Supporting Information for

Structural transformation of h-BN overlayers on Pt (111) in

oxidative atmospheres

Caixia Meng^{1,2}, Yifan Li^{1,3}, Hao Wu^{1,3}, Wei Wei^{1,3}, Yanxiao Ning¹, Yi Cui⁴, Qiang Fu^{1,*}, Xinhe Bao^{1,3}

¹State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
²University of Chinese Academy of Sciences, Beijing 100039, China
³Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
⁴Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Email: <u>qfu@dicp.ac.cn</u>

Figure S1. Growth of h-BN domains on Pt(111). (a) LEEM image and (b) LEED pattern (50 eV) of h-BN domains grown on Pt(111). The Pt(111) surface was exposed to 5×10^{-8} Torr borazine at 800 °C for 20 min. The start voltage is 1.5 V.

Within sub-monolayer coverage, monolayer h-BN islands form with the domains size around 20 μ m and micro-region low energy electron diffraction (μ -LEED) measurements made on the different domains show the same satellite diffraction spots characteristic, indicating that there is only one orientation of h-BN overlayer with respect to the Pt(111) surface

Figure S2. (a) LEEM images and (b) I-V curves acquired before and after the full layer h-BN/Pt(111) surface exposure to 1×10^{-6} Torr O₂ at 400 °C for 60 mins. The start voltage is 2.0 V. The inset is the μ -LEED pattern acquired from O₂-treated h-BN/Pt(111) surface.

LEEM images show that the full h-BN layer remains unchanged when treating in 1×10^{-6} Torr O₂ at 400 °C °C for 60 mins. I-V curves and LEED patterns recorded from the surfaces before and after the treatment are nearly identical. These results elucidate that the full layer h-BN cannot be intercalated by oxygen, which is in contrast with the facile intercalation and oxidation of h-BN islands under the same condition.

Video S1 LEEM video of h-BN islands oxidized in O₂. Oxidation conditions: temperature = 400 °C, $P(O_2) = 1 \times 10^{-6}$ Torr. Image conditions: STV = 2.0 V, FOV = 50 µm. The whole oxidation process lasted for 21min.

Video S2 PEEM video of full layer h-BN intercalated in NO₂. Intercalation conditions: temperature = 140 °C, $P(NO_2) = 5 \times 10^{-7}$ Torr. Image conditions: FOV = 50 µm. The whole oxidation process lasted for 2 min 30 s.