SUPPLEMENTARY INFORMATION

for

Phenyl Radical + Propene: A Prototypical Reaction Surface for Aromatic-Catalyzed 1,2-Hydrogen-Migration and Subsequent Resonance Stabilized Radical Formation

Zachary J. Buras,¹ Te-Chun Chu,¹ Adeel Jamal,¹ Nathan Yee,¹ Joshua E. Middaugh¹ and William H. Green^{1*}

zjburas@mit.edu, jimchu@mit.edu, adeel.jamal@gmail.com, nyee@mit.edu,

whgreen@mit.edu

¹Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge, MA 02139 United States of America

*Corresponding Author:

Professor Dr. William H. Green; Email: whgreen@mit.edu; Phone: +1-617-258-8992

Table of Contents

S1.	Moo	leling of Flash Photolysis with MBMS	3
S 1.	.1	RMG Mechanism for Hydrocarbon Chemistry	3
S 1.	.2	Iodine Sub-Mechanism	6
S 1.	.3	Photoionization Cross Sections (PICS)	9
S1.	.4	Mass Discrimination Factors, R(m/z)	14
S 1.	.5	Molecular Beam Sampling	15
S1.	.6	Initial Radical Concentration	18
S2.	Exp	erimental Procedure for Quantifying PICS	19
S3.	Mea	sured Fragmentation Patterns	23
S3.	.1	C ₃ H ₅ I	23
S3.	.2	i1- Br	24
S4.	Prec	licted Methyl Radical MBMS Profiles	25
S5.	Mea	sured MBMS Profiles	26
S5.	.1	Experiment 1: 600 K, 10 Torr, No Propene	26
S5.	.2	Experiment 2: 600 K, 10 Torr, Low Propene	29
S5.	.3	Experiment 3: 600 K, 10 Torr, Medium Propene	32
S5.	.4	Experiment 4: 600 K, 10 Torr, High Propene	35
S5.	.5	Experiment 5: 600 K, 10 Torr, Medium Propene, 2xC ₆ H ₅ I/C ₆ H ₅ Control	37
S5.	.6	Experiment 6: 700 K, 10 Torr, No Propene	40
S5.	.7	Experiment 7: 700 K, 10 Torr, Low Propene	41
S5.	.8	Experiment 8: 700 K, 10 Torr, Medium Propene	44
S5.	.9	Experiment 9: 700 K, 10 Torr, High Propene	46
S5.	.10	Experiment 10: 700 K, 10 Torr, Medium Propene, 2xC ₆ H ₅ I Control	49
S5.	.11	Experiment 11: 700 K, 10 Torr, Medium Propene, 2xC ₆ H ₅ I/C ₆ H ₅ Control	51
S5.	.12	Experiment 12: 700 K, 25 Torr, No Propene	53
S5.	.13	Experiment 13: 700 K, 25 Torr, Low Propene	54
S5.	.14	Experiment 14: 700 K, 50 Torr, No Propene	57
S5.	.15	Experiment 15: 700 K, 50 Torr, Low Propene	58
S6.	Mea	sured 505.3, 447.7 and 408.4 nm Absorbance	62
S6.	.1	Experimental Conditions	62
S6.	.2	Model Comparison without $C_3H_5 + I = C_3H_5$	63
S6.	.3	Model Comparison with $C_3H_5 + I = C_3H_5$	63
S7.	G3(MP2, CC)//B3LYP Calculated Molecular Parameters	68

S8.	RRKM Calculations	123
S9.	TST-Calculated Rate Coefficients (CHEMKIN format)	126
S10.	References	128

S1. Modeling of Flash Photolysis with MBMS

S1.1 RMG Mechanism for Hydrocarbon Chemistry

RMG is an open-source tool for automatically generating detailed chemical mechanisms involving species that contain carbon, hydrogen, oxygen, nitrogen and sulfur (CHONS).¹ As mentioned in the Theoretical section of the main text, RMG relies on a kinetic database of training reactions, as well as rate rules, to estimate the kinetics of any CHONS reaction (provided the reaction falls under one of the \sim 50 reaction families). Therefore, the accuracy of the kinetic estimates made by RMG, and the corresponding quality of the final model, largely depend on what is in the database. Initially, there were few training reactions and rate rules related to the alkylaromatic chemistry encountered in the $C_6H_5 + C_3H_6$ system, and the subsequent predictions of RMG related to $C_6H_5 + C_3H_6$ were demonstrably poor. To remedy this situation, the 28 elementary reactions calculated on the "complete" C₉H₁₁ PES (Kislov et al.'s full PES^2 + the aromatic-catalyzed 1.2-H-migration and subsequent RSR formation from this work) were added as training reactions to the RMG database. Besides simply importing the kinetic calculations into the database, the suitability of the matching reaction template, which is meant to convey only the critical features of the reaction (see Scheme 2), was checked and in many cases modified. For example, if either the reactant or product has a radical in a benzylic position that fact should be captured in some way by the reaction template because the added resonance stabilization will have a large impact on the overall kinetics. If each training reaction is matched by a suitable reaction template, then the training reaction data will be utilized as intended when RMG encounters an analogous reaction for a different system (e.g., 1-naphthyl radical + 2-butene compared to $C_6H_5 + C_3H_6$). Of the 28 training reactions added, 15 belonged to the reaction family for radical addition to an unsaturated bond (abbreviated as R Addition MultipleBond, the reverse reaction is a β -scission), 5 belonged to the intramolecular radical addition to an unsaturated bond family (Intra R Add Exocyclic), 5 belonged to the intramolecular H-migration family (intra H migration), and 3 belonged the Habstraction family (H Abstraction).

After training RMG on the relevant alkylaromatic chemistry, a hydrocarbon (HC only) mechanism was automatically generated that contained 69 species and 191 reactions (RMG input file and mechanism in CHEMKIN format provided in separate ESI file). RMG was constrained to species with \leq 18 carbon atoms in order to capture **i1** recombination with itself to make **i1**-dimer in the case that is important. Pressure-dependent kinetics were included up to PES's with 13 atoms total in order to capture the likely pressure dependence of CH₃ + C₃H₆. Pressure-dependence of the C₉H₁₁ PES itself (20 atoms total) was neglected due to the predicted lack of P-dependence (Figure 2) and qualitatively confirmed by experiments (Figure 7).

