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Figure S1: Membrane composition across a phase-segregated dipalmitoyl-
phosphatidylcholine (DPPC), dilinoleyl-phosphatidylcholine (DIPC), and cholesterol
(CHOL) membrane (DPPC:DIPC:CHOL) at T=295K. The x-direction runs
perpendicular to the domain borders; yii,= N; / (Npppc + Npipc + Nchot). The DPPC-rich
L, domain has an average composition of (0.67:0.04:0.29). The DIPC-rich Ly domain
has a composition of (0.07:0.81:0.12). As noticed by Risselada et al. a temperature of
295K is optimal to observe clear phase separation within accessible simulation time
scales. A higher temperature brings the system closer to the critical point making the
identification of phase domains much more difficult.
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Figure S2: Pore radius, R, as a function of time for each of the 2 us MD production
runs reported in the paper. In all cases pores were created (t=0) at the centre of the L,
domain, on the final configuration of the 4 ps simulation of the phase-segregated
membrane. In order to prevent spontaneous pore collapse, & was harmonically
restrained to the values annotated on the figure. Larger pores (§=0.8) do not change
size when crossing the domain boundary, smaller pores do (£,=0.6,0.5). For £=0.8 and
0.6 pores are toroidal and hydrophilic, whether located in L, or L4, and a water channel
crosses the bilayer. For £=0.5, the membrane defect is hydrophobic and amounts to a
local lowering of the lipids density.
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Figure S3: Time evolution of membrane excess area. The excess area is the difference
between the actual surface area of the undulated membrane and the simulation box’s
X-Y area. The area of the undulated membrane was computed by fitting a geometric
surface to the phosphate groups of DPPC and DIPC, as described in ref. 29, and
implemented in g_lomepro.? This utility code also allowed us to correlate pore position
with local membrane curvature. The black line (spanning negative times) corresponds
to Ax evaluated on the non-porated phase-segregated bilayer. Pores with £,=0.8(blue),
&=0.6(green), and £y=0.5(red), created at t=0, immediately induce membrane bending
resulting in larger values of A.. The deformation relaxes as stress is released while the
pores drift and reach the centre of the L4 phase.
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Figure S4: The mismatch area quantifies the overall extent to which the domains’ upper
and lower leaflets are out of kilter. The positive value shown by the non-porated

2http://www3.mpibpc.mpg.de/groups/de groot/qg_lomepro.html




membrane (black line) is due to a small surface tension that controls the degree of
registration between the two domain leaflets (see ref. 3). Pores are created in L, at t=0,
inducing membrane curvature and pushing the upper and lower leaflets out of kilter.
The mismatch area goes back to normal once the pores reach Ly. Only one trajectory
for §=0.6(green) and &y=0.5(red) is shown, the others depict similar trends.
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Figure S5: R(&) functions computed by Monte Carlo (see paper) from the various
simulated systems, as annotated on Figure.
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Figure S6: Difference in free energy cost for creating a pore of radius R in the bulk of
L, or Ly, 1.6 AG(R)=AG4(R)- AG.,(R). -AG(R) 1s the driving force that pushes the pore from
L,to L.
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Figure S7: Free-energy vs. pore radius, as shown in the bottom panel of Figure 4. The
dashed lines are least-square fittings to the Classical Nucleation Theory expression for
the pore energy (equation 1 in the manuscript, with y; = 0) in the Re (0.3-1.3)nm
interval. In each case, the ordinate of the origin provides AG, , the slope allows to
compute yL.



