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Figure S1: Variation in the potential energy with the change in the temperature at 

different time steps of (a) Lu@Pb12
+, (b) Lu@Pb12, (c) Lu@Pb12

− and (d) Lu@Pb12
2− 

clusters in simulated annealing molecular dynamics. 
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Figure S2. The variation of density of states (DOS) as a function of molecular orbital 

energies of bare Sn12
2– cluster, Lr3+ and Lu3+ metal ion encapsulated Sn12

2– clusters as 

obtained by PBE/DEF level of theory. (Vertical green arrow is pointing toward 

HOMO.) 
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Figure S3. Molecular orbital energy level diagrams of bare Sn12
2– cluster, Lr3+ and Lu3+ 

metal ion encapsulated Sn12
2– clusters as obtained by B3LYP/DEF level of theory. (The 

HOMO energy of Sn12
2– is scaled with the HOMO energy of Lr@Sn12

+ cluster.) 
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(b) 

Figure S4. Molecular orbital energy level diagrams of (a) bare Pb12
2– cluster, Lr3+ and 

Lu3+ metal ion encapsulated Pb12
2– clusters (b) bare Sn12

2– cluster, Lr3+ and Lu3+ metal 

ion encapsulated Sn12
2– clusters as obtained by PBE/DEF level of theory. (The HOMO 

energy of Pb12
2– and Sn12

2– is scaled with the HOMO energy of Lr@Pb12
+ and Lr@Sn12

+ 

cluster, respectively.) 
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                            (a)                                                 (b)                

Figure S5. The 2−D color−filled maps of electron localization function (ELF) of the 

endohedral clusters for (a) Lr@Sn12
+ and (b) Lu@Sn12

+
,
 respectively, using Multiwfn 

software as obtained by PBE method using small core ECP along with electron density 

function (EDF). 
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Figure S6. Vibrational frequency plots of (a) bare Pb12
2– cluster, Lr3+ and Lu3+ metal ion 

encapsulated Pb12
2– clusters, (b) bare Sn12

2– cluster, Lr3+ and Lu3+ metal ion 

encapsulated Sn12
2– clusters as obtained by PBE/DEF level of theory. 
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Figure S7. Scalar relativistic (left panel) and spin orbit splitting (right panel) of the 

valence molecular orbital energy levels for (a) Bare Sn12
2−, (b) Lr@Sn12

+ and (c) 

Lu@Sn12
+, clusters as obtained by B3LYP/TZ2P level of theory. (The HOMO energy of 

Sn12
2– is scaled with the HOMO energy of Lr@Sn12

+ cluster.) 
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Figure S8. Scalar relativistic (left panel) and spin orbit splitting (right panel) of the 

valence molecular orbital energy levels for (a) Bare Pb12
2−, (b) Lr@Pb12

+ and (c) 

Lu@Pb12
+, clusters as obtained by PBE/TZ2P level of theory. (The HOMO energy of 

Pb12
2– is scaled with the HOMO energy of Lr@Pb12

+ cluster.) 



Page S11 of S15 
 

-9.4

-9.2

-9.0

-8.8

-8.6

-8.4

-8.2

-8.0

-7.8

 

i5/2u
e1/2g

e7/2u

i5/2g
g3/2u

g3/2g
e1/2u

ag

gu

hg
tu

Sn2-
12

Ih

Sn2-
12

I*
h

E
n

er
gy

 (
eV

)

 
(a) 

-10.0

-9.5

-9.0

-8.5

-8.0

E
n

er
gy

 (
eV

)

g3/2u
e1/2u
g3/2g
i5/2g

e7/2u
i5/2u

e1/2g

tu

hg

gu

ag

Lr@Sn+
12

Ih

Lr@Sn+
12

I*
h  

(b) 

-10.0

-9.6

-9.2

-8.8

-8.4

-8.0

 

e1/2u
g3/2u
g3/2g
i5/2g

e7/2u
i5/2u

e1/2g

Lu@Sn+
12 Lu@Sn+

12

I*
h

Ih

E
n

er
gy

 (
eV

)

ag

gu

hg

tu

 
(c) 

 
Figure S9. Scalar relativistic (left panel) and spin orbit splitting (right panel) of the 

valence molecular orbital energy levels for (a) Bare Sn12
2−, (b) Lr@Sn12

+ and (c) 

Lu@Sn12
+, clusters as obtained by PBE/TZ2P level of theory. (The HOMO energy of 

Sn12
2– is scaled with the HOMO energy of Lr@Sn12

+ cluster.) 
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Table S1. Calculated Values of MPb/MSn and PbPb/SnSn Bond Critical Point 

Electron Density (ρ in e a0
3), Laplacian of Electron Density (2 in e a0

5), Local 

Electron Energy Density (Ed in au), and Ratio of Local Electron Kinetic Energy Density 

and Electron Density (G(r)/ρ in au) and ELF Value of La@Pb12
+ Cluster as obtained by 

using PBE Method with Largea and Smallb Core ECP, and All Electron Basis setc. EDF 

has been employed for calculations with ECP basis sets. 