In initial tests, the RMG HC mechanism captured most of the important $C_6H_5 + C_3H_6$ chemistry, but overestimated the extent of CH₃ recombination with **p10** (Scheme S 1). CH₃ + **p10** recombination was deemed too fast because the unaltered HC mechanism was predicting substantial concentrations of the corresponding products at m/z=106 amu, which as shown in Figure 8 was clearly not observed at all (at any condition). This was because the training reaction used by RMG to estimate CH₃ + **p10** recombination was for CH₃ + cyclopentadienyl radical (CPD'yl). While not a bad estimate considering that both **p10** and CPD'yl have resonance stabilization, it failed to capture the full extent of **p10**'s stabilization, therefore the rate coefficient was slightly too fast. The HC mechanism was manually amended by replacing the k(T)'s for the reactions in Scheme S 1 with a new estimate: $1/2 \times$ Troe *et al.*'s experimental measurement of CH₃ + **p1** \rightarrow ethylbenzene,³ by analogy to H + **p1** at various resonance sites.⁴ The revised k(T)'s were slower than the previous estimates, and the overall model no longer predicted measurable MBMS signal at m/z=106 amu. More generally, the lack of kinetic data for the reactions in Scheme S 1 highlight them as candidates for future theoretical and/or experimental investigation.

Scheme S 1: Methyl + benzyl radical recombination reactions with overestimated kinetics in RMG.

Estimates of k_{wall} for the two most important radicals in the system, C₆H₅ and i1, were also manually added to the HC mechanism. For C₆H₅, $k_{wall} = 100 \text{ s}^{-1}$, which was fit to both 505.3

nm absorbance and 77 amu MBMS decays recorded simultaneously without C_3H_6 (Figure S 9, Figure S 18, Figure S 29 and Figure S 33). For i1, k_{wall} was estimated as half of the C₆H₅ value (50 s^{-1}) , based on the lower expected reactivity of an alkyl radical compared to an aryl radical. Although other radicals in the system (e.g., H, CH₃, C₃H₅ and **p1**) should also have their own k_{wall} values, there was insufficient experimental information to obtain reliable estimates, and the main results presented in this work are insensitive to these parameters. For i1, although k_{wall} is a guess, at 700 K the model predictions are insensitive to it because unimolecular isomerization/decomposition occurs much faster. For C_6H_5 , k_{wall} is important because it can alter the overall mass balance of the model, therefore it is reassuring that a relatively small value of 100 s⁻¹ was sufficient to match experiments without C₃H₆. Note that this value of k_{wall} is much smaller than many of the values fit in the 505.3 nm absorbance experiments of section 4.2 (Table 2). As mentioned in that section, this was due to a small air leak during those experiments that was fixed prior to the current MBMS experiments. Also, the simple pseudo-first-order model used in section 4.2 does not account for self-reaction, whereas the current detailed model does, which would have the effect of decreasing k_{wall} . Finally, it is important to note that this fit value of k_{wall} is not meant to account for the fast wall catalysis of C₆H₅ to C₆H₆ observed in the absence of C₃H₆ (Figure S 9, Figure S 18, Figure S 29 and Figure S 33). Apparently this phenomenon is too complex to model as a first order rate and the current model does not attempt to describe it. Instead, as mentioned in section 4.3 of the main text, wall catalysis was determined to be negligible by control MBMS experiments conducted at increasing [C₃H₆], all of which the current gas-phase model was able to match sufficiently (including C₆H₆, most importantly). Similarly, wall catalysis of I to HI was not included in the model.

Other than the two modifications/additions mentioned above (and the barrier for $C_6H_5 + C_3H_6$ terminal addition being lowered by 0.75 kcal/mol to match the 505.3 nm absorbance experiments), RMG's HC mechanism was used as is. By minimizing the amount of manual intervention in the HC mechanism construction the real accuracy of RMG can be gauged when comparing to experiments. If the comparison is satisfactory, then RMG can be confidently applied to analogous systems (e.g., 1-naphthyl radical + 2-butene). If the comparison is not satisfactory, sources of discrepancies can be easily identified and rectified (e.g., the overestimated $CH_3 + \mathbf{p1}$ reaction mentioned above).

S1.2 Iodine Sub-Mechanism

As demonstrated by the various side and secondary products observed with MBMS in Figure 8, I atom is not merely an inert photolysis co-product of C_6H_5 , but an active participant in much of the observed chemistry. In particular, I atom recombination with various radicals, R, to form iodide-containing species RI is prevalent. As such, any attempts at quantitatively modelling the MBMS experiments must include the contribution of I atom. Because RMG does not currently have the capability (or, more importantly, the data) to model halogen-containing species, the sub-mechanism of iodine chemistry had to be constructed manually. Fortunately, two recent mechanisms for shock tube pyrolysis of iodobenze under both neat⁵ and acetylene-diluted conditions⁶ provided a starting point for the current sub-mechanism.

Table S 1 lists the eight iodide-containing species involved in the sub-mechanism and their thermochemical parameters. Four of the species were in the mechanism of Comandini *et al.* (I, HI, I₂ and C₆H₅I),⁶ wherein the thermochemistry was obtained from the Active Thermochemical Tables (ATcT).⁷ The thermochemistry of the remaining four species (CH₃I, C₃H₅I, p10-I and i1-I) was estimated by using Benson Group-Additivity Values (GAV).⁸ Table S 2 lists the 16 reactions in the sub-mechanism, seven of which are recombination reactions with I atom (reactions #1 and 8-13). Of these R + I \rightarrow RI reactions, only two of them include pressure-dependence: R = H and I. Even then, as noted in the footnotes, only for R = I has a pressure-dependent rate coefficient been measured for the same bath gas used in this work (helium). Nonetheless, the literature recombination kinetics listed in Table S 2 (with experimental conditions given in the footnotes) provide some reasonable estimate of the real kinetics at the conditions of this work, particularly for larger R's (such as **p10**), that are more likely to be in the high-P limit.

	Structure	$\Delta H_f^{\circ}(298 \text{ K})$	$S_{int}^{\circ}(298 \text{ K})$			\mathcal{C}_P° (cal	mol ⁻¹ K ⁻¹)			D.C
Species		(kcal mol ⁻¹)	(cal mol ⁻¹ K ⁻¹)	300 K	400 K	500 K	600 K	800 K	1000 K	Reference
Ι	-	25.5	43.2			5	5.0			6
HI	-	6.4	49.4	7.0	7.0	7.1	7.3	7.6	7.9	6
C ₆ H ₅ I		38.7	80.1	24.0	30.6	36.3	41.1	47.7	52.3	6
I ₂	-	14.9	62.3	8.8	8.9	9.0	9.0	9.0	9.1	6
CH ₃ I	-	3.3	60.5	10.6	12.5	14.0	15.3	17.5	19.2	8
C_3H_5I		22.9	78.6	18.5	22.4	26.2	28.9	33.5	36.9	8
p10-I		30.0	93.0	28.1	36.3	43.9	49.6	58.5	64.7	8
i1-I		17.5	111.0	40.1	51.7	61.6	69.5	81.4	89.6	8

Table S 1: Thermochemistry and structures of iodide-containing species included in submechanism

Table S 2: Kinetics of reactions involving iodide-containing species included in sub-mechanism

