Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

## **Electronic Supplementary Information for:**

*Ab initio* conformational analysis of 1,2,3,4-tetrahydroquinoline and high-resolution rotational spectrum of its lowest energy conformer

Kateřina Luková,<sup>a</sup> Radim Nesvadba,<sup>a</sup> Tereza Uhlíková,<sup>\*a</sup> Daniel A. Obenchain,<sup>b</sup> Dennis Wachsmuth,<sup>b</sup> Jens-Uwe Grabow<sup>b</sup> and Štěpán Urban<sup>a</sup>

<sup>a</sup> Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic. E-mail: Tereza.Uhlikova@vscht.cz

<sup>b</sup> Institut für Physikalische Chemie und Elektrochemie, Wilhelm-Gottfried-Leibniz-Universität Hannover. Callinstraße 3A, 30167 Hannover, Germany

## **Rotational Hamiltonian**

The transition frequencies of all the measured lines (Table T5) assigned to rotational and hyperfine quantum numbers  $J_{k_ak_c}$  and F were analyzed using an effective rotational Hamiltonian  $H_{rot}$  extended with a <sup>14</sup>N quadrupole coupling term  $H_0$ :

$$H = H_{rot} + H_0, \tag{E1}$$

where  $H_{rot}$  is the A-reduced Watson's rotational effective Hamiltonian in I<sup>r</sup> axis representation (a=z, b=x, c=y), which provides both the diagonal and off-diagonal matrix elements in the  $|J, K\rangle$  symmetric top rotational basis<sup>1, 2</sup>:

$$\langle J, K | \hat{H}_{rot} | J, K \rangle = \frac{1}{2} (B + C) J (J + 1) + \left( A - \frac{1}{2} (B + C) \right) K^2 - \Delta_J J^2 (J + 1)^2$$
  
-  $\Delta_{JK} J (J + 1) K^2 - \Delta_K K^4 + higher terms$  (E2)

and

$$\langle J, K | \hat{H}_{rot} | J, K = \pm 2 \rangle$$

$$= \left( \frac{1}{2} (B - C) - 2\delta_J J (J + 1) \right)$$

$$- \delta_K (K^2 \pm 2K + 2) \left( J (J + 1) - K (K \pm 1) \right)^{\frac{1}{2}} (J (J + 1) - (K \pm 1))^{\frac{1}{2}} (J (J + 1))$$

$$- (K \pm 1) (K \pm 2))^{\frac{1}{2}} + higher terms$$
(E3)

respectively; and where *A*, *B* and *C* are the rotational constants;  $\Delta_J$ ,  $\Delta_{JK}$ ,  $\Delta_K$  and  $\delta_J$ ,  $\delta_K$  are the diagonal and off-diagonal centrifugal distortion parameters, respectively. The matrix elements of the <sup>14</sup>N quadrupole hyperfine-structure Hamiltonian  $H_Q$  can be written as<sup>2</sup>:

$$\langle J, I, F | \hat{H}_Q | J, I, F \rangle = eQq_j \frac{2J+3}{J} Y(J, I, F),$$
(E4)

where *I* is the nuclear spin quantum number, and  $eQq_j$  is the nuclear coupling constant that is often designated as  $\chi$ :

$$\chi_{aa} = eQq_{aa}, \qquad \qquad \chi_{bb} = eQq_{bb}, \qquad \qquad \chi_{cc} = eQq_{cc}, \qquad (E5)$$

and

$$Y(J, I, F) = \frac{\frac{3}{4}C(C+1) - I(I+1)J(J+1)}{2(2J-1)(2J+3)I(2I-1)},$$
(E6)

where C can be written as<sup>2</sup>:

$$C = F(F+1) - J(J+1) - I(I+1).$$
(E7)

Table T1: The values of the bonds (B, Ångström), angles and dihedral angles (A and D, degree) for the optimized geometry of the half-chair conformer **1**+ (Fig. F1). The calculations were performed at the MP2/cc-pVDZ level of theory.

| Parameter | Value   | Parameter     | Value     | Parameter        | Value      |
|-----------|---------|---------------|-----------|------------------|------------|
| B(1N-2C)  | 1.46019 | A(5C-10C-9C)  | 118.82694 | D(5C-10C-9C-8C)  | -0.04817   |
| B(2C-3C)  | 1.52761 | A(10C-9C-8C)  | 119.25371 | D(10C-9C-8C-7C)  | -0.36918   |
| B(3C-4C)  | 1.53245 | A(9C-8C-7C)   | 121.03353 | D(9C-10C-5C-6C)  | 0.38288    |
| B(4C-10C) | 1.51862 | A(18H-5C-6C)  | 119.77912 | D(18H-5C-6C-7C)  | 179.87539  |
| B(9C-10C) | 1.41869 | A(6C-5C-10C)  | 121.82275 | D(21H-8C-9C-10C) | 179.29510  |
| B(5C-10C) | 1.40808 | A(21H-8C-9C)  | 118.89892 | D(20H-7C-8C-9C)  | -179.75970 |
| B(5C-6C)  | 1.40296 | A(20H-7C-8C)  | 119.57863 | D(19H-6C-5C-10C) | 179.89778  |
| B(6C-7C)  | 1.40634 | A(19H-6C-5C)  | 120.35760 | D(6C-5C-10C-4C)  | -178.86082 |
| B(7C-8C)  | 1.40077 | A(5C-10C-4C)  | 120.57809 | D(5C-10C-4C-3C)  | -163.65440 |
| B(8C-9C)  | 1.41322 | A(10C-4C-3C)  | 111.58833 | D(10C-4C-3C-2C)  | -46.40266  |
| B(9C-1N)  | 1.40725 | A(4C-3C-2C)   | 109.37585 | D(1N-9C-10C-5C)  | 176.46378  |
| B(1N-11H) | 1.01920 | A(1N-9C-10C)  | 120.88537 | D(17H-4C-10C-5C) | -40.81055  |
| B(2C-12H) | 1.11285 | A(17H-4C-10C) | 109.59521 | D(16H-4C-10C-5C) | 75.47568   |
| B(2C-13H) | 1.10254 | A(16H-4C-10C) | 109.21018 | D(15H-3C-4C-10C) | 72.39477   |
| B(3C-14H) | 1.10331 | A(15H-3C-4C)  | 110.18491 | D(14H-3C-4C-10C) | -168.22790 |
| B(3C-15H) | 1.10434 | A(14H-3C-4C)  | 110.63381 | D(13H-2C-3C-4C)  | -176.96001 |
| B(4C-16H) | 1.10697 | A(13H-2C-3C)  | 110.90322 | D(12H-2C-3C-4C)  | -58.34816  |
| B(4C-17H) | 1.10440 | A(12H-2C-3C)  | 109.13042 | D(11H-1N-9C-10C) | 154.48959  |
| B(5C-18H) | 1.09722 | A(11H-1N-2C)  | 112.77840 |                  |            |
| B(6C-19H) | 1.09454 |               |           |                  |            |
| B(7C-20H) | 1.09525 |               |           |                  |            |
| B(8C-21H) | 1.09709 |               |           |                  |            |

Fig. F1: The optimized geometry of the half-chair conformer **1**+ of 1,2,3,4-tetrahydroquinoline.