 

Cluster Bond  2 G(r)b V(r)c Ed(r)/H(r) G(r)/ Typed ELF 

aLa@Pb12
+ La−Pb 0.015 0.032 0.009 −0.009 −0.001 0.600 C, D 0.084 

Pb–Pb 0.016 0.009 0.004 −0.004 −0.001 0.250 C, D 0.420 

bLa@Pb12
+ La−Pb 0.022 0.051 0.014 –0.016 –0.001 0.647 C, D 0.108 

Pb–Pb 0.022 0.018 0.006 –0.008 –0.002 0.286 C, D 0.387 

cLa@Pb12
+ 

La−Pb 0.024 0.047 0.014 –0.016 –0.002 0.585 C, D 0.141 

Pb–Pb 0.025 0.010 0.006 –0.010 –0.004 0.244 C, D 0.499 
adef–TZVP and def2–TZVP basis sets with large core for Pb(78) and La(46), respectively.  
bdef2–TZVP and Stuttgart basis sets with small core for Pb(60) and La(28), respectively. 
cAll electron UGBS basis set for La and Pb. 
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Table S2. Calculated Values of Average M−Pb/M−Sn Distances (R(M−Pb/M−Sn), in Å), 

Pb−Pb/Sn−Sn Distances (R(Pb–Pb/Sn–Sn), in Å), Binding Energy (BE, in eV), and 

HOMO−LUMO Energy Gap (EGap, in eV) of Pb12
2−, Sn12

2− and Most Stable Isomer of 

M@Pb12
2– and M@Sn12

2– (M = Lr3+, Lu3+, La3+ and Ac3+) Clusters obtained by using 

PBEb,c Method along with Small Core ECP. 

 

Cluster Geometry R(M–Pb/M–Sn) R(Pb–Pb/Sn–Sn) BE EGap 
aPb12

2− Ih 3.086 3.244 ... 2.150 
aSn12

2− Ih 2.968 3.121 ... 1.930 
bLr@Pb12

+ Str1(Ih) 3.258 3.426 –37.724 1.683 
bLu@Pb12

+ Str1(Ih) 3.239 3.405 –38.419 1.746 
bLr@Sn12

+ Str1(Ih) 3.159 3.321 –36.402 1.591 
bLu@Sn12

+ Str1(Ih) 3.139 3.300 –37.201 1.670 
 cLa@Pb12

+ Str1(Ih) 3.337 3.509 –32.259 1.148 
bAc@Pb12

+ Str1(Ih) 3.392 3.567 –29.363 1.108 
aIn the case of Pb12

2−and Sn12
2−, R(M−Pb/M−Sn) refers to the distance from the centre to the cage 

atoms.  
bdef–TZVP basis set with small core for Lr (ECP 60), Ac (ECP 60), Lu (ECP 28) and def2–
TZVP basis set with small core for Pb (ECP 60), Sn (ECP 28). 
cStuttgart basis set with small core for La (ECP 28) and def2–TZVP basis set with small core 
for Pb (ECP 60). 
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Table S3. Calculated Values of MPb/MSn and PbPb/SnSn Bond Critical Point 

Electron Density (ρ in e a0
3), Laplacian of Electron Density (2 in e a0

5), Local 

Electron Energy Density (Ed in au), and Ratio of Local Electron Kinetic Energy Density 

and Electron Density (G(r)/ρ in au) and ELF Value of M@Pb12
2− and M@Sn12

2− (M = 

Lr3+, Lu3+, La3+ and Ac3+) Clusters as obtained by using PBEa Method along with Small 

Core ECP Employed with EDF. 