Ponction #	Denotion	Arrhenius	Deference		
Reaction #	Reaction	A	n	E_A	Kelefelice
1	I + i1 ↔ i1-I	5.8×10^{-11}	0	0	9, b
2	I + i1↔ HI + p2	2.0×10^{-11}	0	0	10, c
3	$I + i1 \leftrightarrow HI + p3$	1.3×10^{-11}	0	0	10, c
4	$I + i2 \leftrightarrow HI + p4$	0.7×10^{-12}	0	0	10, c
5	$H + C_6H_5I \leftrightarrow HI + C_6H_5$	1.4×10^{-18}	2.5	-0.14	11
6	$C_6H_5 + C_6H_5I \leftrightarrow {}_2H_{10} + I$	3.3×10^{-12}	0	11.0	6
7	$C_6H_5I \rightarrow C_6H_5 + I$	3.3×10^{-13}	0	45.9	12
8	$C_6H_5 + I \rightarrow C_6H_5I$	1.7×10^{-11}	0	0	6, d
9	$H + I + M \leftrightarrow HI + M$	1.3×10^{-31}	-1.87	0	13, e
10	$CH_3 + I \leftrightarrow CH_3I$	1.0×10^{-11}	0	0	14, f
11	$C_3H_5 + I \leftrightarrow C_3H_5I$	1.6×10^{-10}	0	0	15, g
12	$p10 + I \leftrightarrow p10 - I$	8.3×10^{-11}	0	0	16, h
13	$I + I + M \leftrightarrow I_2 + M$	$5.5 imes 10^{-34}$	0	-1.14	17, i
14	$I + C_3H_6 \leftrightarrow HI + C_3H_5$	3.0×10^{-11}	0	18.0	18
15	$H + HI \leftrightarrow H_2 + I$	6.6×10^{-11}	0	0	6
16	$C_6H_5 + HI \leftrightarrow C_6H_6 + I$	5.0×10^{-12}	0	0	6, d

^aModified Arrhenius expression used: $k(T) = AT^n e^{\frac{E_A}{RT}}$. Units are kcal, molecule, s, cm. ^bEstimated by analogy to I + C2H5 → C2H5I measured at 298 K, 100 Torr Kr bath gas and increased by 5 × to match MBMS experiments. ^cEstimated as 0.3 × recombination rate (reaction #1) by analogy to I + C₂H₅ → HI + C₂H₄ and adjusted for number of hydrogens. ^dEstimate. ^eAr bath gas. ^fMeasured at 400 K, 82 Torr CH₃I bath gas. ^gMeasured at 296 K, 750 Torr N2 bath gas. ^hMeasured at 750-950 K, 190-1900 Torr Ar bath gas.

The most important reactions of the sub-mechanism are those involving i1 (#1-4) because by diverting i1 from unimolecular reaction, they affect the major product distribution of $C_6H_5 + C_3H_6$. Unfortunately, i1 is far too specific of a radical for any previously published work to have studied the kinetics of its reaction with I atom. The closest analogue in the literature is ethyl radical, C_2H_5 , + I, the recombination kinetics for which were measured at 300 K and 100 Torr Krypton,⁹ and the corresponding disproportionation reactions which were measured as ~1/3× recombination.¹⁰ In this work, it was found that a better match with the MBMS experiments could be obtained by increasing the recombination rate by 5×. The disproportionation rate was also increased accordingly, accounting for the different types and numbers of H-atoms on i1 (and i2) compared to C_2H_5 . Perhaps the ~5× difference between i1 + I and C_2H_5 + I recombination is due to the latter, as a much smaller system, being further down the fall-off curve. Reassuringly, the fit i1 + I → i1-I rate is actually slightly smaller than the literature rate for the similarly sized p10 + I → p10-I rate (reaction #12). Other than for reactions #1-4, all of the rate coefficients in the sub-mechanism were taken directly from literature (usually an experiment) for the specific reaction of interest and used without further adjustment.

The remaining six reactions merit some discussion as well. Reaction #5 is fast, and could become problematic in the presence of a high H concentration where a cycle might be established between C_6H_5 and H. Fortunately at the conditions of the MBMS experiments in this work H concentration is low, and what little H that is formed preferentially reacts with C_3H_6 rather than C_6H_5I due to ~2 orders of magnitude difference in concentration. The possibility of other radicals besides H initiating the halogen-atom transfer reaction of #5 (i.e., R + C₆H₅I \rightarrow RI + C₆H₅) was also considered, but due to the relatively high C-I bond energy in C₆H₅I (~67 kcal/mol¹⁹) such a reaction would be \geq 10 kcal/mol endothermic for any R other than H in this system (e.g., CH₃, which is present in high concentration).²⁰

Although $S_N 2$ reactions such as #6 are highly favorable thermodynamically, kinetically they are slow. For C₆H₅ substituting for I in C₆H₅I the barrier is ~11.0 kcal/mol, and even if H is the nucleophile the barrier is still ~10 kcal/mol.¹¹ Therefore these types of reactions will not be important at the conditions of this work (\leq 700 K).

Thermal decomposition of C_6H_5I (#7) was already mentioned in the main text as the reason for imposing a 900 K upper bound on flash photolysis experiments with that precursor. H-abstraction from C_3H_6 by I atom (#14) will not be important due to a high barrier (18 kcal/mol),

and reactions #15 and 16 are unimportant due to a low concentration of both H and HI. As mentioned in the previous section, catalytic hydrogenation of I to HI is not included in the submechanism, although it is observed experimentally in the absence of C_3H_6 (Figure S 9, Figure S 18, Figure S 29 and Figure S 33). Therefore, this model is not expected to match experimental HI profiles well.

As a final note, although I atom chemistry is important to take into account when quantitatively analyzing product distributions, it has no effect on pseudo-first-order measurements of the total C_6H_5 consumption rate measured by direct absorption (section 4.2), which happen too quickly for I atom secondary reactions to play a role.

S1.3 Photoionization Cross Sections (PICS)

The concentration of each species *i* in the combined HC and iodine chemical mechanism, C_i , is solved for using the design equations for an isothermal, isobaric, homogeneous batch reactor. C_i can then be related to the *instantaneous* MS signal, $S_{i,instantaneous}$, through a simple proportionality:

$$S_{i,instantaneous} = R(m/z)\sigma_{PI,i}C_i$$
(S1)

Where R(m/z) is the mass discrimination factor discussed in section S1.4 and $\sigma_{PI,I}$ is the photoionization cross section (PICS) for species *i* discussed in this section. The subscript *instantaneous* indicates that transport delays during MB sampling are not taken into account yet (section S1.5). Although Eq. S1 is a drastic simplification of the complex relationship between concentration and MBMS signal,²¹ it will suffice for the purposes here and is hopefully transparent.

