.5 (0.2) ^c	11.6 (0.6)	2218.20 (0.05)	10.5 (0.2)
Acetonitrile	36.64	2221.14 (0.06)	10.0 (0.2)	2221.55 (0.04)	9.0 (0.2)	2215.3 (0.1)	8.6 (0.4)	2230.3 (0.2)	13.8 (0.4)	2217.39 (0.08)	9.5 (0.4)
DMF	38.25	2218.11 (0.03)	8.33 (0.09)			2213.97 (0.07) ^c	9.6 (0.2)	2229.1 (0.2) ^c	11.2 (0.5)		
DMSO	47.24	2217.18 (0.03)	9.2 (0.2)	2216.96 (0.04)	8.9 (0.2)	2213.60 (0.08) ^c	10.5 (0.3)	2229.1 (0.2) ^c	11.8 (0.6)	2214.27 (0.05)	7.4 (0.2)
Protic											
HFIP	16.70	2224.6 (0.6)/2242.5 (0.2)	26 (2) /20.9 (0.5)			2223.1 (0.5)	25 (2)	2246.0 (0.2)	14.2 (0.4)		
TFE	27.68	2232.3 (0.2)	23.0 (0.5)			2220.0 (0.2) ^c	13.2 (0.6)	2239.77 (0.09) ^c	15.3 (0.4)	2224.88 (0.09)	13.0 (0.3)
Methanol	33.0	2224.28 (0.07)	13.3 (0.3)			2217.30 (0.09) ^c	10.2 (0.3)	2233.32 (0.09) ^c	12.1 (0.3)	2219.47 (0.06)	8.6 (0.2)
H ₂ O	80.2	2223.9(0.1) ^a	12.7 (0.4)	2225.80 (0.05) ^b	13.4(0.2)	2218.9 (0.2)	12.4 (0.5)	2235.1 (0.2)	11.9 (0.5)	2221.13 (0.07)	11.6 (0.3)

Table S2. Reproduction of Table 3, compared to literature data of similar compounds. The numbering of the references corresponds to those given in the main paper. The fluorescence properties are determined at given excitation and emission wavelengths. The quantum yield (QY) and lifetimes are compared to literature values (data in a single row represents data from the same reference). The listed lifetimes are determined via fit to a sum of exponentials, with the standard deviation given in brackets, the fractional intensity of each component in percent, the intensity weighted average lifetime, and the goodness-of-fit parameter χ^2 . All lifetimes collected in this work are marked with an asterix (*) at the χ^2 value.

Compound	Solvent	QY	Exc. / nm, Em. / nm	Lifetimes(error)/ns \ fractional intensity/%			Intensity weighted average lifetime (error) / ns	χ^2
				$ au_1$	$ au_2$	$ au_3$		
5CNI	THE	0.11	310, >320			4.08 (0.01)\100	4.08 (0.01)	1.14*
JUNI	1111	0.11^{20}	270, 360			4.4\100	4.4	1.15
	DMSO	0.16	310, >320			7.15 (0.02)\100	7.15 (0.02)	1.20*
		0.1620	270, 360			7.1\100	7.1	1.18
	H_2O	< 0.01	310, >320	0.240 (0.003)\32	1.83 (0.04)\24	6.6 (0.2)\43	3.39 (0.1)	1.01*
		0.005^{20}	270, 360		0.1\91	0.3\9	0.1	1.19
Ac5CNTrp	THF	0.09	310, >320		2.02 (0.01)\4	5.99 (0.02)\96	5.81 (0.02)	1.16*
	DMSO	0.23	310, >320		3.5 (0.3)\2	14.60 (0.03)\98	14.35 (0.04)	1.16*
	H_2O	< 0.01	310, >320		0.340(0.003)\57	5.25 (0.07)\43	2.47 (0.04)	1.22*
5CNTrp	THF	0.1220	270, 360		2.5\18	5.9\82	5.3	1.07
	DMSO	0.24^{20}	270, 360		2.1\21	16.5\79	13.5	1.06
	H_2O	0.01^{20}	270, 360		0.4\91	1.6\9	0.5	0.97
4CNI	THF	0.48	310, >320			5.00 (0.01)\100	5.00 (0.01)	1.09*
			270,>3005			5.3\100	5.3	
	DMSO	0.56	310, >320			7.40 (0.02)\100	7.40 (0.02)	1.11*
			270,>3005			7.1\100	7.1	
	H_2O	0.855	270, 270			9.1\100	9.1	
		0.59	310, >320			8.90 (0.02)\100	8.90 (0.02)	1.28*
		0.78^{5}	270, 325					
			270,>3005			0.3\100	0.3	
Ac4CNTrp	Chloroform	0.45	310, >320		2.08 (0.05)\5	6.19 (0.02)\95	5.63 (0.03)	1.14*
	THF	0.44	310, >320		2.60 (0.09)\5	7.89 (0.02)\95	7.64 (0.03)	1.09*
	DMSO	0.58	310, >320		2.13 (0.09)\6	10.17 (0.03)\94	9.65 (0.04)	1.24*
	TFE	0.76	310, >320		2,6 (0.1)\5	10.03 (0.02)\95	9.65 (0.02)	1.47*
	Methanol	0.55	310, >320		2.8 (0.2)\13	9.00 (0,02)\87	8.68 (0.02)	1.21*
	H_2O	0.76	310, >320		4.4 (0.3)\4	13.90 (0.03)\96	13.5 (0.04)	1.15*
4CNTrp	H_2O	0.88^{5}	270, 325		1.9\5	13.7\95	13.1	
Trp	H_2O	0.138	280					
			295, 3207		0.3\16	2.9\84	2.5	1.23

solvent	α	β	π*	
Aprotic				
PCE	0	0	0.28	
Chloroform	0.44	0	0.58	
THF	0	0.55	0.58	
DCM	0.3	0	0.82	
Acetonitrile	0.19	0.31	0.75	
DMF	0	0.69	0.88	
DMSO	0	0.76	1	
Protic				
HFIP	1.96	0	0.65	
TFE	1.51	0	0.73	
Methanol	0.93	0.62	0.6	
H_2O	1.17	0.18	1.09	

Table S3. Literature parameters describing the solvent in the Kamlet-Taft model.³⁹

Figure S3. Reproduction of Figure 7, including the intensity-averaged lifetimes (open symbols) and their corresponding fit (dashed line).