Table T2: The values of the bonds (B, Ångström), angles and dihedral angles (A and D, degree) for the optimized geometry of the stable conformer **2-** (Fig. F2). The calculations were performed at the MP2/cc-pVDZ level of theory.

| Parameter | Value   | Parameter     | Value     | Parameter        | Value      |
|-----------|---------|---------------|-----------|------------------|------------|
| B(1N-2C)  | 1.46394 | A(5C-10C-9C)  | 118.95221 | D(5C-10C-9C-8C)  | -1.22685   |
| B(2C-3C)  | 1.53051 | A(10C-9C-8C)  | 119.21629 | D(10C-9C-8C-7C)  | 0.64124    |
| B(3C-4C)  | 1.53179 | A(9C-8C-7C)   | 120.97475 | D(9C-10C-5C-6C)  | 0.67897    |
| B(4C-10C) | 1.51539 | A(18H-5C-6C)  | 119.83950 | D(18H-5C-6C-7C)  | -178.38627 |
| B(9C-10C) | 1.41794 | A(6C-5C-10C)  | 121.69875 | D(21H-8C-9C-10C) | 179.74626  |
| B(5C-10C) | 1.40880 | A(21H-8C-9C)  | 118.75856 | D(20H-7C-8C-9C)  | 179.97066  |
| B(5C-6C)  | 1.40238 | A(20H-7C-8C)  | 119.58768 | D(19H-6C-5C-10C) | 179.83103  |
| B(6C-7C)  | 1.40728 | A(19H-6C-5C)  | 120.35073 | D(6C-5C-10C-4C)  | -176.76395 |
| B(7C-8C)  | 1.40001 | A(5C-10C-4C)  | 121.22862 | D(5C-10C-4C-3C)  | 151.89478  |
| B(8C-9C)  | 1.41425 | A(10C-4C-3C)  | 109.94628 | D(10C-4C-3C-2C)  | 55.22526   |
| B(9C-1N)  | 1.40709 | A(4C-3C-2C)   | 108.37813 | D(1N-9C-10C-5C)  | 176.94227  |
| B(1N-11H) | 1.01752 | A(1N-9C-10C)  | 121.83765 | D(17H-4C-10C-5C) | -87.75500  |
| B(2C-12H) | 1.10233 | A(17H-4C-10C) | 110.43477 | D(16H-4C-10C-5C) | 29.59329   |
| B(2C-13H) | 1.10770 | A(16H-4C-10C) | 109.47661 | D(15H-3C-4C-10C) | 176.11059  |
| B(3C-14H) | 1.10557 | A(15H-3C-4C)  | 111.01518 | D(14H-3C-4C-10C) | -64.55996  |
| B(3C-15H) | 1.10384 | A(14H-3C-4C)  | 109.79577 | D(13H-2C-3C-4C)  | 62.89686   |
| B(4C-16H) | 1.10384 | A(13H-2C-3C)  | 108.38969 | D(12H-2C-3C-4C)  | -179.82739 |
| B(4C-17H) | 1.10711 | A(12H-2C-3C)  | 111.42339 | D(11H-1N-9C-10C) | 139.79608  |
| B(5C-18H) | 1.09714 | A(11H-1N-2C)  | 113.43615 |                  |            |
| B(6C-19H) | 1.09458 |               |           |                  |            |
| B(7C-20H) | 1.09531 |               |           |                  |            |
| B(8C-21H) | 1.09670 |               |           |                  |            |

Fig. F2: The optimized geometry of the conformer **2-** of 1,2,3,4-tetrahydroquinoline.



Table T3: Molecular parameters of the half-chair conformer 1 calculated by various computational methods. The Gibbs free energy ( $GFE_{298}$ ) was calculated at the lowest initial temperature 298.15 K.