Any attempt to extract quantitative information from MS using PI must contend with the need for PICS. Although PICS have been measured for many common organic molecules²²⁻²⁵ and for a handful of common radicals,²⁶⁻²⁸ these measurements are a pittance compared to the number of possible organic molecules/radicals, even for a fixed molecular formula of reasonable size. Therefore, estimates of PICS are almost always needed. Fortunately, the ionization energy used for PI in this work (10.5 eV) is slightly above (~1 eV) the threshold ionization energy of many organic molecules in a region where PICS are often ~10 Megabarns (Mb).^{22, 25, 29} Furthermore, from the sizable (but obviously finite) database of measured PICS in the literature, smart estimates can be made for analogous molecules with unknown PICS. As a last resort, experimental measurements of PICS can also be made for particularly important

molecules/radicals. All three approaches to obtaining PICS were taken here (literature, smart estimates and measurements).

Table S 3 shows all of the important species (both molecules and radicals) in the $C_6H_5 + C_3H_6$ MBMS model for which PICS were needed. For most of the smaller species (parent m/z < 130 amu) literature PICS were available, but for almost all of the larger species there were no previously published measurements. The four internal standards (1,3-butadiene, furan, cyclohexane and heptane) are also included and noted in Table S 3. Even for species with measured PICS (including the internal standards), there is $\pm 15\%$ uncertainty, which translates into at least $\pm 15\%$ uncertainty in all MBMS model versus data comparisons.

Species	Structure	Cation	m/z (amu)	$\sigma_{\rm PI}$ at 10.5 eV (Mb) ^a	Reference
CH ₃	-	$\mathrm{CH_3}^+$	15	$6.7^{+2.4}_{-1.8}$	26
C_3H_5	<i>/</i> ,	$C_3 {\rm H_5}^+$	41	6.1 ± 1.2	27
1,3-Butadiene ^b		$C_4 H_6^{+}$	54	16.3 ± 3.3	25
Furan ^b		$C_4H_4O^+$	68	14.4 ± 3.0	25
C_6H_5	$\dot{\bigcirc}$	$C_6H_5^+$	77	17.0 ± 2.5	28
C ₆ H ₆	\bigcirc	$C_6H_6^+$	78	31.8 ± 6.4	22
Cyclohexane ^b	\bigcirc	$C_6H_{12}^{+}$	84	21.3 ± 4.3	22
p10		$\mathrm{C_7H_7}^+$	91	25.5 ± 4.0	30, c
Heptane ^b	~~~~	$C_7 H_{16}^{+}$	100	9.9 ± 1.5	24
р1	6	$C_8H_8^+$	104	42.9 ± 4.3	23
p2/p3/p4		$C_9 H_{10}^{+}$	118	38.8 ± 7.0	This work, see text
	\bigwedge	$\mathrm{C_7H_7}^+$	91	5	
11	\bigcirc	$C_9H_{11}^{+}$	119	5	Estimate, see text
12		$C_9H_{11}^{+}$	119	10	Estimate, see text
Propylbenzene		$C_9H_{12}^{+}$	120	30.0 ± 4.5	23
Ι	-	I^+	127	74^{+33}_{-23}	26, d
HI	-	HI^+	128	44 ± 7	26 31

Table S 3: Structures and photoionization cross sections, σ_{PI} , at 10.5 eV of all important species in model of MBMS experiments.

i1-CH ₃		₀ H ₁₄ ⁺	134	30	Estimate ^e
CH ₃ I	-	$CH_{3}I^{+}$	142	48.2 ± 7.9	26
Biphenyl		${}_{2}H_{10}^{+}$	154	64	Estimate ^f
i1-C ₃ H ₅		₂ H ₁₆ ⁺	160	40	Estimate ^g
C II I		$C_3H_5^+$	41	27.5	Estimate and tout
C3H5I		$C_3H_5I^+$	168	22.5	- Estimate, see text
10 I		$C_7H_7^+$	91	45.5	Estimate and text
p10-1	\bigcirc	$C_7H_7I^+$	218	4.5	Estimate, see text
i1-dimer		₈ H ₂₂ ⁺	238	60	Estimate ^h
	}	$C_9 H_{10}^{+}$	118	24	_
i1-I		$C_9H_{11}^{+}$	119	48	Estimate, see text
		$C_9H_{11}I^+$	246	8	
I2	-	I_2^+	254	50	Estimate ⁱ

^aUncertainty represents two standard deviations when applicable. Values without stated uncertainties are estimates. ^bInternal standard. ^cInferred as $1.5 \times C_6H_5 \sigma_{PI}$. ^dPICS is for ground state (${}^2P_{3/2}$) I atom. In this work, excited (${}^2P_{1/2}$) I atom is assumed to be quenched to the ground state by C_3H_6 faster than the ~1 ms resolution of the MBMS experiment. ^eEstimated by analogy to σ_{PI} at 10.5 eV for the following series of alkylbenzene molecules: toluene (31.4 Mb), ethylbenzene (28.7 Mb) and propylbenzene (30.0 Mb). ^fEstimated as $2 \times C_6H_6 \sigma_{PI}$ by applying bond-additive approach of Bobeldijk et al.³² ^gEstimated as the sum of σ_{PI} for propylbenzene (30 Mb) and propene (10 Mb) by applying bond-additive approach of Bobeldijk et al.³² ⁱEstimated as at least 50 Mb by analogy to iodide-containing compounds with known σ_{PI} : HI and CH₃I.

Going down Table S 3, the first species worth commenting on specifically are the phenylpropene isomers, **p2-p4**. None of these four isomers (trans-1-, cis-1-, 2- and 3- phenylpropene) have had their PICS quantified at any IE, although Zhang *et al.* measured the relative PIE curve for all of them.³³ Given that **p2** and **p3** are expected to be measurable primary products of $C_6H_5 + C_3H_6$ (Figure 2) it was deemed worthwhile to experimentally measure the PICS of at least one of the isomers. **p2** was chosen because it was predicted to be the most

important of the H-loss products. The procedure for measuring the PICS of **p2** is provided in section S2. The value measured and reported in Table S 3 (38.8 ± 7.0 Mb) is consistent with other alkenylaromatic molecules, like styrene (42.9 ± 4.3 Mb). The same PICS was used for all phenylpropene isomers.

