Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting Information

Fluorine Substituent Effect on the Stereochemistry of Catalyzed and non-Catalyzed Diels-Alder Reactions. The Case of R-Butenone with Cyclopentadiene: A Computational Assessment of the Mechanism

MERZOUD Lynda,^{*a,b*} SAAL Amar,^{*a, b*} MOUSSAOUI Ramdane,^{*c*} OUAMERALI Ourida^{*a*}, MORELL Christophe^d, CHERMETTE Henry^d

^aLaboratory of Computational and Theoretical Chemistry and Photonics, USTHB University, 16111, Algeria;
 ^bDépartement de Chimie, UMMTO University of Tizi–Ouzou, 15000, Algeria.
 ^cLaboratoire de chimie Appliquée et de Génie Chimique, Université M. Mammeri, Tizi Ouzou, Algeria.
 ^d Université de Lyon, Université Claude Bernard Lyon 1, ENS-Lyon, Institut des Sciences Analytiques, UMR CNRS 5280, 69622 Villeurbanne Cedex, France

Corresponding author:

1. Geometry Evolution:

Figure S.1. IRC pathways of H12-Uncatalyzed and H12-Catalyzed reactions. The variation of the interatomic distances curves C4C15 (green) and C3C13 (red) along the reaction coordinate are plotted in the same graph as energies (blue).

Figure S.2. IRC pathways of F11-Uncatalyzed and F11-Catalyzed reactions. The variation of the interatomic distances curves C4C15 (green) and C3C13 (red) along the reaction coordinate are plotted in the same graph as energies (blue).

Figure S.3. IRC pathways of F12-Uncatalyzed and F12-Catalyzed reactions. The variation of the interatomic distances curves C4C15 (green) and C3C13 (red) along the reaction coordinate are plotted in the same graph as energies (blue).

2. Energetics

Desction	D _	sti	ructure	Ea (kcal/mol)		
Reaction	Dienophile	Dienophile	Adduct (endo/exo)	uncatalyzed	catalyzed	
H11	H	cis	endo	18.3	5.1	
H12	H	cis	exo	18.7	7.1	
F11	F	cis	endo	19.3	9.1	
F12	F	cis	exo	17.9	6.0	

 Table S.1. The designation and the activation energy (kcal/mol) for the catalyzed and uncatalyzed studied reactions.

Figure S.4. Energy diagram corresponding to F11 and F12 reactions (with and without AlCl₃ catalyst). The calculations were performed at B3LYP/6-31G(d) level with ZPE correction.

3. Comparative ASM/EDA diagrams

Table S.2. Interaction energies given in kcal/mol for the uncatalyzed transition states

Endo-cis		Exo-cis		
Η	F	Н	F	
111.93	118.24	112.58	123.39	
-53.43	-61.20	-52.78	-56.10	
-63.62	-64.99	-62.96	-66.03	
-9.31	-8.81	-5.66	-8.94	
	End H 111.93 -53.43 -63.62 -9.31	Endo-cis H F 111.93 118.24 -53.43 -61.20 -63.62 -64.99 -9.31 -8.81	Endo-cis Exc H F H 111.93 118.24 112.58 -53.43 -61.20 -52.78 -63.62 -64.99 -62.96 -9.31 -8.81 -5.66	

Figure S.5. Comparative activation-strain diagrams for the AlCl₃-catalyzed (dashed lines) and uncatalyzed (solid lines) Diels-Alder reactions between cyclopentadiene and butenone (left) and between the cyclopentadiene and 3-fluorobutenone (right) along the reaction coordinate projected onto the forming C--C bond distance, computed at BLYP-D3/TZ2P level.

Figure S.6. Comparative energy decomposition analysis diagram for the $AlCl_3$ -catalyzed (dashed lines) and uncatalyzed (solid lines) Diels-Alder reactions between cyclopentadiene and butenone (left) and between the cyclopentadiene and 3-fluorobutenone (right) along the reaction coordinate projected onto the forming C--C bond distance, computed at BLYP-D3/TZ2P level.

4. Dual Descriptor

Scheme S.1. Dual descriptor of the interactions between cyclopentadiene and AlCl₃-catalyzed 3-R-butenone sites in its ground state. Blue lobes correspond to positive values of the dual descriptor, whereas orange lobes correspond to negative ones.

5. NBO analysis:

> NBO_F_endo-cis (R1=F)

Table S.4. Second–order perturbation theory analysis of Fock matrix in NBO basis of the F_endo_cis (R1=F) reactant: E(2) in kcal/mol is the hyperconjugative interaction energy, ε_j – ε_i is the energy difference between the donor NBO (i) and the acceptor NBO (j) and Fij is the Fock matrix element between the NBO orbitals i and j. ε_j – ε_i and Fij are given in atomic units.

NB	SO(i)	NB	O(j)	D (2)		F
Donor	Occupation	Acceptor	Occupation	$E^{(2)}$	Е _ј - Е _і	$F_{i,j}$
$\pi^* C_3 = O_8$	0.144	$\pi^* C_1 = C_2$	0.113	53.7	0.02	0.072
lp2 O ₈	1.883	σ* C ₂ - C ₃	0.081	21.5	0.68	0.109
lp3 F ₇	1.924	$\pi^* C_1 = C_2$	0.113	20.95	0.44	0.086
lp2 O ₈	1.883	σ* C ₃ - C ₄	0.054	19.84	0.65	0.103
lp1 O ₈	1.978	Ry*1 C3	0.018	15.75	1.47	0.136
σ C ₁ - H ₆	1.973	σ* C ₂ - F ₇	0.042	9.27	0.78	0.076
lp1 F7	1.988	Ry*1 C ₂	0.011	8.09	1.87	0.110
lp2 F ₇	1.965	σ* C ₂ - C ₃	0.081	7.3	0.83	0.070
$cr 1 O_8$	1.999	Ry*1 C ₃	0.018	6.08	19.66	0.310
lp2 F7	1.965	$\sigma^* C_1 - C_2$	0.017	5.34	1.05	0.067
$\pi^* C_1 = C_2$	0.113	$\pi * C_{13} = C_{14}$	0.117	1.06	0.02	0.013
lp3 F ₇	1.924	σ * С ₁₂ - Н ₂₂	0.016	0.53	0.86	0.019
$\pi^* C_1 = C_2$	0.113	$\pi^* C_{15} = C_{16}$	0.120	0.49	0.02	0.008
π C ₃ =O ₈	1.974	π * C ₁₅ =C ₁₆	0.120	0.26	0.42	0.010
$\pi C_1 = C_2$	1.906	π* C ₁₃ =C ₁₄	0.117	0.25	0.34	0.008
$\pi C_1 = C_2$	1.906	$\sigma^* C_{12}$ - H_{21}	0.014	0.19	0.73	0.011
σC_1 - H_5	1.982	π * C ₁₃ =C ₁₄	0.117	0.19	0.59	0.010
lp2 F ₇	1.965	$\sigma^* C_{12}$ - H_{22}	0.017	0.19	0.86	0.011
σ C ₁ - H ₅	1.982	Ry*2 C ₁₃	0.002	0.14	1.31	0.012
lp1 F ₇	1.988	$\sigma^* C_{12}$ - H_{22}	0.016	0.14	1.49	0.013
$\pi C_1 = C_2$	1.906	σ * С ₁₂ - Н ₂₂	0.016	0.08	0.75	0.007
$\pi C_1 = C_2$	1.906	$\pi^* C_{15} = C_{16}$	0.120	0.08	0.34	0.005
σ C ₂ - C ₃	1.984	Ry*2 C ₁₆	0.002	0.08	1.43	0.010
lp3 F ₇	1.924	$\pi^* C_{15} = C_{16}$	0.120	0.08	0.46	0.005
σC_1 - C_2	1.991	Ry*1 C ₁₃	0.003	0.06	2.08	0.010
$\sigma C_1 - C_2$	1.991	Ry*1 H ₂₂	0.002	0.06	1.48	0.009
σC_1 - H_5	1.982	Ry*4C ₁₃	0.001	0.06	1.72	0.009

σC_1 - H_6	1.974	Ry*2 C ₁₃	0.002	0.06	1.30	0.008
σ C ₂ - C ₃	1.984	Ry*3 C ₁₆	0.002	0.06	1.37	0.008
lp3 F ₇	1.924	Ry*2 C ₁₆	0.002	0.06	1.15	0.008
lp3 F ₇	1.924	Ry*1 H ₂₂	0.002	0.06	1.12	0.008
σ C ₁ - C ₂	1.991	Ry*1 C ₁₂	0.003	0.05	1.59	0.008
σ C1 - H ₆	1.974	Ry*3 C ₁₄	0.001	0.05	1.58	0.008

> NBO_F_exo-cis (R1=F)

Table S.5. Second–order perturbation theory analysis of Fock matrix in NBO basis of the F_{exo}_{cis} (R1=F) reactant: E(2) in kcal/mol is the hyperconjugative interaction energy, $\varepsilon_j - \varepsilon_i$ is the energy difference between the donor NBO (i) and the acceptor NBO (j) and Fij is the Fock matrix element between the NBO orbitals i and j. $\varepsilon_j - \varepsilon_i$ and Fij are given in atomic units.

