Supplementary information for "Adsorption of alcohols and hydrocarbons on nonstoichiometric cementite {010} surfaces."

David Muñoz Ramo*

Department of Engineering, University of Cambridge, J. J. Thomson Road, Cambridge CB3 0FA, UK.

Stephen J. Jenkins^{\dagger}

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

We show in Figures 1-9 other local minima found in our simulations for several molecules adsorbed over nonstoichiometric cementite {010}. These configurations are higher in energy than the configurations shown in the main paper. Tables I and II show the adsorption energies corresponding to the local minima pictured in this document.

^{*}Electronic address: dm586@cam.ac.uk

[†]Electronic address: sjj24@cam.ac.uk

FIG. 1: Detail of the local minima found for the adsorption of noncyclic hydrocarbons on nonstoichiometric cementite $\{010\}$. For each configuration, the top picture shows the view from the top, and the bottom picture shows a side view.

FIG. 2: Detail of the local minima found for the adsorption of benzene on nonstoichiometric cementite $\{010\}$. For each configuration, the top picture shows the view from the top, and the bottom picture shows a side view.

FIG. 3: Detail of the local minima found for the adsorption of cyclohexane on nonstoichiometric cementite $\{010\}$. For each configuration, the top picture shows the view from the top, and the bottom picture shows a side view.

FIG. 4: Detail of the local minima found for the adsorption of toluene on nonstoichiometric cementite $\{010\}$ at low coverage. For each configuration, the top picture shows the view from the top, and the bottom picture shows a side view.

FIG. 5: Detail of the local minima found for the adsorption of toluene on nonstoichiometric cementite $\{010\}$ at high coverage. For each configuration, the top picture shows the view from the top, and the bottom picture shows a side view.

FIG. 6: Detail of the local minima found for the adsorption of naphthalene on nonstoichiometric cementite $\{010\}$. For each configuration, the top picture shows the view from the top, and the bottom picture shows a side view.

FIG. 7: Detail of the local minima found for the adsorption of 1-methylnaphthalene on nonstoichiometric cementite $\{010\}$ at low coverage. For each configuration, the top picture shows the view from the top, and the bottom picture shows a side view.

FIG. 8: Detail of the local minima found for the adsorption of 1-methylnaphthalene on nonstoichiometric cementite $\{010\}$ at high coverage. For each configuration, the top picture shows the view from the top, and the bottom picture shows a side view.

FIG. 9: Detail of the local minima found for the adsorption of decalin on nonstoichiometric cementite $\{010\}$. For each configuration, the top picture shows the view from the top, and the bottom picture shows a side view.

Configuration Adsorption energy		
Methanol		
S-1	-0.97	
<i>n</i> -heptane		
S-2	-1.51	
S-3	-0.61	
Isooctane		
S-4	-0.64	
Cyclohexane		
Cy-S1	-1.08	
Cy-S2	-1.35	
Cy-S3	-0.42	
Cy-S4	-1.52	
Decalin		
Dec-S1	-2.03	
Dec-S2	-2.09	
Dec-S3	-0.89	
Dec-S4	-2.75	
Dec-S5	-2.78	

TABLE I: Adsorption energies for the local minima found for the nonaromatic organic molecules considered in this study. All energies are given in eV.

Configuration Adsorption energy		
Benzene		
Ben-S1	-1.74	
Ben-S2	-0.53	
Ben-S3	-2.36	
Toluene		
Tol-S1	-1.83	
Tol-S2	-0.66	
Tol-S3	-0.62	
Tol-S4	-1.59	
Tol-S5	-1.63	
Tol-S6	-2.70	
Tol-S7	-2.74	
Tol-S8	-2.71	
naphthalene		
Nap-S1	-2.44	
Nap-S2	-0.65	
Nap-S3	-4.10	
1-methylnaphthalene		
Naph-S1	-2.43	
Naph-S2	-0.76	
Naph-S3	-2.61	
Naph-S4	-4.36	
Naph-S5	-4.40	
Naph-S6	-4.40	

TABLE II: Adsorption energies for the local minima found for the aromatic organic molecules considered in this study. All energies are given in eV.