The overall PICS for **i1**, obtained by roughly fitting the 600 K MBMS experiments, is 10 Mb, which seems anomalously low when compared to the closed-shell aromatic compounds with PICS ~30-40 Mb. However, as discussed by Xu and Pratt it is not uncommon for radicals to have PICS 2-4× lower than their closed-shell analogues (propylbenzene in the case of **i1** with a PICS of 30 ± 4.5 Mb) due to a correspondingly lower occupancy of the HOMO from which the electron is ejected.³⁴ The fragmentation pattern of **i1** was also roughly fit to the 600 K MBMS experiments. Specifically, a fast rise (~1 ms, at the time-resolution limit of the MBMS experiment as discussed in section S1.5) at m/z=91 amu could only be explained by a fragment of **i1** that is 1:1 with the parent cation (5 Mb each). Although surprising initially, it is possible that the **i1** parent cation undergoes a fast 1,2-H-migration to form the **i4** parent cation, which can then easily fragment to $C_7H_7^+$ ethene + e^{*}, where $C_7H_7^+$ could be either a benzyl or tropylium cation.³⁵ Such cation rearrangements have been observed before, particularly if the resulting fragments are thermodynamically favorable as in this case.³⁶ The same small total PICS (10 Mb, no fragmentation) was also used for **i2**, which is present in low concentration in the model anyway.

Of the six closed-shell iodide-containing species, only two have PICS measured in literature (HI and CH₃I), and both are ~50 Mb. Therefore, for the remaining four closed-shell iodide-containing species (C₃H₅I, **p10**-I, **i1**-I and I₂) it was assumed that each of their overall PICS are \geq 50 Mb. In the case of all but **i1**-I, the overall PICS was simply set at 50 Mb and not adjusted any further.

Given the relatively low C-I bond energy compared to C-C and C-H bonds,²⁰ fragmentation of RI compounds to R^+ is facile, even at 10.5 eV, and must be taken into account. This is especially true for C₃H₅I and **p10**-I, for which the C-I bond in question is at a particularly vulnerable allylic and benzylic site, respectively. The $R^+:RI^+$ fragmentation pattern for C₃H₅I was measured by us as 55:45 (Figure S 6) and for C₇H₇I it was previously measured as ~10:1 close to 10.5 eV.³⁵ Both fragmentation patterns were applied to the 50 Mb total PICS estimate for C₃H₅I and **p10**-I.

Understanding the fragmentation pattern of i1-I was most crucial to interpreting the 600 K MBMS experiments. Although i1-I cannot be purchased commercially, the bromide, i1-Br, can and the measured fragmentation pattern of i1-Br (Figure S 7) exhibited significant cations not only at the parent and i1⁺ (119 amu) m/z, but also at 118 amu. This suggests a fragment channel to $p3^+$ + HBr + e⁻, which seems reasonable given the weak benzylic C-H bond. i1-I is expected to form the same fragments as i1-Br, but to a greater extent due to the weaker C-I bond relative to C-Br. Attempts to synthesize i1-I *via* the Finkelstein reaction were mostly unsuccessful due to low conversion of i1-Br and thermal production of phenylpropene isomers.³⁷ Therefore, the only current recourse to quantifying i1-I and its fragments was to fit their PICS to the 600 K experiments while maintaining the constraint that the overall PICS ≥ 50 Mb. An overall PICS of 80 Mb and a 3:6:1 fragmentation pattern between $C_9H_{10}^+:C_9H_{11}^+:C_9H_{11}$ was fit. Finally, as noted in Table S 3, several of the closed-shell hydrocarbons had their PICS setimated by applying the bond-additivity concept of Bobeldijk *et al.*³² For example, the unknown PICS of biphenyl was estimated as 2× the PICS of C_6H_6 (2 × 32 = 64 Mb), and i1- C_3H_5 was estimated as the sum of C_3H_6 and propylbenzene (10 + 30 = 40 Mb).

S1.4 Mass Discrimination Factors, R(m/z)

As expressed in Eq. S1, R(m/z) is essentially a conversion factor between PICS-weighted concentration in the reactor and MBMS signal. Generally, R(m/z) increases monotonically as a function of m/z, and accounts for the greater radial spread of lighter species in the gas expansion (resulting in lower centerline concentrations and lower MBMS signals).²¹

Individual values of R(m/z) are calculated for each of the four internal standards using their known concentrations (~1e-11 cm⁻³) and PICS by rearranging Eq. S1:

$$R(\text{int-std } m/z) = S_{int-std} / (\sigma_{PI,\text{int-std}} C_{int-std})$$
(S2)

The four resulting R(m/z)'s are then fit to a power law:

$$R(m/z) = b(m/z)^{c}$$
(S3)

A representative R(m/z) fit *with* C_3H_6 is shown in Figure S 1. All 15 MBMS experiments were conducted with the internal standards present, therefore individual R(m/z)'s were fit to each experiment. Table 3 summarizes the fit values of the exponent, *c*, for each experiment, which is typically ~0.5.²¹ Without C_3H_6 , however, R(m/z) was essentially flat and a constant value was used. It should also be mentioned here that brief control experiments were conducted at each T,P

condition without the internal standards, to ensure that their presence was not altering the product distribution.

Figure S 1: Representative mass discrimination factors (markers) and fit (line) at 707 K, 10 Torr (Experiment 7). Error bars are from $\pm 15\%$ uncertainty in internal standard PICS.

Once R(m/z) had been fit, all of the PICS-weighted concentration profiles in the model, $\sigma_{PI,i}C_i$, were multiplied by their corresponding R(m/z) according to Eq. S1, in order to obtain the simulated, instantaneous signal profiles, $S_{i,instantaneous}$, which are not yet comparable to experiments because transport delays still need to be accounted for (next section).

S1.5 Molecular Beam Sampling

The effect of effusive or molecular beam sampling on measured species profiles in kinetic studies has previously been described and quantified from a theoretical level.^{38, 39} Although it is feasible to apply such a rigorous sampling model to a simple chemistry mechanism, for a complex chemistry mechanism, such as the one used in this work consisting of almost 100 species, a simpler model for sampling (and transport more generally) is desired. Moreover, theoretical models for sampling do not take into account transport within the reactor, i.e., if radicals are not initially distributed uniformly in the radial dimension following photolysis (usually due to a non-uniform photolysis beam profile) it will take some finite time for the non-uniformities to "smooth out" by diffusion. For the MBMS experiment reported here, diffusion within the reactor due to inhomogeneities does seem to be the rate-limiting transport step, as evidenced by the much slower appearance of products at 50 Torr compared to 10 Torr (Figure 7).

For these reasons, a simple model for transport that implicitly includes diffusion in the reactor was adapted from Baeza-Romero *et al.*⁴⁰ In their model, all of the steps involved in transporting a species *i* from somewhere inside the reactor to the ionization region of the MS (diffusion to the pinhole, flow through the pinhole and transport to the ionization region *via* an effusive or supersonic expansion, as well as transport out of the ionization region for neutral molecules) are lumped into a single first-order rate, $k_{sampling}$:

$$i \xrightarrow{k_{sampling}} i, sampled \xrightarrow{k_{sampling}} i, exit$$

Therefore, for any arbitrarily complex chemical mechanism a set of ODE's can be set up and numerically solved for the observed MBMS signal, $S_{i,sampled}$, after accounting for transport effects:

$$dS_{i,sampled}/dt = k_{sampling} \left(S_{i,instantaneous} - S_{i,sampled} \right)$$
(S4)

The set of ODE's represented by Eq. S4 are only solved for dilute, time-dependent species. A new reactor type called "mbsampledReactor" was created in RMG to solve this set of ODE's and is freely available upon request to the authors. $S_{i,sampled}$ is directly comparable to experiments.