NB	O(i)	NBO(j)				
Donor	Occupation	Acceptor	Occupation	$E^{(2)}$	Еј - Е і	$F_{i,j}$
$\pi^* C_3 = O_8$	0.145	$\pi^* C_1 = C_2$	0.110	39.27	0.02	0.072
lp3 F7	1.921	$\pi^* C_1 = C_2$	0.110	21.78	0.43	0.088
lp2 O ₈	1.885	σ* C ₂ - C ₃	0.081	20.86	0.68	0.107
lp2 O ₈	1.885	σ* C ₃ - C ₄	0.052	19.76	0.65	0.103
$\pi C_1 = C_2$	1.905	π* C ₃ =O ₈	0.145	17.53	0.30	0.066
lp1 O ₈	1.977	Ry*1 C ₃	0.018	15.49	1.46	0.134
σC_1 - H_5	1.974	σ* C ₂ - F ₇	0.041	9.08	0.80	0.076
lp1 F7	1.989	Ry*1 C ₂	0.011	8.3	1.87	0.111
lp2 F ₇	1.965	σ* C ₂ - C ₃	0.081	7.31	0.82	0.070
cr1 O ₈	1.999	Ry*1 C ₃	0.018	6.06	19.65	0.309
σC_1 - H_6	1.982	σ* C ₂ - C ₃	0.081	6	0.95	0.069
lp2 F ₇	1.965	σ* C ₁ - C ₂	0.017	5.71	1.05	0.069
$\pi^* C_1 = C_2$	0.110	π * C ₁₃ =C ₁₄	0.117	0.82	0.02	0.011
$\pi C_3 = O_8$	1.975	$\sigma^* C_{12}$ - H_{22}	0.018	0.54	0.84	0.019
lp2 O ₈	1.885	$\sigma^* C_{12}$ - H_{22}	0.018	0.53	0.73	0.018
π* C ₃ =O ₈	0.145	π * C ₁₅ =C ₁₆	0.122	0.48	0.04	0.011
lp1 O ₈	1.977	$\sigma^* C_{12}$ - H_{22}	0.018	0.29	1.16	0.016
lp3 F ₇	1.921	$\pi * C_{15} = C_{16}$	0.122	0.28	0.46	0.010
lp3 F ₇	1.921	Ry*3 C ₁₅	0.001	0.15	1.26	0.013
$\pi C_1 = C_2$	1.905	$\pi * C_{13} = C_{14}$	0.117	0.14	0.35	0.006
π C ₃ =O ₈	1.976	π * C ₁₅ =C ₁₆	0.122	0.13	0.43	0.007
$\pi C_1 = C_2$	1.905	$\sigma^* C_{12}$ - H_{21}	0.014	0.12	0.73	0.009
σ C ₂ - C ₃	1.984	Ry*2 C ₁₆	0.002	0.11	1.42	0.011
σC_1 - H_5	1.974	$\pi^* C_{13} = C_{14}$	0.117	0.08	0.59	0.006
σ C ₁ - H ₅	1.974	Ry*2 C ₁₃	0.002	0.07	1.29	0.008
$\pi C_1 = C_2$	1.905	$\sigma^* C_{12}$ - H_{22}	0.018	0.06	0.76	0.006
$\sigma C_2 - C_3$	1.984	Ry*3 C ₁₆	0.002	0.06	1.40	0.008
σ C ₂ - C ₃	1.984	Ry*4 C ₁₆	0.001	0.06	1.88	0.009

σC_2 - F_7	1.995	Ry*3 C ₁₅	0.001	0.06 1.86	0.009
σC_1 - H_5	1.974	σ* C ₁₂ - H ₂₂	0.018	0.05 1.00	0.007
σ C ₁ - H ₆	1.982	Ry*2 C ₁₃	0.002	0.05 1.29	0.007

> NBO_H_endo-cis (R1=H)

Table S.6. Second–order perturbation theory analysis of Fock matrix in NBO basis of the H_endo_cis (R1=H) reactant: E(2) in kcal/mol is the hyperconjugative interaction energy, $\varepsilon_j - \varepsilon_i$ is the energy difference between the donor NBO (i) and the acceptor NBO (j) and Fij is the Fock matrix element between the NBO orbitals i and j. $\varepsilon_j - \varepsilon_i$ and Fij are given in atomic units.

NB	O(i)	NBO(j)				
Donor	Occupatio n	Acceptor	Occupation	$E^{(2)}$	<i>Е</i> ј - Е і	$F_{i,j}$
π* C ₃ =O ₈	0.145	$\pi^* C_1 = C_2$	0.046	41.89	0.01	0.071
lp2 O ₈	1.886	σ* C ₃ - C ₄	0.054	20.61	0.64	0.104
lp2 O ₈	1.886	σ* C ₂ - C ₃	0.065	20	0.69	0.106
$\pi C_1 = C_2$	1.899	$\pi^* C_3 = O_8$	0.145	19.32	0.30	0.069
lp1 O ₈	1.977	Ry*1 C ₃	0.018	16.4	1.49	0.140
cr1 O ₈	1.999	Ry*1 C ₃	0.018	6.23	19.68	0.314
σC_1 - H_6	1.985	$\sigma^* C_2 - H_7$	0.016	5.25	0.99	0.064
σ C ₁ - C ₂	1.989	Ry*4 C ₁₂	0.001	0.05	2.48	0.010
σ C ₁ - C ₂	1.989	Ry*1 C ₁₃	0.003	0.06	2.06	0.010
$\pi C_1 = C_2$	1.899	σ * С ₁₂ - Н ₂₁	0.014	0.23	0.71	0.012
$\pi C_1 = C_2$	1.899	σ * С ₁₂ - Н ₂₂	0.015	0.19	0.72	0.011
$\pi C_1 = C_2$	1.899	$\pi^* C_{13} = C_{14}$	0.116	0.27	0.33	0.008
$\pi C_1 = C_2$	1.899	$\pi^* C_{15} = C_{16}$	0.120	0.15	0.32	0.006
σC_1 - H_5	1.987	Ry*2 C ₁₃	0.002	0.11	1.31	0.011
σ C ₁ - H ₅	1.987	$\pi^* C_{13} = C_{14}$	0.116	0.15	0.59	0.009
σC_1 - H_6	1.985	Ry*2 C ₁₃	0.002	0.12	1.30	0.011
σ C ₂ - C ₃	1.983	Ry*2 C ₁₆	0.002	0.08	1.40	0.009
π C ₃ =O ₈	1.974	π * C ₁₃ =C ₁₄	0.116	0.06	0.41	0.005
π C ₃ =O ₈	1.974	π * C ₁₅ =C ₁₆	0.120	0.5	0.41	0.013
lp2 O ₈ π* C ₃ =O ₈	1.886 0.145	$\pi^* C_{13} = C_{14}$ $\pi^* C_{13} = C_{14}$	0.116 0.116	0.12 0.05	0.30 0.03	0.005 0.003

> NBO_H_exo-cis (R1=H)

Table S.7. Second–order perturbation theory analysis of Fock matrix in NBO basis of the H_{exo}_{cis} (R1=H) reactant: E(2) in kcal/mol is the hyperconjugative interaction energy, $\varepsilon_j-\varepsilon_i$ is the energy difference between the donor NBO (i) and the acceptor NBO (j) and Fij is the Fock matrix element between the NBO orbitals i and j. $\varepsilon_j-\varepsilon_i$ and Fij are given in atomic units.

