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Figure S1: Variation in the potential energy with the change in the temperature at
different time steps of (a) Lu@Pb12+, (b) Lu@Pbyy, (¢) Lu@Pb;, and (d) Lu@Pbuz_

clusters in simulated annealing molecular dynamics.
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Figure S2. The variation of density of states (DOS) as a function of molecular orbital
energies of bare Snnz_ cluster, Lr*" and Lu®' metal ion encapsulated Snuz_ clusters as
obtained by PBE/DEF level of theory. (Vertical green arrow is pointing toward
HOMO.)
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Figure S3. Molecular orbital energy level diagrams of bare Sny;> cluster, Lr'* and Lu™*
metal ion encapsulated Sny,> clusters as obtained by B3LYP/DEF level of theory. (The
HOMO energy of Sny,” is scaled with the HOMO energy of Lr@Sn;," cluster.)
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Figure S4. Molecular orbital energy level diagrams of (a) bare Pb;,” cluster, Lr’* and
Lu** metal ion encapsulated anz_ clusters (b) bare Snlzz_ cluster, Lr*" and Lu*" metal
ion encapsulated Sny;”> clusters as obtained by PBE/DEF level of theory. (The HOMO
energy of Pbuz_ and Snuz_ is scaled with the HOMO energy of Lr@PblzJr and Lr@SnuJr

cluster, respectively.)
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(2) (b)

Figure SS. The 2—D color—filled maps of electron localization function (ELF) of the

endohedral clusters for (a) Lr@Sn;;  and (b) Lu@Sn;,", respectively, using Multiwfn
software as obtained by PBE method using small core ECP along with electron density

function (EDF).
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Figure S6. Vibrational frequency plots of (a) bare Pby,” cluster, Lr’" and Lu®" metal ion

encapsulated Pbuz_ clusters, (b) bare Snuz_

encapsulated Sny,> clusters as obtained by PBE/DEF level of theory.

cluster, Lr** and Lu®" metal ion
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Figure S7. Scalar relativistic (left panel) and spin orbit splitting (right panel) of the
valence molecular orbital energy levels for (a) Bare Sny,”, (b) Lr@Sn;;" and (c)
Lu@Sn;,", clusters as obtained by B3LYP/TZ2P level of theory. (The HOMO energy of
Snuz_ is scaled with the HOMO energy of Lr@Sn12+ cluster.)
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Figure S8. Scalar relativistic (left panel) and spin orbit splitting (right panel) of the
valence molecular orbital energy levels for (a) Bare Pbiy”", (b) Lr@Pb;;" and (c)
Lu@Pb;,", clusters as obtained by PBE/TZ2P level of theory. (The HOMO energy of
Pbuz_ is scaled with the HOMO energy of Lr@Pb12+ cluster.)

Page S10 of S15



-7.8-

] g3ng
-8.0. hg e12u
52t e
> 8.4/
2 ]
>, -8.601
86 ]
S -8.81
= |
= '9-0'_ €72u
-9.24 8u __—  ism
]3¢ eing
9477 snj Sn’;
I, h
(a)
-8.0{ tu g32u
1h €12u
g 23ng
§-8.5- isng
K !
86-9.0 8u Eru
S 152u
=
= 9.5
-10.04{2g - eing
Lr@Sn;, Lr@Sn;,
I, I,
(b)
-8.07 tu €12u
1 Z32u
Bathg 8wy
; Isng
& -8.81
> J €72u
B .
5 9.2 su Is2u
=
s ]
-9.6-
{ag
-10.0- - Cug
Lu@snlz Lu@Snfz

I, I
(c)

Figure S9. Scalar relativistic (left panel) and spin orbit splitting (right panel) of the
valence molecular orbital energy levels for (a) Bare Snuz_, (b) Lr@SnuJr and (c)
Lu@Sn;;', clusters as obtained by PBE/TZ2P level of theory. (The HOMO energy of
Sny,”” is scaled with the HOMO energy of Lr@Sn;;" cluster.)
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Table S1. Calculated Values of M—Pb/M—Sn and Pb—Pb/Sn—Sn Bond Critical Point
Electron Density (p in e a,), Laplacian of Electron Density (Vzp in e ay™), Local
Electron Energy Density (Eq4 in au), and Ratio of Local Electron Kinetic Energy Density
and Electron Density (G(r)/p in au) and ELF Value of La@Pb;," Cluster as obtained by
using PBE Method with Large® and Small” Core ECP, and All Electron Basis set’. EDF

has been employed for calculations with ECP basis sets.