An advantage of this simple transport model is that $k_{sampling}$ is the only parameter that needs to be fit, which is done by comparison to the rise time of the I atom MBMS signal at 127 amu (Figure S 2). I atom is used for fitting $k_{sampling}$ because it is formed in the reactor nearly instantaneously after photolysis and unlike C_6H_5 it has a long lifetime. In the limit of instantaneous sampling ($k_{sampling} \rightarrow \infty$) the model prediction is clearly not accurate, but after tuning $k_{sampling}$ to 750 s⁻¹ the agreement is good in this case (especially for the rise time, which is chemistry-independent). The modelled I atom signal decreases at longer times due to the reactions in Table S 2. Values of $k_{sampling}$ were fit to the I atom rise time in this manner for all 15 MBMS experiments, and are typically ~1000 s⁻¹ (Table 3) although there is a trend toward slower sampling for higher P and with added C₃H₆, consistent with diffusion in the reactor being the rate-limiting transport step.

Figure S 2: Representative measured iodine atom MS time-profile (markers) and comparison to two different models of MBMS sampling: $k_{sampling} \rightarrow \infty$ (blue) and $k_{sampling} = 750 \text{ s}^{-1}$.

As shown for the 50 Torr MBMS experiments in Figure 7, this simple, one-parameter transport model is not sufficient to completely describe sampling at higher P's. In particular, the same $k_{sampling}$ that was fit to the MBMS rise time of I atom was used for all other species in the solution of Eq. S4, regardless of mass or size. If diffusion within the reactor is rate-limiting, then $k_{sampling}$ should decrease (get slower) with increasing species mass and collision diameter, σ . According to the Chapman-Enskog equation,⁴¹ for a relatively heavy species in a He bath gas the mass of the heavy species will have little effect on the diffusion coefficient, *D*, whereas $D \propto \sigma^{-2}$. Therefore, although I atom has a similar mass as the major products of $C_6H_5 + C_3H_6$ (127 versus 78-119 amu), because its collision diameter is likely at least 2× smaller it will have a $D \sim 4\times$ faster. This would explain why the $C_6H_5 + C_3H_6$ products at 50 Torr (and 25 Torr) appear in the MS even slower than predicted by the model. Nonetheless, the higher-P experiments still quantitatively determine the product distributions after diffusion has homogenized the composition (or if instantaneous product ratios are used instead, Figure S 32 and Figure S 36). Although faster time-resolution for the MBMS measurements is desirable and achievable down to 10-100's of microseconds.^{21, 40} with the current time-resolution of ~ 1 ms it is still possible to

to 10-100's of microseconds,^{21, 40} with the current time-resolution of ~1 ms it is still possible to discern differences in chemical timescales. For example, as shown in section 4.4 it is possible to distinguish the faster growth time scale of C_6H_6 (direct H-abstraction) compared to **p1** (CH₃-loss through an intermediate, **i1**). Furthermore, high time resolution is achieved using the laser absorbance portion of the apparatus, which can easily measure processes as fast as 10's of

microseconds.⁴² For the purposes of this work (quantifying the primary products of $C_6H_5 + C_3H_6$), a 1 ms MBMS time resolution was deemed sufficient.

Finally, as discussed in more detail in the next section, the I Atom MBMS profile is also used to quantify the initial radical concentration by back-extrapolating the $k_{sampling} \rightarrow \infty$ simulation to t=0. The value obtained, S_{I,0}, indicated in Figure S 2 is proportional to C_{I,0} (and C_{C6H5,0}) according to Eq. S1.

S1.6 Initial Radical Concentration

As mentioned briefly in the previous section, $C_{I,0}$ (which is assumed = $C_{C6H5,0}$) is obtained from the following rearranged version of Eq. S1:

$$C_{I,0} = S_{I,0} / (\sigma_{PI,I} R(m/z=127 \text{ amu}))$$
 (S5)

where $S_{I,0}$ is obtained by fitting and back-extrapolating the I atom MBMS profile (Figure S 2). Values of $C_{I,0}$ obtained in this manner (labelled MS $C_{I,0}$) are summarized in Table 3. Compared to the $C_{I,0}$ values measured simultaneously by IR absorbance (labelled IR $C_{I,0}$), MS $C_{I,0}$ is typically ~2× lower, but still within their combined (large) uncertainties for most experiments. The systematic difference is likely due to an inhomogeneous photolysis beam profile, or a beam diameter that is slightly smaller than the reactor inner diameter where MBMS sampling occurs. In either case, MS $C_{I,0}$ should be (and was) used as the initial radical concentration in the model, because it is more representative of the local environment relevant to the MBMS experiments.

Another possible explanation for the systematic ~2× difference in IR and MS $C_{I,0}$ is the presence of excited (${}^{2}P_{1/2}$) I atom, I^{*}, which has been measured as ~30% of the total I atom yield immediately following 266 nm photodissociation of C_6H_5I .¹⁹ Because the PICS of I^{*} has been measured to be up to 7× lower than the PICS of I (ground state, ${}^{2}P_{3/2}$),⁴³ even a small amount of I^{*} in the overall I atom mixture could substantially lower the 127 amu MBMS signal. However, it was assumed that I^{*} was quenched to I by collision with C₃H₆ at a faster rate than the resolution of the MBMS experiment (~1 ms).^{44, 45} This assumption is supported by the independence of MS CI,0 on [C3H6] shown in Table 3. Interestingly, even without C3H6 (no quenching gas) MS C_{1,0} is still the same, perhaps suggesting quenching on the walls during sampling.

S2. Experimental Procedure for Quantifying PICS

10.5 eV photoionization cross sections (PICS) were quantified by flowing both a controlled but imprecisely known concentration of species *i*, and a known concentration of the calibration gas mixture (calmix, consisting of 100 ppm propene, 1,3-butadiene, furan, benzene, cyclohexane, toluene and heptane) through the quartz flow reactor while recording PI TOF-MS signal, *S*. A portion of the gas mixture was trapped at the inlet of the reactor by a pneumatically controlled sample loop, and the relative concentration, *C*, of *i* to calmix in the mixture was quantified using Gas Chromatography (GC)/MS. PICS for species *i*, σ_i , could then be quantified using one of the calmix species as an internal standard:

$$\sigma_{i} = \sigma_{calmix} \times \left(\frac{S_{i}}{S_{calmix}}\right) \times \left(\frac{C_{calmix}}{C_{i}}\right)$$

PICS were quantified in this manner for different concentration ratios and for i = hexane, styrene and 3-phenylpropene. At each concentration ratio three replicate measurements were taken (both GC/MS and PI TOF-MS measurements were repeated). Average PICS with 95% confidence intervals are reported in Figure S 3, Figure S 4 and Figure S 5 below, using either toluene or heptane as the internal standard. The measured PICS for both hexane²⁴ and styrene²³ are in good agreement with literature, which is encouraging, especially considering that the absolute PICS of hexane and styrene differ by about an order of magnitude. Most importantly, the measured PICS for 3-phenylpropene is 38.8 ± 7.0 MB (no literature value available for comparison), which seems reasonable given that many of the other closed-shell aromatic-containing compounds in Table S 3 have PICS ~30-40 MB.