NBO(i)		NBO(j)		$\Gamma(2)$		\overline{F}
Donor	Occupation	Acceptor	Occupation	$E^{(2)}$	Е _ј - Е _і	F _{i,j}
π * C ₃ =O ₈	0.149	$\pi^* C_1 = C_2$	0.047	27.91	0.02	0.071
lp2 O ₈	1.887	σ* C ₃ - C ₄	0.054	20.56	0.64	0.104
$\pi C_1 = C_2$	1.896	$\pi^* C_3 = O_8$	0.149	19.92	0.29	0.069
lp2 O ₈	1.887	σ* C ₂ - C ₃	0.063	18.99	0.70	0.104
lp1 O ₈	1.976	Ry*1 C ₃	0.017	15.86	1.48	0.137
cr1 O ₈	1.999	Ry*1 C ₃	0.017	6.17	19.67	0.312
σC_1 - H_6	1.987	σ* C ₂ - C ₃	0.063	5.12	0.98	0.064
$\sigma C_1 - H_5$	1.985	$\sigma^* C_2$ - H_7	0.016	5.08	0.99	0.063
π C ₃ =O ₈	1.974	σ* C ₁₂ - H ₂₂	0.021	1.12	0.84	0.027
lp2 O ₈	1.887	$\sigma^* C_{12}$ - H_{22}	0.021	0.96	0.73	0.024
lp1 O ₈	1.976	$\sigma^* C_{12}$ - H_{22}	0.021	0.61	1.15	0.024
π* C ₃ =O ₈	0.149	π * C ₁₅ =C ₁₆	0.123	0.56	0.03	0.010
σC_1 - H_5	1.985	$\pi^* C_{13} = C_{14}$	0.122	0.2	0.58	0.010
$\pi C_1 = C_2$	1.896	$\pi^* C_{13} = C_{14}$	0.122	0.19	0.32	0.007
$\pi C_1 = C_2$	1.896	$\sigma^* C_{12}$ - H_{21}	0.013	0.17	0.71	0.010
σC_1 - H_5	1.985	Ry*2 C ₁₃	0.002	0.12	1.27	0.011
σ C ₂ - C ₃	1.984	Ry*3 C ₁₆	0.002	0.09	1.40	0.010
σC_1 - H_5	1.985	$\sigma^* C_{12}$ - H_{22}	0.021	0.07	1.00	0.007
π C ₃ =O ₈	1.975	π* C ₁₅ =C ₁₆	0.123	0.07	0.42	0.005
σC_1 - C_2	1.989	Ry*4 C ₁₂	0.001	0.06	2.31	0.011
σ C ₁ - H ₅	1.985	Ry*4 C ₁₃	0.001	0.06	1.70	0.009

> NBO_F_endo-cis (R2=F)

Table S.8. Second–order perturbation theory analysis of Fock matrix in NBO basis of the F_endo_cis (R2=F) reactant: E(2) in kcal/mol is the hyperconjugative interaction energy, ε_j – ε_i is the energy difference between the donor NBO (i) and the acceptor NBO (j) and Fij is the Fock matrix element between the NBO orbitals i and j. ε_j – ε_i and Fij are given in atomic units.

NBO(i)		NBO(j)		$\Gamma(2)$		Г
Donor	Occupation	Acceptor	Occupation	$E^{(2)}$	Е _ј - Е _і	$F_{i,j}$
lp3 F ₅	1.897	$\pi^* C_1 = C_2$	0.125	24.73	0.44	0.094
lp2 O ₈	1.887	σ* C ₃ - C ₄	0.054	20.3	0.64	0.103
lp2 O ₈	1.887	σ* C ₂ - C ₃	0.060	20.16	0.70	0.107
$\pi C_1 = C_2$	1.888	$\pi^* C_3 = O_8$	0.164	20.07	0.31	0.072
lp1 O ₈	1.977	Ry*1 C ₃	0.018	16.37	1.50	0.140
lp2 F ₅	1.971	$\sigma^* C_1$ - H_6	0.026	6.85	0.89	0.070
σC_4 - H $_{10}$	1.968	$\pi^* C_3 = O_8$	0.164	6.33	0.53	0.053
cr1 O ₈	1.999	Ry*1 C ₃	0.018	6.2	19.69	0.313
lp2 F ₅	1.971	σ* C ₁ - C ₂	0.018	6	1.06	0.071
lp1 F ₅	1.991	$Ry*1 C_1$	0.008	5.9	1.78	0.092

$\pi^* C_1 = C_2$	0.125	$\pi^* C_{13} = C_{14}$	0.117	0.95	0.03	0.014
π C ₃ =O ₈	1.976	π * C ₁₅ =C ₁₆	0.117	0.37	0.42	0.011
lp3 F ₅	1.897	σ * С ₁₂ - Н ₂₂	0.016	0.36	0.87	0.016
$\pi^* C_1 = C_2$	0.125	$\pi * C_{15} = C_{16}$	0.117	0.26	0.03	0.007
$\pi C_1 = C_2$	1.888	$\pi^* C_{13} = C_{14}$	0.117	0.22	0.35	0.008
π C ₃ =O ₈	1.976	π* C ₁₃ =C ₁₄	0.117	0.19	0.42	0.008
$\pi C_1 = C_2$	1.888	$\sigma^* C_{12}$ - H_{21}	0.014	0.16	0.74	0.010
σC_1 - H_6	1.984	Ry*3 C ₁₃	0.002	0.16	1.32	0.013
π* C ₃ =O ₈	0.165	π* C ₁₅ =C ₁₆	0.117	0.16	0.03	0.005
lp2 O ₈	1.887	$\pi^* C_{13} = C_{14}$	0.117	0.15	0.30	0.006
$\pi C_1 = C_2$	1.888	$\pi^* C_{15} = C_{16}$	0.117	0.12	0.35	0.006
$\pi C_1 = C_2$	1.888	$\sigma^* C_{12}$ - H_{22}	0.016	0.11	0.75	0.008
lp2 F ₅	1.971	$\sigma^* C_{12}$ - H_{22}	0.016	0.09	0.88	0.008
π* C ₃ =O ₈	0.164	π* C ₁₃ =C ₁₄	0.117	0.09	0.03	0.004
σC_1 - H_6	1.984	Ry*4 C ₁₃	0.001	0.08	1.74	0.010
lp1 F ₅	1.991	$\sigma^{*} C_{12}$ - H $_{22}$	0.016	0.08	1.50	0.010
σC_1 - H_6	1.984	$\pi^* C_{13} = C_{14}$	0.117	0.07	0.62	0.006
$\pi C_1 = C_2$	1.888	Ry*3 C ₁₃	0.002	0.06	1.05	0.007
lp1 O ₈	1.977	π* C ₁₃ =C ₁₄	0.117	0.06	0.73	0.006
lp3 F ₅	1.897	Ry*2 C ₁₃	0.002	0.05	1.11	0.007

\rightarrow NBO_F_exo-cis (R2=F)

Table S.9. Second–order perturbation theory analysis of Fock matrix in NBO basis of the F_exo_cis (R2=F) reactant: E(2) in kcal/mol is the hyperconjugative interaction energy, $\varepsilon_j - \varepsilon_i$ is the energy difference between the donor NBO (i) and the acceptor NBO(j) and Fij is the Fock matrix element between the NBO orbitals i and j. $\varepsilon_j - \varepsilon_i$ and Fij are given in atomic units.

NB	O(i)	NBO(j)		$\Gamma(2)$		Г
Donor	Occupation	Acceptor	Occupation	$E^{(2)}$	Е _ј - Е _і	$F_{i,j}$
π* C ₃ =O ₈	0.167	$\pi^* C_1 = C_2$	0.129	86.69	0.01	0.071
lp3 F ₅	1.896	$\pi^* C_1 = C_2$	0.129	25.05	0.44	0.094
$\pi C_1 = C_2$	1.883	π* C ₃ =O ₈	0.167	20.58	0.31	0.072
lp2 O ₈	1.889	σ* C ₃ - C ₄	0.053	20.31	0.64	0.104
lp2 O ₈	1.889	σ* C ₂ - C ₃	0.059	19.23	0.71	0.105
lp1 O ₈	1.975	Ry*1 C ₃	0.017	15.82	1.48	0.137
lp2 F ₅	1.970	$\sigma^* C_1$ - H_6	0.026	7.04	0.88	0.070
lp2 F ₅	1.970	σ* C ₁ - C ₂	0.018	6.26	1.05	0.073
cr1 O ₈	1.999	Ry*1 C ₃	0.017	6.16	19.67	0.312
lp1 F ₅	1.991	Ry*1 C ₁	0.009	6.15	1.79	0.094
π C ₃ =O ₈	1.976	$\sigma^* C_{12}$ - H_{22}	0.021	1.28	0.85	0.029
lp2 O ₈	1.889	$\sigma^* C_{12}$ - H_{22}	0.021	0.96	0.74	0.024
$\pi^* C_1$ - C_2	0.129	$\pi^* C_{13} = C_{14}$	0.126	0.86	0.03	0.012
lp1 O ₈	1.975	$\sigma^* C_{12}$ - H_{22}	0.021	0.71	1.16	0.026

π* C ₃ =O ₈	1.976	π* C ₁₅ =C ₁₆	0.123	0.43	0.04	0.009
lp3 F ₅	1.896	$\pi^* C_{13} = C_{14}$	0.126	0.22	0.47	0.009
σC_1 - H_6	1.985	$\pi * C_{13} = C_{14}$	0.126	0.21	0.62	0.010
$\pi C_1 = C_2$	1.884	$\pi^* C_{13} = C_{14}$	0.126	0.19	0.35	0.007
π С $_1$ - С $_2$	1.884	$\sigma^* C_{12}$ - H_{21}	0.014	0.15	0.74	0.010
lp3 F ₅	1.896	Ry*3 C ₁₄	0.001	0.15	1.22	0.012
σC_1 - H_6	1.985	Ry*3 C ₁₃	0.002	0.12	1.30	0.011
σC_1 - H_6	1.985	Ry*4C ₁₃	0.001	0.09	1.73	0.011
$\pi^* C_1 = C_2$	0.129	$\pi^* C_{15} = C_{16}$	0.123	0.09	0.03	0.004
σ C ₂ - C ₃	1.978	Ry*2 C ₁₆	0.002	0.08	1.40	0.010
σC_1 - F_5	1.996	Ry*3 C ₁₄	0.001	0.07	1.83	0.010
σC_1 - H_6	1.985	Ry*2 C ₁₃	0.002	0.07	1.33	0.009
σ C_1 - C_2	1.990	Ry*3 C ₁₄	0.001	0.06	1.57	0.008
$\pi C_1 = C_2$	1.884	Ry*2 C ₁₃	0.002	0.06	1.06	0.007
π C ₃ =O ₈	1.976	π* C ₁₅ =C ₁₆	0.123	0.06	0.42	0.004
lp3 F ₅	1.897	Ry*2 C ₁₃	0.002	0.05	1.18	0.007

6. State Specific Dual Descriptors

Scheme S.2. State-specific dual descriptor of the interactions between cyclopentadiene and Rbutenone for **exo** orientation. Blue lobes correspond to positive values of the dual descriptor, whereas orange lobes correspond to negative ones calculated at the TD-B3LYP/6-31G(d,p) level.

