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I. AB INITIO MOLECULAR DYNAMICS SIMULATIONS

The implementation of an external electric field in numerical codes based on density func-
tional theory (DFT) can be achieved by exploiting the modern theory of polarization and
Berry’s phases [1] (see, e.g., Ref. [2, 3]). The ab initio simulations have been carried out at
the average temperature of 300 K after an equilibration run of 5 ns performed by means of
typical force-fields simulations in order to prepare a suitable initial atomic configuration for
ab initio molecular dynamics (AIMD). In the zero-field case, we performed a dynamics of
almost 12 ps for the biggest samples (i.e., those mimicking a salt molarity of 0.5 M) whereas
trajectories almost 24 ps-long have been accumulated for the simulations of the systems
at 2.1 M. As far as the 0.5 M samples are concerned, dynamics of about 4 ps have been
simulated for each field strength applied (i.e., 0.05 V/A, 0.075 V/A, 0.15 V/A) whereas tra-
jectories of about 8 ps have been gathered for each of the 2.1 M systems and for each field
intensity. Thus, each sample at 0.5 M has been simulated for a total dynamics of about 24 ps
whereas each system at 2.1 M has been followed for dynamics of about 48 ps. This led to a
global computational effort accounting for a total dynamics of about 215 ps which, for such
relatively large systems under the effect of electric fields, represents a sort of computational
upper-bound for the employed simulation technique. The fictitious electronic mass was set
to a value of 300 a.u., with a cutoff energy of 40 Ry for the plane-wave representation of the
wavefunctions and of 320 Ry for the charge density, with a timestep of 0.096 fs chosen ad
hoc after extensive testing. With such cutoff values the samples are described in a reliable
way since the core electronic interaction is being depicted through ultrasoft pseudopoten-
tials (USPP) generated via the Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) method. As an
approximation of the exchange and correlation functional, we adopted the Perdew-Burke-
Ernzerhof (PBE) functional [5], which belongs to the generalized gradient approximation
(GGA). The PBE functional and its adequate description of polarization effects [6] is known
to provide a reasonably accurate structure for H-bonded systems [7]. Moreover, albeit its
employment is justified by the thoroughly tested adherence of some computational results [8—
10] to many experimental data [11], we carefully checked the reliability of the current results
by means of a direct comparison with the available experimental data describing the wa-
ter structure [11]. The dynamics of the nuclei was simulated classically within a constant

number, volume, and temperature (NVT) ensemble, using the Verlet algorithm and a Nosé-
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FIG. 1. lodide-oxygen (a) and iodide-hydrogen (b) running coordination numbers of the 2.1 M KI (black curves), Nal (red

curves), and Lil (blue curves) water solutions at 300 K.
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FIG. 2. Mean square displacement (MSD) along the field direction (i.e., z-axis) of the iodide anions present in the 0.5 M
KI (a), Nal (b), and Lil (c) water solutions at different field strengths. Black curves: 0.05 V/A; red curves: 0.075 V/A; blue
curves: 0.15 V/A. No field-induced diffusive regimes have been recorded.

Hoover thermostat set at a frequency of 13.5 THz.
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FIG. 3. Mean square displacement (MSD) along the field direction (i.e., z-axis) of the cations present in the 2.1 M water
solutions at different field strengths. Dashed lines: 0.075 V/A; continuous lines: 0.15 V/A. Black: Kt; red: Nat; blue: Lit.

0.30 0.12

— K b —T (KD
a Na’ ——T (Nal)
g 025 Li g 0.10 - —T (L)
£ £
- P
£ o020f S oosp
= =
5 5
.8 &
o 015k = 006
> >
B £
S olof = o0}
< <
< =
e g
A 005t A oozt
1 1 1 1 1
0.0 02 0.4 0.6 08 1.0 0.0 02 0.4 0.6 0.8 10
electric charge (e) electric charge (-e)

FIG. 4. Probability distributions of the electric charge assumed by the cations (a) and the iodide anions (b) in the 2.1 M KI
(black curves), Nal (red curves), and Lil (blue curves) water solutions at a field strength of 0.15 V/A.



II. EXPERIMENTS
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FIG. 5. Experimental Current Density as a function of the applied voltage for the KI (black curve), the Nal (red curve),

and the Lil (blue curve) 2.1 M aqueous solutions.
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