Cluster | Bond p Vi | G(r)® | V(r)* | Eqr)/H(®) | G@)p | Type' | ELF
La@Pby,’ La—Pb | 0.015 | 0.032 | 0.009 | —0.009 | —0.001 0.600 | C,D | 0.084
Pb-Pb | 0.016 | 0.009 | 0.004 | —0.004 | —0.001 0250 | C,D | 0.420
"La@Pbyy’ La—Pb | 0.022 | 0.051 | 0.014 | —0.016 | —0.001 0647 | C,D | 0.108
Pb-Pb | 0.022 | 0.018 | 0.006 | —0.008 | —0.002 0286 | C,D | 0.387
La@Pby," La—Pb | 0.024 | 0.047 | 0.014 | —0.016 | —0.002 0.585 | C,D | 0.141
Pb—Pb | 0.025 | 0.010 | 0.006 | —0.010 | —0.004 0244 | C,D | 0.499

*def-TZVP and def2-TZVP basis sets with large core for Pb(78) and La(46), respectively.
°def2-TZVP and Stuttgart basis sets with small core for Pb(60) and La(28), respectively.
All electron UGBS basis set for La and Pb.
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Table S2. Calculated Values of Average M—Pb/M—Sn Distances (Rm-pb/m-sn), in A),
Pb—Pb/Sn—Sn Distances (Rpb-pb/sn-sn), In A), Binding Energy (BE, in eV), and
HOMO-LUMO Energy Gap (AEg,, in eV) of Pblzz_, Snlzz_ and Most Stable Isomer of
M@Pb;>” and M@Sn;,>” (M = Lr'*, Lu®™", La* and Ac*) Clusters obtained by using
PBE"‘ Method along with Small Core ECP.

Cluster Geometry | Rnvipov-sn) | Rpb-_pb/sn-sn) BE AEGap
Phyy*” Iy 3.086 3.244 2.150
Sy Iy 2.968 3.121 1.930
"Lr@Pby," | Stri(ly) 3.258 3.426 —37.724 1.683
PLu@Pbyy" | Stri(Iy) 3.239 3.405 —38.419 1.746
PLr@Sny;," | Stri(ly) 3.159 3.321 —36.402 1.591
"Lu@Sny;," | Stri(ly) 3.139 3.300 —37.201 1.670
‘La@Pby," | Stri(Iy) 3.337 3.509 —32.259 1.148
PAc@Pby," | Stri(Iy) 3.392 3.567 —29.363 1.108

In the case of Pblzzfand Snlzzf, Rm-po/m-sn) refers to the distance from the centre to the cage
atoms.

®def-TZVP basis set with small core for Lr (ECP 60), Ac (ECP 60), Lu (ECP 28) and def2—
TZVP basis set with small core for Pb (ECP 60), Sn (ECP 28).

“Stuttgart basis set with small core for La (ECP 28) and def2-TZVP basis set with small core
for Pb (ECP 60).
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Table S3. Calculated Values of M—Pb/M—Sn and Pb—Pb/Sn—Sn Bond Critical Point
Electron Density (p in e a,), Laplacian of Electron Density (Vzp in e ay™), Local
Electron Energy Density (Eq4 in au), and Ratio of Local Electron Kinetic Energy Density
and Electron Density (G(r)/p in au) and ELF Value of M@Pbuz_ and M@Snuz_ M=
Lr**, Lu*, La® and Ac®) Clusters as obtained by using PBE* Method along with Small
Core ECP Employed with EDF.