Scheme S.3. State-specific dual descriptor of the interactions of catalyzed and uncatalyzed Diels-Alder reaction between cyclopentadiene and 3-R-butenone for exo orientation. Blue lobes correspond to positive values of the dual descriptor, whereas orange lobes correspond to negative ones calculated at the TD-B3LYP/6-31G(d,p) level.

7. Domains

Table S.10. Electrostatic interaction energy of the excited states in u.a and activation energy in kcal/mol and numerical values from the condensation of the nucleophilic domains for oxygen atom in u.a. are given for the **exo** reactions between the cyclopentadiene and R-butenone. $\Delta s(D_0)$ is the integrated value of the domain volume.

	E _{PSCube}	Ea	$\Delta s(D_0^-)$
R1=H	0.115	18.7	-0.016
R1=F	0.121	17.9	-0.015
R2=F	0.062	16.9	-0.272

8. Geometric Structures

Uncatalyzed Reactant_H_endo-cis (R1=H)

Н	-1.07240400	1.47439100	-1.45250300
С	-0.95563100	1.77783600	-0.41667000
С	0.22668200	1.63351400	0.19308800
С	1.39431000	1.05054100	-0.52432700
С	2.72678800	1.10548200	0.20251300
Н	-1.81687800	2.21241200	0.08232800
Н	0.37434100	1.95090100	1.22362900
0	1.29539200	0.57251100	-1.64524900
Н	3.49484900	0.60252700	-0.38812100
Н	3.02191400	2.15027700	0.36719800
Н	2.64877300	0.63433500	1.18997400
С	-2.12827600	-0.94999400	0.07834800
С	-1.17951400	-1.50386500	-0.70876900
С	0.01454700	-1.77588400	0.09266400
С	-0.20184600	-1.38280300	1.36713500
С	-1.60858800	-0.85785700	1.48987400
Н	-3.12606700	-0.64846000	-0.22011100
Н	-1.26039700	-1.70799800	-1.77085800
Н	0.92659900	-2.20930400	-0.30281500
Н	0.48782900	-1.46572200	2.19981600
Н	-2.20549000	-1.48275700	2.17392900
Н	-1.65014100	0.16148700	1.89516000

Uncatalyzed Product_H_endo-cis (R1=H)

Н	-1.03554600	1.23264100	-1.32319700
С	-1.20010600	1.01272200	-0.26645300
С	0.14182900	0.80757600	0.48655400
С	1.35322100	0.84188400	-0.42971100
С	2.69942700	1.15528300	0.20184900
Н	-1.77921000	1.83132600	0.17720400
Н	0.27366700	1.52464300	1.30578900
0	1.26216400	0.58131600	-1.61626400
Н	3.49863500	0.69546900	-0.38438200
Н	2.85559700	2.24259600	0.19622600
Н	2.75488700	0.82361200	1.24443900
С	-1.93512300	-0.35196000	-0.04727200
С	-1.12391500	-1.43813300	-0.73873700
С	-0.01615800	-1.65419100	-0.01646400
С	-0.03796800	-0.66000800	1.13189600
С	-1.55366900	-0.62359000	1.42760500
Н	-3.00064200	-0.32535400	-0.29010200
Н	-1.36837000	-1.86904600	-1.70423400
Н	0.82489100	-2.28716000	-0.27924300
Н	0.63654400	-0.85276600	1.96951500
Н	-1.92835100	-1.58174800	1.80009900
Н	-1.84925200	0.18115300	2.11186400

Uncatalyzed TS_H_endo-cis (R1=H)

Н	-1.10928072	1.28521897	-1.39879287
С	-1.10928072	1.28521897	-0.31359687
С	0.14194028	1.28521897	0.31251313

С	1.33118928	0.94540097	-0.46227787
С	2.69072028	1.13904297	0.19851113
Н	-1.91911772	1.84673597	0.14646713
Н	0.26265928	1.65538997	1.32633713
0	1.24772628	0.52394397	-1.61862987
Н	3.45256428	0.59489397	-0.36445487
Н	2.95538628	2.20484197	0.19632513
Н	2.68952528	0.80584697	1.24253913
С	-1.94432072	-0.53067303	-0.01533387
С	-1.11344872	-1.40771303	-0.73956987
С	0.01011028	-1.73547703	0.04458213
С	-0.11544572	-1.14016703	1.28594513
С	-1.53547172	-0.67304503	1.44266713
Н	-2.97568772	-0.34178003	-0.30163387
Н	-1.24405172	-1.67666503	-1.78159487
Н	0.87899628	-2.27507303	-0.31433187
Н	0.58743328	-1.22917903	2.10672713
Н	-2.12834972	-1.48992803	1.88842113
Н	-1.67748272	0.21310897	2.06491113

Uncatalyzed Reactant_H_exo-cis (R1=H)

С	2.54614400	0.18037300	-0.46662900
С	1.81232800	1.42133800	-0.21683200
С	0.99540500	1.24990500	0.84757600
С	-0.94087100	-0.33101600	-1.20959600
С	-0.20268600	-1.44219800	-1.31560900
С	2.17424300	-0.74790000	0.44400800
Н	3.26523100	0.04283000	-1.26817900
Н	1.91996900	2.32702400	-0.80566800
Н	0.33803000	1.99116600	1.28830200
С	-1.94822800	-0.16155200	-0.12822500
Н	0.51605400	-1.58252300	-2.11554800
Н	-0.32361100	-2.25202000	-0.60075000
Н	2.54748200	-1.76257800	0.52656000
0	-2.02253100	-0.92744200	0.82467100
С	1.17591100	-0.14030400	1.39218100
Н	0.23425500	-0.70131800	1.45120900
Н	1.57637600	-0.11059000	2.41861800
Н	-0.84536600	0.47457800	-1.93373200
С	-2.90098100	1.01110200	-0.27619500
Н	-2.34069100	1.95072700	-0.35969000
Н	-3.48880400	0.90742500	-1.19748400
Н	-3.57394100	1.05655500	0.58202000

Uncatalyzed Product_H_exo-cis (R1=H)

С	2,45031100	0.18242100	-0.54582600
C	1.75786000	1.31168200	-0.34011000
С	0.49418400	0.93484600	0.41648200
С	-0.42018500	0.13248300	-0.61964000
С	0.39109200	-1.18042500	-0.82238300
С	1.65975400	-0.96204200	0.07276200
Н	3.35504100	0.06543500	-1.13471600
Н	1.97498300	2.30237200	-0.72729000

Н	-0.02412900	1.74831900	0.93082900
С	-1.79326300	-0.06379400	0.01058400
Н	0.64670700	-1.34968500	-1.87171200
Н	-0.18495700	-2.03720900	-0.45959000
Н	2.21905100	-1.87758200	0.28044200
0	-2.03104100	-0.97439900	0.78542500
С	1.01805900	-0.23618500	1.27900800
Н	0.22450200	-0.81270400	1.76192700
H	1.75394200	0.09226200	2.01902200
Н	-0.52584800	0.71192300	-1.54252700
С	-2.85518900	0.97072400	-0.32725100
H	-2.42691300	1.96874600	-0.46969300
H	-3.33899400	0.68851600	-1.27234000
Н	-3.61670800	0.99228400	0.45552600

Uncatalyzed TS_H_exo-cis (R1=H)

С	2.44793610	0.16628144	-0.52543088
С	1.79557310	1.38149044	-0.25251988
С	0.79676610	1.15769044	0.68724612
С	-0.66474990	-0.15345356	-0.94536888
С	0.17973210	-1.26840656	-1.00558488
С	1.80494310	-0.86806556	0.18355312
Н	3.22099310	0.02533844	-1.27415188
Н	1.98523710	2.32224244	-0.75924888
Н	0.16005610	1.91888644	1.12430612
С	-1.83177090	-0.12285556	-0.05967188
Н	0.71159110	-1.47553456	-1.92830388
Н	-0.13769490	-2.14972856	-0.45366188
Н	2.24180610	-1.85520956	0.30692312
0	-2.01315790	-0.95050056	0.83571212
С	1.01062610	-0.19943656	1.28821912
Н	0.10379910	-0.71828356	1.60555512
Н	1.66984010	-0.09186956	2.16683312
Н	-0.59898490	0.61639944	-1.70768088
С	-2.85591290	0.97816344	-0.31043788
Н	-2.37506190	1.94777744	-0.48296488
Н	-3.44155390	0.74262844	-1.20893188
Н	-3.53747290	1.04541644	0.54033912