| Domontorio                       | DFT/B3LYP     |                 |            |             | DFT/B3PW91    |                 |            |             |
|----------------------------------|---------------|-----------------|------------|-------------|---------------|-----------------|------------|-------------|
| Parameters                       | 6-311++G(d,p) | 6-311++G(2d,3p) | cc-pVDZ    | aug-cc-pVDZ | 6-311++G(d,p) | 6-311++G(2d,3p) | cc-pVDZ    | aug-cc-pVDZ |
| <i>E</i> [a.u.]                  | -404.44740    | -404.46237      | -404.36144 | -404.38667  | -404.29157    | -404.30609      | -404.21868 | -404.23897  |
| <i>GFE</i> <sub>298</sub> [a.u.] | -404.29855    | -404.31317      | -404.21251 | -404.23794  | -404.14226    | -404.15658      | -404.06907 | -404.08977  |
| $\mu_a[D]$                       | 1.71657       | 1.71200         | 1.62481    | 1.71012     | 1.76328       | 1.74908         | 1.69992    | 1.74845     |
| $\mu_b[\mathbf{D}]$              | 0.49320       | 0.47636         | 0.62762    | 0.49579     | 0.51955       | 0.50100         | 0.63275    | 0.51464     |
| $\mu_c[\mathbf{D}]$              | -0.60035      | -0.60649        | -0.57037   | -0.58428    | -0.58450      | -0.59443        | -0.57093   | -0.57703    |
| A [MHz]                          | 2847.39190    | 2855.94528      | 2833.62375 | 2833.79293  | 2860.61341    | 2868.40272      | 2846.98752 | 2846.87374  |
| B [MHz]                          | 1148.63951    | 1152.60441      | 1145.36112 | 1144.74359  | 1155.15380    | 1158.99775      | 1151.40576 | 1151.18336  |
| C [MHz]                          | 841.76680     | 844.53839       | 839.09315  | 838.58899   | 846.50618     | 849.14443       | 843.47216  | 843.23399   |
| $\Delta_J$ [kHz]                 | 0.01570       | 0.01585         | 0.01507    | 0.01551     | 0.01589       | 0.01604         | 0.01525    | 0.01569     |
| $\Delta_{JK}$ [kHz]              | 0.10370       | 0.10626         | 0.10766    | 0.21812     | 0.10392       | 0.22457         | 0.10823    | 0.22039     |
| $\Delta_{K}$ [kHz]               | 0.23382       | 0.22206         | 0.22440    | 0.10385     | 0.23763       | 0.10671         | 0.22715    | 0.10404     |
| $\delta_J$ [kHz]                 | 0.00327       | 0.00328         | 0.00303    | 0.00323     | 0.00334       | 0.00335         | 0.00309    | 0.00329     |
| $\delta_K$ [kHz]                 | 0.04688       | 0.04829         | 0.04863    | 0.04717     | 0.04706       | 0.04870         | 0.04913    | 0.04763     |
| $\Phi_{J}[\text{Hz}]$            | 1.11E-07      | 7.55E-08        | 5.41E-08   | 8.50E-08    | 1.81E-07      | 1.14E-07        | 1.10E-07   | 1.36E-07    |
| $\Phi_{K}[Hz]$                   | 2.26E-05      | 2.77E-05        | 2.75E-05   | 2.65E-05    | 1.70E-05      | 2.64E-05        | 2.92E-05   | 2.61E-05    |
| $\Phi_{JK}$ [Hz]                 | 8.42E-06      | 9.17E-06        | 1.02E-05   | 9.84E-06    | 8.51E-06      | 1.01E-05        | 1.07E-05   | 1.03E-05    |
| $\Phi_{KJ}$ [Hz]                 | -1.42E-05     | -1.69E-05       | -1.85E-05  | -2.30E-05   | -1.18E-05     | -2.38E-05       | -2.07E-05  | -2.47E-05   |
| $\varphi_J$ [Hz]                 | 9.34E-08      | 8.31E-08        | 5.83E-08   | 7.44E-08    | 1.18E-07      | 9.05E-08        | 7.28E-08   | 8.95E-08    |
| $\varphi_K$ [Hz]                 | 7.24E-05      | 6.88E-05        | 6.42E-05   | 6.51E-05    | 7.87E-05      | 6.99E-05        | 6.61E-05   | 6.77E-05    |
| $\varphi_{JK}$ [Hz]              | 1.02E-06      | 1.21E-06        | 2.00E-06   | 1.45E-06    | 8.40E-07      | 1.36E-06        | 2.10E-06   | 1.53E-06    |
| χ <sub>aa</sub> [MHz]            | 2.7925        | 2.7638          | 2.5731     | 2.4730      | 2.7554        | 2.7209          | 2.5687     | 2.4728      |
| χ <sub>bb</sub> [MHz]            | 2.5918        | 2.4736          | 2.6197     | 2.4530      | 2.5289        | 2.4139          | 2.5589     | 2.4023      |
| $\chi_{cc}[MHz]$                 | -5.3843       | -5.2375         | -5.1928    | -4.9261     | -5.2843       | -5.1348         | -5.1276    | -4.8751     |
| $\chi_{bb}$ - $\chi_{cc}$ [MHz]  | 7.9761        | 7.7111          | 7.8125     | 7.3791      | 7.8132        | 7.5487          | 7.6865     | 7.2774      |
| $\chi_{ac}$ [MHz]                | -1.1548       | -1.1679         | -1.1326    | -1.0785     | -1.1201       | -1.1378         | -1.0974    | -1.0635     |
| $\chi_{bc}$ [MHz]                | -0.5357       | -0.5709         | -0.6171    | -0.5090     | -0.5283       | -0.5742         | -0.6159    | -0.5285     |
| $\chi_{ab}$ [MHz]                | -0.0423       | -0.0525         | -0.0368    | -0.0361     | -0.0495       | -0.0632         | -0.0447    | -0.0475     |

Table T3: (Continued)