Figure S 3: Quantification of hexane 10.5 eV PICS. Literature value is 4.5 ± 0.7 .²⁴

Figure S 4: Quantification of styrene 10.5 eV PICS. Literature value is 42.9±4.3.²³

Figure S 5: Quantification of 3-phenylpropene 10.5 eV PICS.

While this experimental procedure for quantifying PICS seems to work well for stable molecules with relatively strong CC and CH bonds, for heavier molecules with weaker bonds it is expected that wall-effects and thermal decomposition will make precise concentration measurements more difficult. For example, attempts to quantify PICS for nitrosobenzene, C_6H_5NO , were less successful, likely because of both adsorption of C_6H_5NO on the walls of the sampling loop, and thermolysis of the weak C-N bond upon heating of the loop to encourage desorption.

S3. Measured Fragmentation Patterns

Figure S 6: Measured fragmentation pattern of C_3H_5I at 10.5 eV displaying signals at m/z = 168 ($C_3H_5I^+$ parent ion) and 41 amu ($C_3H_5^+$ daughter ion). Signal at 58 amu is from acetone impurity.

S3.2 *i1-Br*

Figure S 7: Measured fragmentation pattern of **i1**-Br at 10.5 eV displaying signals at m/z = 198/200 (⁷⁹Br/⁸¹Br isotopologues of C₉H₁₁Br⁺ parent ion), 119 (C₉H₁₁⁺ daughter ion) and 118 amu (C₉H₁₀⁺ daughter ion). Signals at 58 and 204 amu are from acetone and iodobenzene impurities, respectively. Source of 44 amu signal is unkown.

S4. Predicted Methyl Radical MBMS Profiles

Figure S 8 shows predicted methyl radical, CH₃, time profiles in the MBMS at 600 and 700 K. CH₃ is a coproduct of styrene from $C_6H_5 + C_3H_6$, which is the major product channel at 700 K. However, even though the concentration of CH₃ in the reactor should be relatively high we were unable to detect it with MBMS for the three reasons mentioned in section 4.4 of the main text: low MBMS signal due to mass discrimination factor and small PICS, overlap with a C_3H_6 fragment and lack of a CH₃ wall reaction in the model. At 600 K, the maximum predicted MS signal is ~0.003 (units of flight-time integrated signal area), whereas the smallest signals detected were ~0.001. At 700 K, the predicted CH₃ signal has increased ~3× due to more styrene production, and should be distinguishable from the noise. However, at both temperatures the model predicts CH₃ to persist over the full 45 ms measurement time, which is not reasonable given that phenyl radical decays within ~10 ms largely due to wall reactions. Therefore, if CH₃ wall reaction were included in the model, the maximum predicted CH₃ MBMS signal in Figure S 8 would drop significantly, likely below the MBMS detection limit. However, in the absence of any measurable CH₃ signal on which to base k_{wall} for CH₃, no value was fit.

Figure S 8: Predicted time profile for methyl radical, CH₃, in MBMS at 600 (left) and 700 K (right).

S5. Measured MBMS Profiles

Measured and modelled time-dependent MBMS profiles are shown below for all 15 experiments in Table 3 at all m/z's where transient behavior was observed. Interpretive commentary is also provided for each Experiment #.

Experiments without any propene, C_3H_6 , (# 1, 6, 12 and 14) merit special attention, as they exhibit evidence of wall catalysis. However, as mentioned in the main text and shown below, the primary product distribution was found to be insensitive to $[C_3H_6]$ ("low", "medium" and "high" concentrations) suggesting that wall catalysis is not impacting the main results of this work.

Experiments #5 and 13 are also important, as they exhibit the largest disagreement between the primary product measurements and the model at 600 and 700 K, respectively. Nonetheless, the disagreements are all within a factor of two, which is acceptable given that the model relies on many uncertain parameters (e.g., calculated barrier heights, initial radical concentration and PICS). Additionally, when compared in aggregate across all 15 MBMS experiments, the model and measurements are in sufficient agreement to give confidence to extrapolations of the model.

S5.1 Experiment 1: 600 K, 10 Torr, No Propene

Figure S 9 summarizes the results of Experiment #1, which was conducted without C_3H_6 . There are several noteworthy observations. Most obviously, the model does not match most of the MBMS measurements. In fact, of the six m/z's where transient behavior was observed, only 154 amu, biphenyl, has good agreement between the model and measurements. The other five m/z signals are all influenced by the walls in some way that is not described by our gas-phase model. Specifically, phenyl radical, C_6H_5 , at m/z=77 amu is being rapidly converted to benzene, C_6H_6 , at 78 amu, much faster than can be explained by gas-phase chemistry. Although the model does predict some C_6H_6 formation through self-disproportionation between two C_6H_5 radicals, it is not nearly enough to explain the large and rapidly-appearing 78 amu signal. Hydrogen (H)-abstraction from the iodobenzene precursor, C_6H_5I , is not included in the model but is expected to be slow at our experimental conditions owing to the strength of a phenylic C-H bond.²⁰ If C_6H_6 was being formed purely in the gas phase, then the time constant of its growth should match the time constant of both C_6H_5 decay and biphenyl growth, which it clear does not. Similarly, I atom at 127 amu somehow gains a hydrogen atom, H, to form HI at 128 amu, although the time-scale is longer than C_6H_6 formation. I atom also recombines with itself to form molecular iodine, I₂, at 254 amu in much higher concentration than predicted by the model, which uses a recommended P-dependent rate for 2I (+ M) \rightarrow I₂ (+M) in a helium bath gas that is very slow at our conditions.¹⁷

Figure S 9: Summary of all time profiles measured (markers) with MBMS in Experiment 1 (600 K, 10 Torr, no propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

The proposed mechanism for most of these unexpected observations involves an Eley-Rideal type of heterogeneous reaction on the quartz reactor walls between a gas-phase radical and an adsorbed H atom (denoted H-wall):

$$C_6H_5/I(g) + H - wall \rightarrow C_6H_6/HI(g)$$

H atom might have adsorbed on and saturated the walls from previous experiments. The reaction above is essentially an H-abstraction between the wall and gas-phase C_6H_5/I , similar to what has been observed between gas-phase fluorine atoms and deuterium adsorbed on various surfaces (including quartz).⁴⁶ The mechanism for I₂ formation is probably different, but also likely involves the walls. For example, ro-vibrationally excited I₂ formed immediately after I atom recombination might be stabilized by the walls much more than by the helium bath gas, which is an inefficient collision partner.