Catalyzed Reactant_H_endo-cis (R1=H)

С	-4.32496400	-0.20537500	0.40612200
С	-3.30355700	-0.00572300	1.49400300
С	-2.26118700	-0.84442900	1.28817800
С	-2.49221900	-1.60848000	0.06198200
С	-3.67662800	-1.23604100	-0.48220400
С	-2.17970000	0.88898500	-2.07324200
С	-1.80170000	1.75835300	-1.11325100
С	-0.57363500	1.56643600	-0.36399200
С	-0.12939800	2.57261300	0.65040500
Н	-4.57361700	0.72551400	-0.12322500
Н	-5.27562300	-0.57796500	0.81846600
Н	-3.43294000	0.67556500	2.32749300
Н	-1.38364300	-0.95038300	1.91694500

Н	-1.80630200	-2.35169600	-0.33067600
Н	-4.14033800	-1.64884600	-1.37106600
Н	-1.55773300	0.03953400	-2.33201000
Н	-3.09171400	1.03679800	-2.64254600
Н	-2.40234500	2.62764100	-0.86580400
0	0.13321700	0.55041900	-0.60715600
Н	-0.85874700	3.37225200	0.79058700
Н	0.06846200	2.06918100	1.60316100
Н	0.82696000	3.00007200	0.32133500
Al	1.74288600	-0.22403300	-0.04190100
Cl	1.69146300	-2.12447100	-1.00396600
Cl	1.59012200	-0.32784900	2.09877700
Cl	3.22431600	1.14926400	-0.74136900

Catalyzed Product_H_endo-cis (R1=H)

С	-4.06688200	-0.06314400	0.16632800
С	-2.81089900	0.48887900	0.87546600
С	-2.01293500	-0.78238100	1.05084300
С	-2.25089100	-1.54654100	-0.02728900
С	-3.25608500	-0.82364600	-0.90812700
С	-2.53448800	0.38581300	-1.59697400
С	-2.17006500	1.30993100	-0.40217300
С	-0.72042000	1.47004100	-0.15449400
С	-0.16820900	2.62897800	0.61095700
Н	-4.72496400	0.71314600	-0.24175900
Н	-4.63822200	-0.72482600	0.82285300
Н	-2.94770200	1.12958600	1.74802300
Н	-1.27912100	-0.95447800	1.82994400
Н	-1.74832300	-2.47034100	-0.29145100
Н	-3.81394400	-1.44790600	-1.60873300
Н	-1.65624000	0.07830500	-2.16622300
Н	-3.22244000	0.90113300	-2.27372800
Н	-2.66012800	2.28615800	-0.44167900
0	0.03131400	0.53458400	-0.51252800
Н	-0.90409700	3.42045900	0.76127800
Н	0.18303500	2.26107700	1.58530200
Н	0.71552400	3.01975700	0.09391300
Al	1.67277700	-0.23960500	-0.02582200
Cl	1.61769200	-2.14836900	-0.96228700
Cl	1.57574900	-0.32882000	2.12065300
Cl	3.13135500	1.12843200	-0.76667900

Catalyzed TS_H_endo-cis (R1=H)

С	-3.98735400	-0.14545200	0.26571900
С	-3.02155200	-0.00082100	1.40328200
С	-1.98161500	-0.87354900	1.24061800
С	-2.09862500	-1.50007000	-0.03784200
С	-3.18100700	-0.95797300	-0.73177500
С	-2.24835700	0.60085400	-1.81862400
С	-1.82274400	1.58835400	-0.92671900
С	-0.55828600	1.50014700	-0.30864600
С	-0.02936900	2.57921100	0.58886800
Н	-4.40068500	0.79625300	-0.10572400

Н	-4.84441000	-0.75396900	0.59901700
Н	-3.18940000	0.63930800	2.26229500
Н	-1.16150100	-1.03222500	1.93126400
Н	-1.40095600	-2.23365600	-0.42763500
Н	-3.63406500	-1.44369200	-1.59015000
Н	-1.50039700	-0.03312600	-2.28033600
Н	-3.13515300	0.78713600	-2.41750900
Н	-2.45680400	2.43369800	-0.68335800
0	0.16007600	0.45951800	-0.54218600
Н	-0.74838200	3.39062400	0.72213100
Н	0.23746400	2.15580500	1.56369400
Н	0.89610100	2.98090900	0.15799300
Al	1.77854100	-0.24953900	-0.03022700
Cl	1.74924200	-2.18260400	-0.95691100
Cl	1.70433000	-0.36820800	2.12425700
Cl	3.28231100	1.08825800	-0.75855300

Catalyzed Reactant_H_exo-cis (R1=H)

С	4.45976000	-0.40030900	-0.06493200
С	3.93713700	0.36580800	1.06429200
С	2.76155700	-0.17515800	1.46629000
С	1.74189800	1.50725400	-1.36421500
С	2.13670900	0.52703400	-2.20286500
С	3.60095600	-1.40739300	-0.35881200
Н	5.39364300	-0.18501300	-0.57445200
Н	4.43282600	1.22467900	1.50496900
Н	2.13970100	0.14913100	2.29275500
С	0.49941500	1.43485300	-0.62062200
Н	3.05804300	0.60724000	-2.76837300
Н	1.51984000	-0.35032100	-2.36989700
Н	3.72593700	-2.16513800	-1.12401100
0	-0.22685800	0.40597400	-0.73039200
Al	-1.81817600	-0.23792000	0.03600400
Cl	-1.37629100	-0.23722700	2.13859000
Cl	-1.99841200	-2.17757200	-0.82062800
Cl	-3.31054200	1.17676900	-0.55066000
С	2.45876700	-1.38043000	0.62123800
Н	1.47306000	-1.33760200	0.14019700
Н	2.44174900	-2.29469100	1.23528300
Н	2.35023300	2.39261100	-1.21296100
С	0.06414300	2.57813700	0.24085400
Н	0.79425200	3.38880900	0.25467900
Н	-0.90025100	2.95075700	-0.12862400
Н	-0.11571600	2.21672000	1.26059500

Catalyzed Product_H_exo-cis (R1=H)

С	4.42783200	-0.33912100	-0.11264800
С	3.97637400	0.37506300	0.94392700
С	2.52277300	0.17745400	1.01508300
С	2.00302500	1.13592200	-0.69442500
С	2.50088900	0.07969000	-1.65822000
С	3.25858500	-1.00871900	-0.78344200
Н	5.44148400	-0.34175900	-0.50063600

Н	4.54208400	1.06667900	1.55880900
Н	1.92541600	0.54630600	1.84485200
С	0.59588400	1.32017800	-0.46861700
Н	3.16263100	0.50821000	-2.41493800
Н	1.66524800	-0.40968300	-2.16640200
Н	3.49388700	-1.90150200	-1.36592100
0	-0.20701400	0.36711600	-0.72622600
Al	-1.80609300	-0.23228900	0.01088500
Cl	-1.36034900	-0.23555600	2.12537900
Cl	-2.01555400	-2.18989100	-0.80471600
Cl	-3.32744600	1.16402000	-0.54170300
С	2.28881800	-1.18635300	0.40546500
Н	1.25589000	-1.38807500	0.12076100
Н	2.63103500	-1.97365300	1.08807100
Н	2.57747700	2.05561600	-0.63602200
С	0.07548700	2.58202200	0.15441300
Н	0.84378000	3.35357500	0.23105800
Н	-0.77007000	2.95156600	-0.43597200
Н	-0.31893700	2.35745000	1.15373500

Catalyzed TS_H_exo-cis (R1=H)

С	4.26934700	-0.36157700	-0.11706800
С	3.85582300	0.30980100	1.06159200
С	2.58301900	-0.10427800	1.38661800
С	1.75836300	1.29585900	-1.08800000
С	2.25249400	0.22736500	-1.85202000
С	3.20893100	-1.12892300	-0.62010300
Н	5.22987700	-0.22742500	-0.60457200
Н	4.43917400	1.05132800	1.59591800
Н	1.98784000	0.23388300	2.22738700
С	0.45332000	1.33250400	-0.55579700
Н	3.08746000	0.41407500	-2.51915100
Н	1.53611100	-0.50570200	-2.21253500
Н	3.35113100	-1.92192500	-1.34781200
0	-0.33398200	0.32579300	-0.71590200
Al	-1.91909000	-0.25625300	0.02169100
Cl	-1.49038600	-0.26979300	2.14169200
Cl	-2.13764200	-2.21842400	-0.79739000
Cl	-3.44927200	1.13434500	-0.53468000
С	2.18019800	-1.22421400	0.48845400
Н	1.13314800	-1.21960300	0.18301400
Н	2.34077000	-2.17509900	1.02485700
Н	2.38301400	2.16502900	-0.91432900
С	-0.05206800	2.55046300	0.16371000
Н	0.69781100	3.34318000	0.20668500
Н	-0.95056300	2.92116100	-0.34324100
Н	-0.35821800	2.27987800	1.18111400