| Demonsterne                               |               | DFT/I           | 3P86       |             | DFT/B3P86     |                 |            |             |
|-------------------------------------------|---------------|-----------------|------------|-------------|---------------|-----------------|------------|-------------|
| Parameters                                | 6-311++G(d,p) | 6-311++G(2d,3p) | cc-pVDZ    | aug-cc-pVDZ | 6-311++G(d,p) | 6-311++G(2d,3p) | cc-pVDZ    | aug-cc-pVDZ |
| <i>E</i> [a.u.]                           | -404.43685    | -404.45031      | -404.35511 | -404.37977  | -405.74856    | -405.76330      | -405.67356 | -404.37977  |
| <i>GFE</i> <sub>298</sub> [a.u.]          | -404.29352    | -404.30674      | -404.21167 | -404.23658  | -405.59900    | -405.61349      | -405.52383 | -405.54495  |
| $\mu_a[D]$                                | 1.86579       | 1.85603         | 1.81135    | 1.85854     | 1.75798       | 1.74535         | 1.69051    | 1.74690     |
| $\mu_b[\mathbf{D}]$                       | 0.55973       | 0.53747         | 0.69361    | 0.55679     | 0.51964       | 0.50001         | 0.63421    | 0.51537     |
| $\mu_c[\mathbf{D}]$                       | -0.56626      | -0.57425        | -0.54377   | -0.55049    | -0.58492      | -0.59563        | -0.57373   | -0.57704    |
| A [MHz]                                   | 2819.32770    | 2826.62779      | 2805.78764 | 2806.10710  | 2866.41516    | 2874.42269      | 2852.32144 | 2852.62245  |
| B [MHz]                                   | 1138.73064    | 1142.29870      | 1135.18720 | 1134.91049  | 1158.06597    | 1162.02412      | 1154.24091 | 1154.09508  |
| C [MHz]                                   | 834.38342     | 836.83942       | 831.50882  | 831.25911   | 848.61319     | 851.33134       | 845.50762  | 845.34207   |
| ⊿ <sub>J</sub> [kHz]                      | 0.01613       | 0.01628         | 0.01547    | 0.01595     | 0.01595       | 0.01609         | 0.01531    | 0.01912     |
| ⊿ <sub>JK</sub> [kHz]                     | 0.10615       | 0.22862         | 0.11054    | 0.22519     | 0.10403       | 0.22452         | 0.10858    | 0.12248     |
| $\Delta_{K}$ [kHz]                        | 0.24171       | 0.10905         | 0.23109    | 0.10663     | 0.23814       | 0.10682         | 0.22660    | 0.05246     |
| $\delta_J$ [kHz]                          | 0.00339       | 0.00340         | 0.00313    | 0.00334     | 0.00336       | 0.00337         | 0.00311    | 0.00495     |
| $\delta_{K}$ [kHz]                        | 0.04769       | 0.04938         | 0.04983    | 0.04824     | 0.04707       | 0.04878         | 0.04914    | 0.04567     |
| $\Phi_J$ [Hz]                             | 1.49E-06      | 8.10E-08        | 8.16E-08   | 1.24E-07    | 1.63E-07      | 1.02E-07        | 9.16E-08   | 6.06E-07    |
| $\Phi_{K}[Hz]$                            | 1.77E-05      | 2.72E-05        | 3.39E-05   | 2.10E-05    | 1.77E-05      | 2.70E-05        | 2.98E-05   | 1.06E-05    |
| $\Phi_{JK}$ [Hz]                          | 9.11E-06      | 1.01E-05        | 1.11E-05   | 1.03E-05    | 8.68E-06      | 1.02E-05        | 1.08E-05   | 7.09E-06    |
| $\Phi_{\scriptscriptstyle K\!J}[{ m Hz}]$ | -1.66E-05     | -2.54E-05       | -2.31E-05  | -2.68E-05   | -1.24E-05     | -2.42E-05       | -2.15E-05  | -9.80E-05   |
| $\varphi_J$ [Hz]                          | 1.15E-07      | 8.63E-08        | 7.05E-08   | 9.59E-08    | 1.14E-07      | 8.63E-08        | 6.64E-08   | 3.22E-07    |
| $\varphi_K$ [Hz]                          | 8.15E-05      | 7.27E-05        | 6.76E-05   | 7.26E-05    | 7.93E-05      | 7.03E-05        | 6.60E-05   | 4.97E-05    |
| $\varphi_{JK}$ [Hz]                       | 8.53E-07      | 1.28E-06        | 2.21E-06   | 1.51E-06    | 8.46E-07      | 1.44E-06        | 2.12E-06   | 2.10E-06    |
| $\chi_{aa}$ [MHz]                         | 2.6703        | 2.6338          | 2.4635     | 2.3647      | 2.7391        | 2.7038          | 2.5454     | 2.4529      |
| $\chi_{bb}$ [MHz]                         | 2.4660        | 2.3536          | 2.4799     | 2.3382      | 2.5277        | 2.4103          | 2.5483     | 2.3980      |
| $\chi_{cc}[MHz]$                          | -5.1362       | -4.9874         | -4.9434    | -4.7029     | -5.2668       | -5.1141         | -5.0937    | -4.8509     |
| $\chi_{bb}$ - $\chi_{cc}$ [MHz]           | 7.6022        | 7.3410          | 7.4233     | 7.0411      | 7.7945        | 7.5244          | 7.642      | 7.2489      |
| $\chi_{ac}[MHz]$                          | -1.0878       | -1.1065         | -1.0605    | -1.0240     | -1.1215       | -1.1387         | -1.1016    | -1.0623     |
| $\chi_{bc}[MHz]$                          | -0.5153       | -0.5543         | -0.5873    | -0.4874     | -0.5305       | -0.5771         | -0.6169    | -0.5270     |
| $\chi_{ab}$ [MHz]                         | -0.0711       | -0.0818         | -0.0572    | -0.0612     | -0.0503       | -0.0635         | -0.0447    | -0.0474     |

Table T3: (Continued)

| Danamatana                                | MP2           |            |  |  |  |
|-------------------------------------------|---------------|------------|--|--|--|
| Parameters                                | 6-311++G(d,p) | cc-pVDZ    |  |  |  |
| <i>E</i> [a.u.]                           | -403.21717    | -404.07333 |  |  |  |
| <i>GFE</i> <sub>298</sub> [a.u.]          | -403.06801    | -403.92263 |  |  |  |
| $\mu_a[D]$                                | 1.40367       | 1.30624    |  |  |  |
| $\mu_b[D]$                                | 0.32341       | 0.46636    |  |  |  |
| $\mu_c[\mathbf{D}]$                       | -0.79786      | 0.76788    |  |  |  |
| A [MHz]                                   | 2831.57466    | 2811.40171 |  |  |  |
| <i>B</i> [MHz]                            | 1153.56979    | 1147.24125 |  |  |  |
| C [MHz]                                   | 844.59468     | 839.66671  |  |  |  |
| ⊿ <sub>J</sub> [kHz]                      | 0.01615       | 0.01575    |  |  |  |
| $\Delta_{JK}$ [kHz]                       | 0.10501       | 0.10033    |  |  |  |
| $\Delta_{K}$ [kHz]                        | 0.21267       | 0.20384    |  |  |  |
| $\delta_J$ [kHz]                          | 0.00337       | 0.00335    |  |  |  |
| $\delta_{K}$ [kHz]                        | 0.04977       | 0.04717    |  |  |  |
| $\Phi_{J}[\text{Hz}]$                     | 2.93E-08      | 4.03E-08   |  |  |  |
| $\Phi_{K}[Hz]$                            | 4.89E-05      | 3.96E-05   |  |  |  |
| $\Phi_{JK}$ [Hz]                          | 1.15E-05      | 1.09E-05   |  |  |  |
| $\Phi_{\scriptscriptstyle K\!J}[{ m Hz}]$ | -2.70E-05     | -2.44E-05  |  |  |  |
| $\varphi_J$ [Hz]                          | 6.15E-08      | 6.53E-08   |  |  |  |
| $\varphi_K$ [Hz]                          | 7.20E-05      | 6.82E-05   |  |  |  |
| $\varphi_{JK}$ [Hz]                       | 1.85E-06      | 1.48E-06   |  |  |  |
| χ <sub>aa</sub> [MHz]                     | 2.5562        | 2.3546     |  |  |  |
| $\chi_{bb}$ [MHz]                         | 2.2512        | 2.2708     |  |  |  |
| $\chi_{cc}[MHz]$                          | -4.8075       | -4.6254    |  |  |  |
| $\chi_{bb}$ - $\chi_{cc}$ [MHz]           | 7.0587        | 6.8962     |  |  |  |
| $\chi_{ac}[MHz]$                          | -1.2230       | 1.2219     |  |  |  |
| $\chi_{bc}[MHz]$                          | -0.7604       | 0.7783     |  |  |  |
| $\chi_{ab}$ [MHz]                         | -0.0410       | -0.0599    |  |  |  |