Cluster | Bond p Vi G(r)" | V() | Eqr)/H(r) | G(r)lp | Type' | ELF
Lr@Pbyy’ Lr—Pb 0.023 0.039 0.013 |-0.016 —0.003 0.541 C,D | 0.158
Pb—Pb | 0.023 0.021 0.007 | -0.009 —0.002 0.318 C,D | 0.343

Lu@Phy," Lu-Pb | 0.022 0.037 0.012 | -0.015 —-0.003 0.541 C,D | 0.147
Pb—Pb | 0.023 0.022 0.008 |-0.010 —0.002 0.325 C,D | 0.341

Lr@Sny," Lr—Sn | 0.026 0.041 0.014 | -0.018 —0.004 0.542 C,D | 0.178
Sn—Sn | 0.025 0.015 0.007 | -0.010 —0.003 0.271 C,D | 0.456

Lu@Sny;" Lu-Sn | 0.024 0.041 0.014 | -0.017 —0.003 0.557 C,D | 0.158
Sn—Sn | 0.026 0.016 0.007 | -0.010 —0.003 0.275 C,D | 0453

La@Pby," La—Pb | 0.022 0.051 0.014 | -0.016 —0.001 0.647 C,D | 0.108
Pb—Pb | 0.022 0.018 0.006 | —0.008 —0.002 0.286 C,D | 0.387

Ac@Pby," Ac—Pb | 0.021 0.045 0.013 |-0.014 —0.001 0.611 C,D | 0.111
Pb—Pb | 0.020 0.015 0.005 | —0.008 —0.002 0.259 C,D | 0.399

*def-TZVP basis set with small core for Lr (ECP 60), Ac (ECP 60), Lu (ECP 28), def2—
TZVP basis set with small core for Pb (ECP 60), Sn (ECP 28) and Stuttgart basis set with
small core for La (ECP 28).

bG(r) represents the local electron kinetic energy density.

V(1) signifies the local electron potential energy density.

%“Type” is an indication of type of very weak covalent interaction exists in between the
corresponding pair of bonding atoms.
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Table S4. Calculated Harmonic Vibrational Frequencies (in cm_l) and Intensities (in km
mol ! as given in Parenthesis) of Pbuz—, Snlzz_, M@Pblzz_ and M@Snlzz_ M= Lr*" and
Lu*") Clusters as Obtained by using PBE/DEF Method.

Pb]zz_ Sn122_ Lr@Pb12+ Lll@Pb1z+ LF@SIh 2+ LU@SI]12+
51.51(0.0) | 66.97(0.0) | 40.34(0.0) | 41.52(0.0) | 35.85(5.82) | 47.13(6.09)
(hu) (hu) (hu) (hU) (tIU) (tlu)
53.26 (0.0) | 72.70 (0.0) | 41.30 (4.04) | 48.68 (4.36) | 50.40(0.0) | 51.93(0.0)
(hg) (hg) (t 1 u) (t 1 u) (hu) (hu)
70.97 (0.0) | 93.72(0.0) | 58.70(0.0) | 60.25(0.0) | 73.95(0.0) | 76.52(0.0)
(g) (g (g (g (gu) (g
75.44 (0.0) | 102.62 (0.0) | 62.39(0.0) | 64.09(0.0) | 74.36(0.0) | 78.06(0.0)
(tu) (tow) (hy) (hy) () (8u)
83.35(0.0) | 111.11(0.0) | 63.74(0.0) | 66.35(0.0) | 80.32(0.0) | 83.08(0.0)
(8w (v (v (8u) (hy) (hy)
89.59 (0.0) | 118.54 (0.0) | 84.08(0.0) | 83.30(0.0) | 115.15(0.0) | 113.96(0.0)
(hg) (hg) (tZu) (tZu) (hg) (tZu)
89.30 (0.0) | 122.59(0.0) | 85.56(0.0) | 86.40(0.0) | 115.45(0.0) | 115.87 (0.0)
(ag) (ag) (he) (ag) (t2u) (hy)
92.84 (0.05) | 124.88 (0.10) | 90.17 (0.0) | 90.90(0.0) | 120.67 (0.0) | 121.79 (0.0)
(tw) (tiw) (ag) (ag) (ag) (ag)
118.48(1.16) | 132.21 (0.98) | 144.96 (5.22) | 157.72 (4.95)
(tIU) (tlu) (tIU) (tlu)
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