Uncatalyzed Reactant_F_endo-cis (R1=F)

Н	-1.07241700	1.33638300	-1.65985800
С	-1.01371900	1.54648300	-0.60079000
С	0.14593400	1.35554800	0.02553900
С	1.39755800	0.87787600	-0.62890200

С	2.67104600	0.97830600	0.18399300
Н	-1.88841900	1.92097000	-0.08194000
F	0.26594200	1.60912400	1.35861100
0	1.37262500	0.46203100	-1.77586200
Н	3.50972000	0.62573700	-0.41865200
Н	2.84474100	2.01636800	0.49275000
Н	2.59276500	0.38491200	1.10159000
С	-2.21301800	-1.16835300	-0.02418300
С	-1.37943200	-1.71865300	-0.93528400
С	-0.10073100	-2.02942500	-0.29411400
С	-0.15416000	-1.67085600	1.00789300
С	-1.52146700	-1.12001400	1.31422500
Н	-3.23402100	-0.84357500	-0.19027400
Н	-1.59683700	-1.89617600	-1.98324400
Н	0.74986700	-2.46300900	-0.80872800
Н	0.62991200	-1.78531600	1.74795500
Н	-2.04580000	-1.74684500	2.05435000
Н	-1.47942700	-0.11241600	1.74763800

Uncatalyzed Product_F_endo-cis (R1=F)

Н	-1.11039900	0.99838700	-1.49292400
С	-1.23815800	0.79493200	-0.42854500
С	0.11346600	0.56600300	0.28152100
С	1.36608700	0.69677500	-0.57379600
С	2.64940500	1.06252200	0.14494700
Н	-1.73670400	1.64633200	0.04383800
F	0.22125100	1.47825100	1.35519100
0	1.32867200	0.42290000	-1.75836700
Н	3.50095000	0.82842600	-0.49696500
Н	2.65544600	2.13323400	0.38095900
Н	2.73304500	0.53215300	1.09948600
С	-2.00473600	-0.54442700	-0.15734700
С	-1.29404000	-1.62467900	-0.96095700
С	-0.12001800	-1.87062200	-0.36570700
С	-0.02038500	-0.93203400	0.83604400
С	-1.50126800	-0.88471900	1.26774000
H	-3.08506800	-0.47043700	-0.29971500
H	-1.64691300	-2.02529200	-1.90529400
Н	0.67875100	-2.51131600	-0.72236600
H	0.72997100	-1.16922000	1.59361800
Н	-1.86380400	-1.85032500	1.63108200
Н	-1.70741700	-0.10360900	2.00679500

Uncatalyzed TS_F_endo-cis (R1=F)

Н	-1.15844369	1.04896912	-1.56498778
С	-1.15844369	1.04896912	-0.48207478
С	0.09996431	1.04896912	0.11887522
С	1.34588431	0.78018712	-0.58942078
С	2.64514531	1.02669412	0.15866422
Н	-1.92361269	1.66144712	-0.01317978
F	0.21232631	1.55765712	1.38631322
0	1.32048831	0.38781812	-1.75671278
Н	3.48066731	0.71611412	-0.47151778

H2.670485310.481951121.1085833C-2.01678169-0.72882088-0.1214623C-1.30771669-1.61240988-0.9650983C-0.10906669-1.98951288-0.3311593C-0.07419469-1.439257880.93760933C-1.44674969-0.930328881.27404133H-3.06777469-0.49996088-0.27836633H-1.56478169-1.83406188-1.99509233	22 78 78
C -2.01678169 -0.72882088 -0.121462 C -1.30771669 -1.61240988 -0.965098 C -0.10906669 -1.98951288 -0.331159 C -0.07419469 -1.43925788 0.9376092 C -1.44674969 -0.93032888 1.2740412 H -3.06777469 -0.49996088 -0.2783667 H -1.56478169 -1.83406188 -1.9950927	78 78
C -1.30771669 -1.61240988 -0.965098' C -0.10906669 -1.98951288 -0.331159' C -0.07419469 -1.43925788 0.9376092' C -1.44674969 -0.93032888 1.2740412' H -3.06777469 -0.49996088 -0.278366' H -1.56478169 -1.83406188 -1.995092'	78
C -0.10906669 -1.98951288 -0.331159' C -0.07419469 -1.43925788 0.9376092 C -1.44674969 -0.93032888 1.2740412 H -3.06777469 -0.49996088 -0.2783667 H -1.56478169 -1.83406188 -1.9950927	
C-0.07419469-1.439257880.9376093C-1.44674969-0.930328881.2740413H-3.06777469-0.49996088-0.2783667H-1.56478169-1.83406188-1.9950923	78
C -1.44674969 -0.93032888 1.2740412 H -3.06777469 -0.49996088 -0.2783667 H -1.56478169 -1.83406188 -1.9950927	22
H -3.06777469 -0.49996088 -0.278366 H -1.56478169 -1.83406188 -1.995092	22
-156478169 -183406188 -1995092	78
1.001/01/01/00 1.000/00/2	78
Н 0.69691431 -2.53832988 -0.804670	78
Н 0.71832031 -1.56789988 1.6661882	22
н -2.01708569 -1.73410188 1.7694942	22
н -1.46842769 -0.05816188 1.9300622	

Uncatalyzed Reactant_F_exo-cis (R1=F)

С	2.51898200	-0.53579300	0.00500500
С	1.68393900	-0.88681500	-1.14625200
С	1.05436100	0.22174500	-1.59571300
С	-0.85798600	-0.40476300	0.94965200
С	-0.16642400	0.12711300	1.95535700
С	2.39428800	0.78567700	0.25916800
Н	3.12810400	-1.24314500	0.55877500
Н	1.59505900	-1.88790000	-1.55524400
Н	0.38204200	0.29016600	-2.44360300
С	-1.82526400	0.33931000	0.09166400
Н	0.50387900	-0.47088100	2.55948900
Н	-0.28797500	1.17992600	2.17700100
Н	2.89085300	1.34657700	1.04305400
0	-1.87159100	1.55990800	0.12499500
С	1.46493600	1.40009200	-0.75434400
Н	0.60355100	1.90675300	-0.29774100
Н	1.98087100	2.16373500	-1.35846700
С	-2.74550800	-0.49404200	-0.77402100
Н	-3.33485800	-1.17977800	-0.15313700
Н	-3.41132500	0.16679400	-1.33143000
Н	-2.16478300	-1.11512800	-1.46456100
F	-0.74918800	-1.72374200	0.65250400

Uncatalyzed Product_F_exo-cis (R1=F)

С	2.44459300	-0.58065800	0.10236300
С	1.68261600	-0.97580600	-0.92657000
С	0.53236300	0.00607300	-1.02907500
С	-0.37328700	-0.26157000	0.25029000
С	0.48747000	0.28953400	1.40790900
С	1.82539200	0.68292700	0.68762800
H	3.29815900	-1.10338300	0.52212100
Н	1.77246300	-1.88522200	-1.50996100
H	-0.02216500	0.01706000	-1.97045500
С	-1.71839700	0.40217900	-0.02502700
H	0.60739300	-0.47810900	2.17624500
Н	0.01949200	1.17294300	1.85148700
H	2.48603600	1.30507800	1.29521800
0	-1.87778100	1.59534700	0.15546700

С	1.22860400	1.31771000	-0.59125700
Н	0.53361800	2.13831100	-0.39002800
Н	1.98821100	1.63275300	-1.31347700
С	-2.78210700	-0.48182400	-0.64850000
Н	-3.23046100	-1.11982200	0.12245000
Н	-3.55698000	0.14545000	-1.09344000
Н	-2.35338600	-1.15422300	-1.39804300
F	-0.60298400	-1.63085500	0.44786100

Uncatalyzed TS_F_exo-cis (R1=F)

С	2.39555955	-0.57898254	0.07912646
С	1.67063455	-0.90901754	-1.08181254
С	0.85021855	0.15404946	-1.42391654
С	-0.62512445	-0.33152654	0.68408446
С	0.28099355	0.22956046	1.58134646
С	1.95682455	0.67801646	0.54907446
Н	3.06466655	-1.24747554	0.61067646
Н	1.69405155	-1.87320054	-1.57813554
Н	0.19981555	0.20062546	-2.29005154
С	-1.72670045	0.36814046	0.02942446
Н	0.70318855	-0.42714654	2.33429346
Н	0.04681955	1.23521146	1.91475246
Н	2.51189755	1.25081246	1.28746946
0	-1.83563945	1.59410946	0.10287046
С	1.25456055	1.35088346	-0.61830454
Н	0.43273455	2.02328446	-0.36120654
Н	2.00371455	1.93088646	-1.18376754
С	-2.74462245	-0.48815054	-0.70658754
Н	-3.30148045	-1.11001754	0.00531546
Н	-3.44135745	0.16664746	-1.23328654
Н	-2.26061745	-1.17095554	-1.41216654
F	-0.63445345	-1.69275554	0.58775446