| Method                           | М             | P2         |
|----------------------------------|---------------|------------|
| Parameters                       | 6-311++G(d,p) | cc-pVDZ    |
| <i>E</i> [a.u.]                  | -404.44375    | -404.07086 |
| <i>GFE</i> <sub>298</sub> [a.u.] | -404.29531    | -403.92123 |
| $\mu_a$ [D]                      | 1.69724       | 1.53333    |
| $\mu_b[D]$                       | 0.12551       | -0.28211   |
| $\mu_c$ [D]                      | 0.85542       | 0.83796    |
| A [MHz]                          | 2794.90376    | 2795.09201 |
| B [MHz]                          | 1147.95485    | 1147.91554 |
| C [MHz]                          | 842.89225     | 842.86114  |
| $\Delta_J$ [kHz]                 | 0.01550       | 0.02062    |
| $\Delta_{JK}$ [kHz]              | 0.10892       | 0.08302    |
| $\Delta_{K}$ [kHz]               | 0.18833       | 0.10063    |
| $\delta_{J}[kHz]$                | 0.00286       | 0.00471    |
| $\delta_{K}[kHz]$                | 0.05095       | 0.04397    |
| $\Phi_{J}[Hz]$                   | 6.42E-08      | 1.63E-06   |
| $\Phi_{K}$ [Hz]                  | 6.95E-05      | 2.61E-04   |
| $\Phi_{JK}[\text{Hz}]$           | 1.18E-05      | 2.61E-04   |
| $\Phi_{KJ}$ [Hz]                 | -2.12E-05     | -3.03E-04  |
| $\varphi_{J}[\text{Hz}]$         | -1.82E-08     | 2.95E-08   |
| $\varphi_{K}$ [Hz]               | 3.67E-05      | -7.57E-06  |
| $\varphi_{JK}$ [Hz]              | 4.37E-06      | 3.50E-06   |
| χ <sub>aa</sub> [MHz]            | 2.9007        | 2.6590     |
| χ <sub>bb</sub> [MHz]            | 0.9719        | 1.0000     |
| $\chi_{cc}[MHz]$                 | -3.8726       | -3.6590    |
| $\chi_{bb}$ - $\chi_{cc}$ [MHz]  | 4.8445        | 4.6590     |
| $\chi_{ab}$ [MHz]                | 0.2341        | -0.2149    |
| $\gamma_{ac}[MHz]$               | -0.5215       | -0.4723    |
| $\chi_{bc}[MHz]$                 | 3.1513        | -2.8910    |

Table T4: Molecular parameters of the stable conformer **2** calculated by MP2. The Gibbs free energy ( $GFE_{298}$ ) was calculated at the lowest initial temperature 298.15 K.

Fig. F3: The potential energy curve along the dihedral angle 1N-2C-3C-4C calculated by the combination of DFT/B3LYP/6-311++G(2d,3p). Differently from Chakraborty *et al.*,<sup>3</sup> no minimum for the half-boat conformation was found around the dihedral angle  $0^{\circ}$  even though the same computational method was used in both cases.



Fig. F4: The potential energy surface (PES) along the dihedral angles 1N-2C-3C-4C and 11H-1N-9C-8C calculated by DFT/B3LYP/6-311++G(2d,3p).



Fig. F5: The potential energy curve along the dihedral angles 1N-2C-3C-4C and 11H-1N-9C-8C calculated by DFT/B3LYP/6-311++G(2d,3p) displayed as the contour diagram.



Fig. F6: The 3-dimensional potential energy surface scanned along the dihedral angles 1N-2C-3C-4C and 11H-1N-9C-8C by MP2/cc-pVDZ.



Table T5: The R-branch rotational transitions of 1,2,3,4-tetrahydroquinoline measured by COBRA- and IMPACT-FTMW spectrometers in the frequency range from 7 to 20 GHz. Numbers in parentheses are uncertainties in units of

the least significant digit. The uncertainties of the transition frequencies were calculated as  $U = \frac{\sqrt{u_1^2 + u_2^2}}{2}$ , where  $u_1$  and  $u_2$  are the uncertainties of each Doppler doublet component position.

| Transition $J_{K_aK_c} \leftarrow J'_{K'_aK'_b}$ | $F \leftarrow F'$ | Observed frequency [MHz] | Obs.– calc. [MHz] |
|--------------------------------------------------|-------------------|--------------------------|-------------------|
|                                                  | 4 ← 5             | 7314.14205 (82)          | -0.00111          |
| $3_{13} \leftarrow 4_{14}$                       | $2 \leftarrow 3$  | 7314.26421 (687)         | 0.00098           |
|                                                  | 3 ← 4             | 7314.34441 (478)         | -0.00192          |
|                                                  | 4 ← 5             | 7645.98744 (231)         | -0.00178          |
| $3_{03} \leftarrow 4_{04}$                       | $2 \leftarrow 3$  | 7646.02776 (136)         | -0.00004          |
|                                                  | 3 ← 4             | 7646.31967 (27)          | -0.00061          |
|                                                  | $2 \leftarrow 3$  | 7970.31146 (581)         | 0.00091           |
| $3_{22} \leftarrow 4_{23}$                       | 4 ← 5             | 7970.41357 (94)          | 0.00082           |
|                                                  | 3 ← 4             | 7970.80623 (56)          | -0.00002          |
|                                                  | $2 \leftarrow 3$  | 8324.80906 (325)         | -0.00301          |
| $3_{21} \leftarrow 4_{22}$                       | 4 ← 5             | 8324.87508 (185)         | 0.00054           |
|                                                  | 3 ← 4             | 8324.95661 (53)          | -0.00013          |
|                                                  | 2 ← 3             | 8531.02745 (800)         | 0.00108           |
| $3_{12} \leftarrow 4_{13}$                       | 4 ← 5             | 8531.11743 (410)         | 0.00017           |
|                                                  | 3 ← 4             | 8531.30264 (430)         | 0.00039           |
|                                                  | $5 \leftarrow 6$  | 9088.60619 (510)         | -0.00027          |
| $4_{14} \leftarrow 5_{15}$                       | 3 ← 4             | 9088.68394 (490)         | -0.00002          |
|                                                  | 4 ← 5             | 9088.76515 (310)         | -0.00091          |
|                                                  | $5 \leftarrow 6$  | 9362.11192 (156)         | -0.00065          |
| $4_{04} \leftarrow 5_{05}$                       | 3 ← 4             | 9362.13467 (282)         | 0.00156           |
|                                                  | 4 ← 5             | 9362.42018 (211)         | -0.00164          |
| $1_{11} \leftarrow 2_{21}$                       | 2 ← 3             | 9680.16662 (810)         | 0.00648           |
|                                                  | 3 ← 4             | 9838.48222 (93)          | 0.00336           |
| $4_{04} \leftarrow 5_{15}$                       | $5 \leftarrow 6$  | 9838.51500 (38)          | -0.00155          |
|                                                  | 4 ← 5             | 9839.11112 (38)          | 0.00030           |
|                                                  | 3 ← 4             | 9915.02587 (96)          | 0.00049           |
| $4_{23} \leftarrow 5_{24}$                       | $5 \leftarrow 6$  | 9915.05545 (315)         | -0.00051          |
|                                                  | 4 ← 5             | 9915.30920 (31)          | 0.00080           |
|                                                  | 3 ← 4             | 10086.17933 (213)        | 0.00075           |
| $4_{41} \leftarrow 5_{42}$                       | $5 \leftarrow 6$  | 10086.36369 (350)        | -0.00780          |
|                                                  | 4 ← 5             | 10086.98618 (136)        | -0.00180          |
|                                                  | $5 \leftarrow 5$  | 10104.46301 (39)         | -0.00248          |
| $4_{32} \leftarrow 5_{33}$                       | $5 \leftarrow 6$  | 10104.55421 (29)         | -0.00060          |
|                                                  | 4 <del>←</del> 5  | 10104.89744 (29)         | -0.00045          |
|                                                  | 3 ← 4             | 10166.41800 (87)         | -0.00177          |
| $4_{31} \leftarrow 5_{32}$                       | 5 ←6              | 10166.49968 (24)         | -0.00041          |
|                                                  | 4 ← 5             | 10166.76803 (20)         | -0.00069          |