 
Cluster Bond  2 G(r)b V(r)c Ed(r)/H(r) G(r)/ Typed ELF 

Lr@Pb12
+ Lr−Pb 0.023 0.039 0.013 –0.016 –0.003 0.541 C, D 0.158 

Pb–Pb 0.023 0.021 0.007 –0.009 –0.002 0.318 C, D 0.343 

Lu@Pb12
+ Lu–Pb 0.022 0.037 0.012 –0.015 –0.003 0.541 C, D 0.147 

Pb–Pb 0.023 0.022 0.008 –0.010 –0.002 0.325 C, D 0.341 

Lr@Sn12
+ Lr–Sn 0.026 0.041 0.014 –0.018 –0.004 0.542 C, D 0.178 

Sn–Sn 0.025 0.015 0.007 –0.010 –0.003 0.271 C, D 0.456 

Lu@Sn12
+ Lu–Sn 0.024 0.041 0.014 –0.017 –0.003 0.557 C, D 0.158 

Sn–Sn 0.026 0.016 0.007 –0.010 –0.003 0.275 C, D 0.453 

La@Pb12
+ La−Pb 0.022 0.051 0.014 –0.016 –0.001 0.647 C, D 0.108 

Pb–Pb 0.022 0.018 0.006 –0.008 –0.002 0.286 C, D 0.387 

Ac@Pb12
+ Ac−Pb 0.021 0.045 0.013 –0.014 –0.001 0.611 C, D 0.111 

Pb–Pb 0.020 0.015 0.005 –0.008 –0.002 0.259 C, D 0.399 
adef–TZVP basis set with small core for Lr (ECP 60), Ac (ECP 60), Lu (ECP 28), def2–
TZVP basis set with small core for Pb (ECP 60), Sn (ECP 28) and Stuttgart basis set with 
small core for La (ECP 28). 
bG(r) represents the local electron kinetic energy density. 
cV(r) signifies the local electron potential energy density. 
d“Type” is an indication of type of very weak covalent interaction exists in between the 
corresponding pair of bonding atoms. 
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Table S4. Calculated Harmonic Vibrational Frequencies (in cm–1) and Intensities (in km 

mol−1 as given in Parenthesis) of Pb12
2−, Sn12

2−, M@Pb12
2− and M@Sn12

2− (M = Lr3+ and 

Lu3+) Clusters as Obtained by using PBE/DEF Method. 

 

Pb12
2− Sn12

2− Lr@Pb12
+ Lu@Pb12

+ Lr@Sn12
+ Lu@Sn12

+

51.51 (0.0) 

(hu) 

66.97 (0.0) 

(hu) 

40.34 (0.0) 

(hu) 

41.52 (0.0) 

(hu) 

35.85 (5.82) 

(t1u) 

47.13 (6.09) 

(t1u) 

53.26 (0.0) 

(hg) 

72.70 (0.0) 

(hg) 

41.30 (4.04) 

(t1u) 

48.68 (4.36) 

(t1u) 

50.40 (0.0) 

(hu) 

51.93 (0.0) 

(hu) 

70.97 (0.0) 

(gg) 

93.72 (0.0) 

(gg) 

58.70 (0.0) 

(gg) 

60.25 (0.0) 

(gg) 

73.95 (0.0) 

(gu) 

76.52 (0.0) 

(gg) 

75.44 (0.0) 

(t2u) 

102.62 (0.0) 

(t2u) 

62.39 (0.0) 

(hg) 

64.09 (0.0) 

(hg) 

74.36 (0.0) 

(gg) 

78.06 (0.0) 

(gu) 

83.35 (0.0) 

(gu) 

111.11 (0.0) 

(gu) 

63.74 (0.0) 

(gu) 

66.35 (0.0) 

(gu) 

80.32 (0.0) 

(hg) 

83.08 (0.0) 

(hg) 

89.59 (0.0) 

(hg) 

118.54 (0.0) 

(hg) 

84.08 (0.0) 

(t2u) 

83.30 (0.0) 

(t2u) 

115.15 (0.0) 

(hg) 

113.96 (0.0) 

(t2u) 

89.30 (0.0) 

(ag) 

122.59 (0.0) 

(ag) 

85.56 (0.0) 

(hg) 

86.40 (0.0) 

(ag) 

115.45 (0.0) 

(t2u) 

115.87 (0.0) 

(hg) 

92.84 (0.05) 

(t1u) 

124.88 (0.10) 

(t1u) 

90.17 (0.0) 

(ag) 

90.90 (0.0) 

(ag) 

120.67 (0.0) 

(ag) 

121.79 (0.0) 

(ag) 

... ... 118.48(1.16) 

(t1u) 

132.21 (0.98) 

(t1u) 

144.96 (5.22) 

(t1u) 

157.72 (4.95) 

(t1u) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