Catalyzed Reactant_F_endo-cis (R1=F)

С	-2.20955900	-2.09845900	-0.12736800
С	-1.84945500	-1.47768200	1.14519700
С	-2.85026300	-0.65296500	1.53949900
С	-1.85082600	1.40603500	-0.87999400
С	-2.14038100	0.67157700	-1.96469000
С	-3.43327000	-1.65628900	-0.51128900
Н	-1.57829400	-2.79838400	-0.66425100
Н	-0.91924100	-1.65710900	1.67325900
Н	-2.88729100	-0.07010800	2.45287900
С	-0.60783000	1.30377100	-0.12584600
Н	-1.41148300	-0.02832200	-2.34881800
Н	-3.07774900	0.80436400	-2.49179800
Н	-3.98599300	-1.96382400	-1.39178200
0	0.23296100	0.45564900	-0.52368700
Al	1.94625900	-0.16840400	-0.05752200
Cl	3.21120200	1.46779300	-0.58355500
Cl	2.11496800	-1.92516700	-1.24865000
Cl	1.83781800	-0.55378800	2.05211800
С	-3.97571400	-0.72521500	0.54307900

Н	-4.26212500	0.26056000	0.15221500
Н	-4.88504100	-1.13970600	1.00563600
С	-0.32487300	2.22690100	1.01292100
Н	-1.21037300	2.77924400	1.32364900
Н	0.09808900	1.66109500	1.84872700
Н	0.44952500	2.93573300	0.68652600
F	-2.74091900	2.30444800	-0.39858400

Catalyzed Product_F_endo-cis (R1=F)

С	-1.96550900	-1.91327500	-0.22505300
С	-1.69502400	-1.38823400	1.00558500
С	-2.59712500	-0.29629200	1.21204100
С	-2.01452800	1.11478300	-0.48190500
С	-2.43886700	0.17498700	-1.55543800
С	-3.06554600	-1.13583100	-0.87099400
Н	-1.38251100	-2.67872400	-0.72661000
Н	-0.85596600	-1.64148000	1.64255700
Н	-2.61092600	0.33043800	2.09802000
С	-0.67767900	1.26015400	-0.05045900
Н	-1.60408600	-0.09767600	-2.20246400
Н	-3.21930800	0.64859900	-2.15634100
Н	-3.66257100	-1.68729100	-1.59974600
0	0.14224500	0.35830300	-0.44874500
Al	1.85839500	-0.18991300	-0.04749000
Cl	3.15345700	1.42738800	-0.58047400
Cl	2.08027100	-1.95806800	-1.23001100
Cl	1.81615800	-0.58863900	2.07372200
С	-3.80700700	-0.55377300	0.35403800
Н	-4.41312400	0.33058000	0.14382200
Н	-4.44409600	-1.31627500	0.82427700
С	-0.24683500	2.36158300	0.86715500
Н	-1.07173900	3.03129000	1.11147300
Н	0.17218600	1.92973700	1.78378700
Н	0.56024400	2.92827000	0.38832100
F	-2.84812600	2.17318800	-0.27127900

Catalyzed TS_F_endo-cis (R1=F)

С	-1.92691200	-1.92459600	-0.21884300
С	-1.66565900	-1.45569700	1.10157500
С	-2.66378500	-0.59448800	1.47304900
С	-1.82009900	1.29165000	-0.74636300
С	-2.20841900	0.37828700	-1.71780500
С	-3.06375100	-1.29061800	-0.72869600
Н	-1.28803600	-2.60916600	-0.76635700
Н	-0.78417900	-1.69989900	1.68282100
Н	-2.72714800	-0.05982900	2.41413900
С	-0.55725800	1.28954900	-0.11431000
Н	-1.42611500	-0.15134300	-2.24446400
Н	-3.10945700	0.59776600	-2.28119100
Н	-3.61405000	-1.66520800	-1.58594600
0	0.27060900	0.38266600	-0.49158700
Al	1.97410500	-0.17703300	-0.06251500
Cl	3.27880400	1.43515800	-0.58755600

Cl	2.18424500	-1.95118400	-1.24202500
Cl	1.91659200	-0.58278800	2.05604400
С	-3.74174900	-0.58526300	0.43286300
Н	-4.14919200	0.40635500	0.21916300
Н	-4.58565400	-1.20508100	0.77777900
С	-0.17189300	2.32052000	0.90065400
Н	-1.00779200	2.97176600	1.15653400
Н	0.21229400	1.82620400	1.79934700
Н	0.65066700	2.92340200	0.49535200
F	-2.72625700	2.22321200	-0.34049200

Catalyzed Reactant_F_exo-cis (R1=F)

С	4.19632900	-0.73221100	0.18110600
С	3.43656700	-0.18961100	1.30580900
С	2.27060800	-0.87088000	1.43213000
С	1.75208000	1.28013600	-1.09052900
С	2.00103800	0.51242200	-2.15989200
С	3.49593200	-1.74614000	-0.38243600
Н	5.16752900	-0.36719800	-0.13646000
Н	3.77543500	0.62528900	1.93652300
Н	1.50659800	-0.73229100	2.18836900
С	0.53403300	1.21928900	-0.28569400
Н	2.92588700	0.61985800	-2.71312400
Н	1.26096600	-0.20313100	-2.49496700
Н	3.80367000	-2.35994600	-1.22129700
0	-0.32947800	0.36284600	-0.61196000
Al	-2.01734000	-0.21238500	0.00668500
Cl	-1.66604600	-0.66276600	2.07550300
Cl	-2.37209500	-1.91455100	-1.21798800
Cl	-3.28034800	1.47604900	-0.32543400
С	2.21770800	-1.95094500	0.38687900
Н	1.31805400	-1.90058300	-0.24241100
Н	2.18865600	-2.94733300	0.85525500
С	0.29869300	2.20328000	0.81221400
Н	1.20463300	2.74528900	1.07801600
Н	-0.46306500	2.91579600	0.46450400
Н	-0.12163400	1.69247900	1.68367200
F	2.65702400	2.18815900	-0.67252100

Catalyzed Product_F_exo-cis (R1=F)

С	4.20795000	-0.74866600	0.06004100
С	3.62933800	-0.15851400	1.11739500
С	2.14425700	-0.23586600	0.89170800
С	1.93891600	0.79379900	-0.39927100
С	2.42987800	-0.05778300	-1.58101400
С	3.11298300	-1.27357300	-0.85991900
Н	5.27006400	-0.79039400	-0.16038800
Н	4.10556800	0.40085600	1.91372300
Н	1.48376900	-0.03540400	1.73583500
С	0.51645700	1.16484000	-0.23364500
Н	3.10824200	0.53976200	-2.19369100
Н	1.59865900	-0.40388200	-2.20139500
Н	3.40621900	-2.07050200	-1.54590800

0	-0.34061200	0.34811000	-0.64518700
Al	-2.02685200	-0.22171600	-0.01913500
Cl	-1.59764200	-0.64112400	2.04726300
Cl	-2.38442800	-1.94926900	-1.19809900
Cl	-3.33696400	1.43171700	-0.31465600
С	2.00816600	-1.59331500	0.17168100
Н	1.02805800	-1.78187800	-0.27225500
Н	2.26696000	-2.41599900	0.84141800
С	0.15178200	2.35068900	0.59898700
Н	1.02031000	2.96270100	0.83358100
Н	-0.60803400	2.94257300	0.07726100
Н	-0.31901000	1.98592700	1.52191500
F	2.73012700	1.93195700	-0.29543100

Catalyzed TS_F_exo-cis (R1=F)

С	4.01559200	-0.65701100	0.08446300
С	3.41420000	-0.22754000	1.29887300
С	2.14182400	-0.74244400	1.37838200
С	1.73830300	1.12517100	-0.89616100
С	2.17321300	0.17459000	-1.80751700
С	3.08390500	-1.37788900	-0.66957900
Н	5.01673400	-0.39390600	-0.24030100
Н	3.87983700	0.43178200	2.02238000
Н	1.42828600	-0.59297300	2.18068200
С	0.46234700	1.19660600	-0.28765600
Н	3.04758500	0.40920300	-2.40307700
Н	1.42343300	-0.45520000	-2.27211100
Н	3.35350400	-2.00769800	-1.51140400
0	-0.42576200	0.34183900	-0.65192700
Al	-2.07709100	-0.20106300	-0.02842700
Cl	-1.70008200	-0.65346300	2.05137700
Cl	-2.46978400	-1.94150300	-1.20302600
Cl	-3.42437900	1.43392800	-0.31962400
С	1.91990300	-1.69401600	0.24816900
Н	0.92329700	-1.65274000	-0.19645800
Н	2.04488400	-2.72346800	0.62433600
С	0.12307600	2.29437000	0.67516900
Н	0.99163000	2.90387300	0.92248600
Н	-0.65448000	2.92587900	0.22780200
Н	-0.30651600	1.86322000	1.58562500
F	2.65867600	2.03974900	-0.49869000