| Transition $J_{K_aK_c} \leftarrow J'_{K'_aK'_b}$ | $F \leftarrow F'$ | Observed frequency [MHz] | Obs.– calc. [MHz] |
|--------------------------------------------------|-------------------|--------------------------|-------------------|
| u p                                              | 4 ← 5             | 10552.14093 (345)        | 0.00089           |
| $4_{22} \leftarrow 5_{23}$                       | 3 ← 4             | 10552.16680 (412)        | -0.00429          |
|                                                  | $5 \leftarrow 6$  | 10552.18324 (550)        | 0.00128           |
|                                                  | 3 ← 4             | 10570.41118 (19)         | -0.00082          |
| $4_{13} \leftarrow 5_{14}$                       | $5 \leftarrow 6$  | 10570.46771 (33)         | 0.00048           |
|                                                  | 4 ← 5             | 10570.66490 (30)         | 0.00044           |
|                                                  | 6 <del>←</del> 7  | 10839.38368 (69)         | -0.00190          |
| $5_{15} \leftarrow 6_{16}$                       | 4 ← 5             | 10839.44312 (431)        | 0.00315           |
|                                                  | $5 \leftarrow 6$  | 10839.52137 (66)         | -0.00022          |
|                                                  | 6 <del>←</del> 7  | 11033.69231 (92)         | -0.00076          |
| $5_{05} \leftarrow 6_{06}$                       | 4 ← 5             | 11033.71525 (924)        | -0.00203          |
|                                                  | $5 \leftarrow 6$  | 11033.94694 (51)         | -0.00152          |
| 2 4 2                                            | 3 ← 4             | 11251.70644 (140)        | -0.01057          |
| $2_{11} \leftarrow 3_{21}$                       | 2 ← 3             | 11251.98234 (750)        | -0.00512          |
|                                                  | 4 ← 5             | 11315.78152 (831)        | -0.00420          |
| $5_{05} \leftarrow 6_{16}$                       | 6 ← 7             | 11315.78884 (778)        | -0.00072          |
|                                                  | $5 \leftarrow 6$  | 11316.21105 (601)        | 0.00046           |
|                                                  | 4 ← 5             | 11829.02240 (45)         | 0.00065           |
| $5_{24} \leftarrow 6_{25}$                       | 6 ← 7             | 11829.03455 (66)         | 0.00180           |
|                                                  | $5 \leftarrow 6$  | 11829.23053 (52)         | -0.00008          |
|                                                  | 4 ← 5             | 12129.93148 (65)         | -0.00350          |
| $5_{42} \leftarrow 6_{43}$                       | 6 ← 7             | 12130.01793 (65)         | 0.00259           |
|                                                  | $5 \leftarrow 6$  | 12130.35926 (24)         | 0.00117           |
|                                                  | 4 ← 5             | 12136.97587 (50)         | 0.00011           |
| $5_{41} \leftarrow 6_{42}$                       | 6 ← 7             | 12137.05442 (35)         | -0.00032          |
|                                                  | $5 \leftarrow 6$  | 12137.38822 (21)         | -0.00042          |
|                                                  | 4 ← 5             | 12138.98304 (85)         | 0.00013           |
| $5_{33} \leftarrow 6_{34}$                       | 6 ← 7             | 12139.01921 (65)         | -0.00071          |
|                                                  | $5 \leftarrow 6$  | 12139.22205 (39)         | 0.00021           |
|                                                  | 4 ← 5             | 12297.26631 (45)         | -0.00093          |
| $5_{32} \leftarrow 6_{33}$                       | 6 ← 7             | 12297.28529 (62)         | -0.00212          |
|                                                  | $5 \leftarrow 6$  | 12297.36497 (51)         | 0.00159           |
|                                                  | 4 ← 5             | 12533.52109 (71)         | 0.00037           |
| $5_{14} \leftarrow 6_{15}$                       | 6 ← 7             | 12533.56470 (67)         | 0.00099           |
|                                                  | $5 \leftarrow 6$  | 12533.79949 (203)        | 0.00056           |
|                                                  | $7 \leftarrow 8$  | 12570.41586 (22)         | -0.00008          |
| $6_{16} \leftarrow 7_{17}$                       | $5 \leftarrow 6$  | 12570.45504 (372)        | -0.00175          |
|                                                  | $6 \leftarrow 7$  | 12570.53398 (442)        | -0.00030          |
|                                                  | $7 \leftarrow 8$  | 12693.99840 (92)         | -0.00097          |
| $6_{06} \leftarrow 7_{07}$                       | $5 \leftarrow 6$  | 12694.02404 (31)         | -0.00101          |
|                                                  | $6 \leftarrow 7$  | 12694.19254 (88)         | -0.00181          |
|                                                  | $5 \leftarrow 6$  | 12789.24975 (16)         | 0.00049           |
| $5_{23} \leftarrow 6_{24}$                       | 4 ← 5             | 12789.27962 (26)         | -0.00102          |
|                                                  | $6 \leftarrow 7$  | 12789.29006 (31)         | 0.00187           |

Table T5: (Continued)

| Transition $J_{K_aK_c} \leftarrow J'_{K'_aK'_b}$ | $F \leftarrow F'$ | Observed frequency [MHz] | Obs calc. [MHz] |
|--------------------------------------------------|-------------------|--------------------------|-----------------|
| u p                                              | 7 ← 8             | 12852.51146 (52)         | -0.00097        |
| $6_{06} \leftarrow 7_{17}$                       | $5 \leftarrow 6$  | 12852.52792 (91)         | 0.00269         |
|                                                  | 6 ← 7             | 12852.79629 (39)         | -0.00013        |
|                                                  | 2 ← 3             | 13138.77488 (940)        | 0.00725         |
| $3_{12} \leftarrow 4_{22}$                       | 4 ← 5             | 13138.84343 (710)        | 0.00605         |
|                                                  | 3 ← 4             | 13138.94048 (490)        | 0.00020         |
|                                                  | $5 \leftarrow 6$  | 13708.52850 (686)        | -0.00236        |
| $6_{25} \leftarrow 7_{26}$                       | $7 \leftarrow 8$  | 13708.53689 (417)        | 0.00156         |
|                                                  | 6 ← 7             | 13708.70974 (54)         | -0.00002        |
|                                                  | $5 \leftarrow 6$  | 14164.10890 (89)         | -0.00084        |
| $6_{34} \leftarrow 7_{35}$                       | $7 \leftarrow 8$  | 14164.12750 (45)         | 0.00019         |
|                                                  | 6 ← 7             | 14164.26852 (39)         | 0.00054         |
|                                                  | $5 \leftarrow 6$  | 14184.70803 (78)         | 0.00222         |
| $6_{43} \leftarrow 7_{44}$                       | $7 \leftarrow 8$  | 14184.74249 (36)         | -0.00006        |
|                                                  | 6 ← 7             | 14184.94680 (68)         | 0.00122         |
|                                                  | $5 \leftarrow 6$  | 14207.69935 (98)         | 0.00241         |
| $6_{42} \leftarrow 7_{43}$                       | $7 \leftarrow 8$  | 14207.73149 (52)         | 0.00054         |
|                                                  | 6 ← 7             | 14207.91304 (71)         | 0.00004         |
|                                                  | 8 ← 9             | 14286.61268 (214)        | 0.00222         |
| $7_{17} \leftarrow 8_{18}$                       | 6 ← 7             | 14286.64321 (416)        | 0.00044         |
|                                                  | $7 \leftarrow 8$  | 14286.71402 (498)        | 0.00068         |
|                                                  | 8 ← 9             | 14359.38911 (13)         | 0.00065         |
| $7_{07} \leftarrow 8_{08}$                       | 6 ← 7             | 14359.41231 (33)         | -0.00133        |
|                                                  | $7 \leftarrow 8$  | 14359.53507 (11)         | 0.00020         |
|                                                  | $5 \leftarrow 6$  | 14400.28347 (83)         | 0.00120         |
| $6_{15} \leftarrow 7_{16}$                       | $7 \leftarrow 8$  | 14400.31791 (38)         | -0.00015        |
|                                                  | 6 ← 7             | 14400.59626 (73)         | 0.00077         |
|                                                  | 8 ← 9             | 14445.12112 (711)        | -0.00241        |
| $7_{07} \leftarrow 8_{18}$                       | 6 ← 7             | 14445.14651 (798)        | 0.00356         |
|                                                  | $7 \leftarrow 8$  | 14445.31635 (659)        | 0.00094         |
|                                                  | 6 ← 7             | 14494.85825 (42)         | 0.00047         |
| $6_{33} \leftarrow 7_{34}$                       | $7 \leftarrow 8$  | 14494.89584 (588)        | 0.00009         |
|                                                  | $5 \leftarrow 6$  | 14494.89852 (622)        | 0.00060         |
|                                                  | $5 \leftarrow 6$  | 14992.67470 (201)        | -0.00417        |
| $6_{24} \leftarrow 7_{25}$                       | $7 \leftarrow 8$  | 14992.68897 (105)        | -0.00196        |
|                                                  | 6 ← 7             | 14992.70237 (131)        | 0.00353         |
|                                                  | 4 ← 5             | 15159.78271 (97)         | 0.00464         |
| $4_{13} \leftarrow 5_{23}$                       | $5 \leftarrow 6$  | 15159.90216 (270)        | 0.00008         |
|                                                  | 3 ← 4             | 15159.91521 (540)        | 0.00286         |
|                                                  | $1 \leftarrow 2$  | 15196.21086 (760)        | 0.00031         |
| $2_{20} \leftarrow 3_{30}$                       | $2 \leftarrow 3$  | 15196.23667 (620)        | -0.00524        |
|                                                  | 3 ← 4             | 15196.36148 (580)        | -0.00918        |
|                                                  | $6 \leftarrow 7$  | 15551.86396 (484)        | 0.00026         |
| $7_{26} \leftarrow 8_{27}$                       | $8 \leftarrow 9$  | 15551.87141 (424)        | 0.00578         |
|                                                  | 7 ← 8             | 15552.02772 (40)         | -0.00081        |

Table T5: (Continued)