Uncatalyzed Reactant_F_endo-cis (R2=F)

С	0.23311400	1.70137200	0.29536100
С	-0.75777100	1.24603100	-0.47534400
С	-1.83218600	0.43145900	0.13585500
С	-2.96965000	0.00188300	-0.77394600
0	-1.81877000	0.12292900	1.32109900
Н	-3.71402000	0.80767500	-0.82008500
Н	-2.63090800	-0.19368400	-1.79596400
Н	-3.45232900	-0.88460100	-0.35989100
С	1.98504300	-0.75440900	0.63198600
С	0.96631800	-1.48924200	1.12923300

С	0.21802700	-2.08821200	0.02115000
С	0.77538400	-1.71243000	-1.15052400
С	1.97609300	-0.84764200	-0.87081300
Н	2.72275800	-0.19762300	1.19732400
Н	0.71445100	-1.61842500	2.17518700
Н	-0.65170100	-2.72311900	0.14611700
Н	0.45526300	-2.00059400	-2.14482400
Н	2.89920700	-1.31351000	-1.24781600
Н	1.91997300	0.13773100	-1.35086500
Н	-0.75293700	1.43328500	-1.54390300
Н	0.28459300	1.56762200	1.36796300
F	1.27550800	2.37530200	-0.21319800

Uncatalyzed Product_F_endo-cis (R2=F)

С	0.63427400	1.06785800	0.36216500
С	-0.37989700	0.46489600	-0.64196000
С	-1.70131000	0.19710400	0.05289500
С	-2.96633000	0.02279500	-0.76694100
0	-1.72543900	0.02028300	1.26027000
Н	-3.76304100	0.63515600	-0.33478600
Н	-2.84040300	0.27689400	-1.82178900
Н	-3.28907300	-1.02117600	-0.68827300
С	1.61297700	-0.11011200	0.60850800
С	0.86031000	-1.31926700	1.15028800
С	0.16630000	-1.87029000	0.14629700
С	0.33294000	-0.94571300	-1.04760000
С	1.81402100	-0.54832800	-0.86533600
Н	2.49601700	0.19657100	1.17220900
Н	0.85173200	-1.61872000	2.19138100
Н	-0.53102900	-2.69801300	0.20964400
Н	0.02093200	-1.32130400	-2.02347100
Н	2.48955200	-1.40112900	-0.96532000
Н	2.13833400	0.26999900	-1.51301900
Н	-0.49001200	1.10215000	-1.52513800
Н	0.15612000	1.45376000	1.26317000
F	1.36295100	2.12339300	-0.21394200

Uncatalyzed TS_F_endo-cis (R2=F)

		0 0 5 0 5 0 0 0
0.50221800	1.36165600	0.35007000
-0.57826600	1.04276800	-0.48714000
-1.68265700	0.35409800	0.11164500
-2.91721700	0.04141700	-0.71980700
-1.62526000	-0.00226300	1.30487200
-3.74855600	0.66773200	-0.37730200
-2.76814200	0.21833600	-1.78828800
-3.21271400	-0.99896800	-0.55859100
1.60429300	-0.21018300	0.60766000
0.79979900	-1.23980100	1.14975100
0.20633800	-1.97281700	0.09535700
0.66549400	-1.48875700	-1.10607000
1.82836900	-0.57687800	-0.85540200
2.39987600	0.24730800	1.19023100
0.60429400	-1.39794000	2.20202300
	0.50221800 - 0.57826600 - 1.68265700 - 2.91721700 - 1.62526000 - 3.74855600 - 2.76814200 - 3.21271400 1.60429300 0.79979900 0.20633800 0.66549400 1.82836900 2.39987600 0.60429400	$\begin{array}{ccccccc} 0.50221800 & 1.36165600 \\ -0.57826600 & 1.04276800 \\ -1.68265700 & 0.35409800 \\ -2.91721700 & 0.04141700 \\ -1.62526000 & -0.00226300 \\ -3.74855600 & 0.66773200 \\ -2.76814200 & 0.21833600 \\ -3.21271400 & -0.99896800 \\ 1.60429300 & -0.21018300 \\ 0.79979900 & -1.23980100 \\ 0.20633800 & -1.97281700 \\ 0.66549400 & -1.48875700 \\ 1.82836900 & 0.57687800 \\ 2.39987600 & 0.24730800 \\ 0.60429400 & -1.39794000 \\ \end{array}$

Н	-0.55889600	-2.72847100	0.22547600
Н	0.35708300	-1.82663600	-2.08845600
Н	2.76172600	-1.15807400	-0.92821200
Н	1.92294800	0.27307900	-1.53237400
Н	-0.56288300	1.32250300	-1.53353800
Н	0.30693200	1.56184200	1.39950300
F	1.43668700	2.21870800	-0.16953700

Uncatalyzed Reactant_F_exo-cis (R2=F)

С	-2.41954800	-0.34273000	-0.29640200
С	-1.63554200	-1.31670600	-1.05628000
С	-0.73713100	-1.90513000	-0.23388500
С	0.92251700	0.85045600	-0.61168800
С	0.08264300	1.60246600	0.10580200
С	-1.99835400	-0.33758200	0.98843200
Н	-3.19827300	0.28255800	-0.71825000
Н	-1.76747300	-1.52014700	-2.11365400
Н	-0.02420100	-2.67759600	-0.49715300
С	2.03188200	0.12816900	0.04556500
Н	0.15020700	1.74465100	1.17735300
Н	-2.38900700	0.27141300	1.79507300
0	2.12079100	0.02080500	1.26447600
С	-0.90556000	-1.35677900	1.15594400
Н	0.02207600	-0.93501100	1.56407000
Н	-1.20781300	-2.15063100	1.85662200
С	3.07320400	-0.47308100	-0.87865700
Н	3.56491300	0.31727400	-1.45808500
Н	3.81753600	-1.01455100	-0.29415900
Н	2.59954600	-1.15010200	-1.59864100
Н	0.80285900	0.78623900	-1.68764600
F	-0.91005800	2.29250700	-0.46600600

Uncatalyzed Product_F_exo-cis (R2=F)

С	-2.35330300	-0.26965000	-0.38480000
С	-1.60016800	-1.13717200	-1.07381100
С	-0.28435300	-1.28816200	-0.32811400
С	0.49034100	0.10013600	-0.49603300
С	-0.41028500	1.06615100	0.32893200
С	-1.55945900	0.15570600	0.84297500
Н	-3.30844700	0.14919000	-0.67769300
Н	-1.81344800	-1.57122600	-2.04443200
Н	0.31828800	-2.16476500	-0.57514400
С	1.89832300	-0.05123300	0.07036700
Н	0.15248400	1.50567400	1.15680500
Н	-2.13076000	0.59548400	1.66225300
0	2.12180200	0.06276600	1.26438300
С	-0.76665100	-1.13891300	1.13486800
Н	0.04744400	-1.00434500	1.85077900
Н	-1.41374700	-1.96098900	1.44866400
С	3.01160000	-0.40752400	-0.89744700
Н	3.37090400	0.51008200	-1.38028800
Н	3.84141300	-0.85992000	-0.35229000
Н	2.66602600	-1.07560800	-1.69229400

Н	0.52571600	0.40517200	-1.54521100
F	-0.91221600	2.11396100	-0.44339600

Uncatalyzed TS_F_exo-cis (R2=F)

С	-2.35247400	-0.21528900	-0.34097800
С	-1.65350500	-1.20714500	-1.05105100
С	-0.59220800	-1.65237100	-0.27449100
С	0.68180100	0.57281400	-0.52240900
С	-0.23942400	1.30704500	0.23287000
С	-1.67736200	0.04165000	0.86986200
Н	-3.17776100	0.36841600	-0.73068200
Н	-1.85803100	-1.50973400	-2.07184100
Н	0.10681800	-2.43349500	-0.54978900
С	1.91635300	0.08437400	0.08076800
Н	0.05197500	1.64655600	1.22340700
Н	-2.13349700	0.60436000	1.67903900
0	2.09607700	0.05907700	1.30202400
С	-0.77886900	-1.14955400	1.12518700
Н	0.14251900	-0.94080600	1.67317000
Н	-1.34949400	-1.90217200	1.69382000
С	3.00970600	-0.38116600	-0.87069600
Н	3.47003800	0.48628400	-1.35885600
Н	3.77742300	-0.91507600	-0.30879600
Н	2.60882400	-1.02265400	-1.66222700
Н	0.58832600	0.58282000	-1.60192400
F	-0.98665100	2.24008200	-0.43287600