| Transition $J_{K_aK_c} \leftarrow J'_{K'_aK'_b}$ | $F \leftarrow F'$ | Observed frequency [MHz] | Obs calc. [MHz] |
|--------------------------------------------------|-------------------|--------------------------|-----------------|
| u p                                              | 9 ← 10            | 15992.62987 (321)        | 0.00166         |
| $8_{18} \leftarrow 9_{19}$                       | $7 \leftarrow 8$  | 15992.65230 (515)        | -0.00245        |
|                                                  | $8 \leftarrow 9$  | 15992.71696 (400)        | -0.00018        |
|                                                  | 9 ← 10            | 16033.28526 (52)         | 0.00116         |
| $8_{08} \leftarrow 9_{09}$                       | $7 \leftarrow 8$  | 16033.30612 (93)         | -0.00129        |
|                                                  | $8 \leftarrow 9$  | 16033.39595 (62)         | -0.00007        |
|                                                  | 6 <del>←</del> 7  | 16165.11096 (57)         | 0.00160         |
| $7_{16} \leftarrow 8_{17}$                       | $8 \leftarrow 9$  | 16165.13917 (60)         | -0.00035        |
|                                                  | $7 \leftarrow 8$  | 16165.44164 (39)         | 0.00059         |
|                                                  | 6 <del>←</del> 7  | 16190.73816 (161)        | 0.00442         |
| $7_{53} \leftarrow 8_{54}$                       | $8 \leftarrow 9$  | 16190.77113 (155)        | 0.00149         |
|                                                  | $7 \leftarrow 8$  | 16190.98812 (136)        | -0.00061        |
|                                                  | 6 <del>←</del> 7  | 16248.32477 (43)         | -0.00082        |
| $7_{44} \leftarrow 8_{45}$                       | $8 \leftarrow 9$  | 16248.34283 (39)         | -0.00032        |
|                                                  | $7 \leftarrow 8$  | 16248.46853 (45)         | -0.00120        |
|                                                  | 6 <del>←</del> 7  | 16309.52438 (256)        | -0.00561        |
| $7_{43} \leftarrow 8_{44}$                       | 8 ← 7             | 16309.54435 (501)        | -0.00481        |
|                                                  | $7 \leftarrow 8$  | 16309.62696 (478)        | -0.00094        |
| $6_{15} \leftarrow 7_{26}$                       | 7 <del>←</del> 8  | 16412.49183 (623)        | -0.00164        |
|                                                  | 7 ← 8             | 16759.27374 (971)        | -0.00624        |
| $7_{34} \leftarrow 8_{35}$                       | $8 \leftarrow 9$  | 16759.37456 (787)        | -0.00202        |
|                                                  | 6 <del>←</del> 7  | 16759.38840 (602)        | 0.00282         |
|                                                  | 6 <del>←</del> 7  | 17132.52044 (63)         | -0.00080        |
| $7_{25} \leftarrow 8_{26}$                       | $8 \leftarrow 9$  | 17132.53771 (61)         | 0.00036         |
|                                                  | $7 \leftarrow 8$  | 17132.59899 (89)         | -0.00267        |
|                                                  | $7 \leftarrow 8$  | 17359.88891 (270)        | -0.00013        |
| $8_{27} \leftarrow 9_{28}$                       | 9 <b>←</b> 10     | 17359.88952 (203)        | -0.00013        |
|                                                  | $8 \leftarrow 9$  | 17360.04338 (120)        | -0.00133        |
|                                                  | 10 <b>←</b> 11    | 17692.18580 (59)         | -0.00011        |
| $9_{19} \leftarrow 10_{110}$                     | $8 \leftarrow 9$  | 17692.20702 (33)         | -0.00127        |
|                                                  | 9 ← 10            | 17692.26270 (41)         | 0.00020         |
|                                                  | 10 <b>←</b> 11    | 17714.07241 (378)        | 0.00305         |
| $9_{09} \leftarrow 10_{010}$                     | $8 \leftarrow 9$  | 17714.08789 (409)        | -0.00242        |
|                                                  | 9 ← 10            | 17714.15705 (383)        | -0.00051        |
|                                                  | 7 <del>←</del> 8  | 17847.64494 (65)         | 0.00120         |
| $8_{17} \leftarrow 9_{18}$                       | 9 ← 10            | 17847.66644 (40)         | 0.00007         |
|                                                  | $8 \leftarrow 9$  | 17847.96139 (27)         | 0.00013         |
|                                                  | $7 \leftarrow 8$  | 18148.92995 (68)         | -0.00338        |
| $8_{36} \leftarrow 9_{37}$                       | 9 <del>←</del> 10 | 18148.94264 (77)         | 0.00229         |
|                                                  | $8 \leftarrow 9$  | 18149.05072 (83)         | 0.00105         |
|                                                  | $7 \leftarrow 8$  | 18316.00821 (213)        | 0.00315         |
| $8_{45} \leftarrow 9_{46}$                       | 9 <del>←</del> 10 | 18316.01795 (77)         | 0.00359         |
|                                                  | $8 \leftarrow 9$  | 18316.09668 (83)         | -0.00279        |

Table T5: (Continued)

| Transition $J_{K_aK_c} \leftarrow J'_{K'_aK'_b}$ | $F \leftarrow F'$  | Observed frequency [MHz] | Obs calc. [MHz] |
|--------------------------------------------------|--------------------|--------------------------|-----------------|
|                                                  | $7 \leftarrow 8$   | 18455.77296 (340)        | 0.00436         |
| $8_{44} \leftarrow 9_{45}$                       | 9 ← 10             | 18455.77549 (531)        | 0.00485         |
|                                                  | $8 \leftarrow 9$   | 18455.78694 (503)        | 0.00417         |
|                                                  | $8 \leftarrow 9$   | 19064.56091 (321)        | -0.00083        |
| $8_{35} \leftarrow 9_{36}$                       | 9 ← 10             | 19064.67056 (333)        | 0.00492         |
|                                                  | $7 \leftarrow 8$   | 19064.68323 (212)        | 0.00979         |
|                                                  | $10 \leftarrow 11$ | 19135.98506 (233)        | -0.00297        |
| 9 <sub>28</sub> ←10 <sub>29</sub>                | $8 \leftarrow 9$   | 19135.98542 (99)         | -0.00287        |
|                                                  | 9 ← 10             | 19136.14035 (343)        | 0.00514         |
|                                                  | $7 \leftarrow 8$   | 19188.05863 (161)        | -0.00504        |
| $8_{26} \leftarrow 9_{27}$                       | 9 ← 10             | 19188.07886 (127)        | -0.00328        |
|                                                  | $8 \leftarrow 9$   | 19188.20100 (78)         | -0.00238        |
|                                                  | 11 ← 12            | 19387.89949 (185)        | -0.00195        |
| $10_{110} \leftarrow 11_{111}$                   | 9 <i>←</i> 10      | 19387.92080 (126)        | 0.00014         |
|                                                  | $10 \leftarrow 11$ | 19387.96712 (100)        | -0.00027        |
|                                                  | 11 ← 12            | 19399.36149 (92)         | -0.00202        |
| $10_{010} \leftarrow 11_{011}$                   | 9 <i>←</i> 10      | 19399.38272 (118)        | 0.00061         |
|                                                  | $10 \leftarrow 11$ | 19399.43601 (890)        | 0.00085         |
|                                                  | 8 <del>←</del> 9   | 19486.19676 (116)        | -0.00278        |
| $9_{18} \leftarrow 10_{19}$                      | $10 \leftarrow 11$ | 19486.21732 (117)        | 0.00306         |
|                                                  | 9 <b>←</b> 10      | 19486.47488 (196)        | -0.00097        |

Table T5:(Continued)

## References

1 J. K. G. Watson, in *Vibrational Spectra and Structure*, ed. J. Durig, Elsevier, Amsterdam, 1977, vol. 6, pp. 1–89.

2 W. Gordy and R. L. Cooke, *Microwave molecular spectra*, John Wiley & Sons, Inc., New York, 1984.

3 A. Chakraborty and L. Das, J. Mol. Struct., 2017, 1136, 80-89.