If the proposed mechanism for $C_6H_6/HI/I_2$ formation above is correct, then by adding a sufficient amount of an excess reagent (e.g., C_3H_6) wall catalysis might be suppressed in favor of fast gas-phase chemistry (e.g., $C_6H_5 + C_3H_6$ and subsequent product formation). This was the approach taken here, where primary product branching was measured at three different propene concentrations ("low", "medium" and "high") that vary by 4× in order to verify insensitivity to [C_3H_6], and therefore insensitivity to wall catalysis as well. Comparing Experiments #2-5 (600 K) and #7-9 (700 K), the primary product branching does appear to be largely insensitive to [C_3H_6], confirming that wall catalysis is not influencing the main results of this work.

Although we have found a way to sidestep the effects of wall catalysis in the current work, efforts should continue to be made to reduce the effects further. Specifically, we found the geometry of the sampling pinhole to be quite critical to preventing wall catalysis, as quantified by the ratio of maximum 78 to 77 amu signal without C_3H_6 . As shown in Figure S 9, the 78:77 ratio is currently ~1 using the "funnel-shaped" pinhole geometry of Wyatt *et al.*⁴⁷ Similar experiments with a straight pinhole (essentially a 300 micron diameter tube through the 2.5 mm thick reactor walls) resulted in ratios ~10:1, likely due to enhanced contact between radicals and the walls during sampling. Efforts to reduce wall catalysis even further should first focus on the pinhole. The reactor was also treated with boric acid following the procedure of Krasnoperov *et al.*,⁴⁸ but the resulting boron oxide (B₂O₃) coating was found to have negligible effect on the wall catalysis shown in Figure S 9. A better coating would have only strong C-F bonds exposed, such

as in Teflon or Halocarbon wax, but neither of these coatings are suitable at the temperatures of interest to us (>600 K).

Returning to the results shown in Figure S 9, although the maximum C_6H_5 concentration is overpredicted by the model by ~2×, the sum of measured C_6H_5 and C_6H_6 signals is much closer to the model, effectively closing the mass balance. A k_{wall} of 100 s⁻¹ for C_6H_5 was found to fit both the time scale of the 77 amu decay from MBMS (~10 ms) and the 505.3 nm absorbance decay adequately. No k_{wall} was fit for I atom, because it was not found to be necessary to match the experiments with C_3H_6 (see next experiment, for example).

S5.2 Experiment 2: 600 K, 10 Torr, Low Propene

All of the results from Experiment #2 are shown and discussed in the main text, but they are reproduced here for convenience. Figure S 10 summarizes the main results of Experiment #2 by comparing only the primary product MBMS profiles, whereas Figure S 11 shows the measured and modeled results for all of the m/z's with time-dependence.

Figure S 10: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 2 (600 K, 10 Torr, "Low" propene). Lines are model results.

Figure S 11: Summary of all time profiles measured (markers) with MBMS in Experiment 2 (600 K, 10 Torr, "Low" propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

S5.3 Experiment 3: 600 K, 10 Torr, Medium Propene

Experiment #3 is identical to #2, except $[C_3H_6]$ has been doubled (Table 3). As expected, the measurements for Experiment #3, summarized in Figure S 12 and Figure S 13, are similar to #2. In particular, the relative 78 amu (C₆H₆) signal did not decrease significantly upon doubling $[C_3H_6]$, suggesting that the C₆H₆ observed is from gas phase H-abstraction between C₆H₅ and C₃H₆ rather than from heterogeneous H-abstraction from the wall (see commentary for Experiment #1). Although all of the primary products are noticeably underpredicted by the model, the disagreement is generally within the 15% uncertainty of the PICS alone, and in the case of 118 and 119 amu, which are mostly attributable to fragments of **i1**-I, the PICS (and fragmentation pattern) are just estimates. Regarding secondary products, both 134 (**i1**-CH₃) and 168 amu (C₃H₅I) are underpredicted, but are still within a factor of 2 of the model.

Figure S 12: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 3 (600 K, 10 Torr, "Medium" propene). Lines are model results.

Figure S 13: Summary of all time profiles measured (markers) with MBMS in Experiment 3 (600 K, 10 Torr, "Medium" propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

S5.4 Experiment 4: 600 K, 10 Torr, High Propene

Experiment #4 was conducted at the highest $[C_3H_6]$ and as expected the model and measurements are still in satisfactory agreement. As already mentioned for Experiment #3, the agreement of the gas-phase model with the measured 78 amu MBMS signal at three different $[C_3H_6]$ (varied over a factor of 4 from Experiment #2-4) is especially important, as it demonstrates that wall catalysis is not perturbing the primary $C_6H_5 + C_3H_6$ product distribution.

Figure S 14: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 4 (600 K, 10 Torr, "High" propene). Lines are model results.

Figure S 15: Summary of all time profiles measured (markers) with MBMS in Experiment 4 (600 K, 10 Torr, "High" propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.
S5.5 Experiment 5: 600 K, 10 Torr, Medium Propene, 2xC₆H₅I/C₆H₅ Control

Experiment #5 was conducted at identical conditions as #3, but with $\sim 2\times$ the radical and precursor concentration ([C₆H₅] and [C₆H₅I]). Because of the higher initial concentration, the signal to noise is better for Experiment #5 than any of the other 600 K experiments (#2-4). The agreement with the model is still satisfactory for all of the m/z's with time-dependence, except for 78 amu, which is underpredicted by almost 2×. The reason for this discrepancy is unclear. Perhaps the C₆H₅ self-disproportionation rate estimated by RMG is too slow (although the coproduct, o-benzyne was not observed) or maybe wall catalysis is exacerbated at higher radical concentrations. In either case, it is preferable to operate at the lowest possible radical (and precursor) concentration to minimize such effects, which was the case for all of the other 600 K experiments.

Figure S 16: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 5 (600 K, 10 Torr, "Medium" propene, $2 \times C_6H_5I/C_6H_5$ control experiment). Lines are model results.

Figure S 17: Summary of all time profiles measured (markers) with MBMS in Experiment 5 (600 K, 10 Torr, "Medium" propene, $2 \times C_6H_5I/C_6H_5$ control experiment). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

S5.6 Experiment 6: 700 K, 10 Torr, No Propene

Experiment #6 was conducted without C_3H_6 , and all of the commentary regarding Experiment #1 (also without C_3H_6 , but at 600 K) still applies. The only feature of Experiment #6 worth additional comment is that compared to #1 there appears to be less HI formation. This could be due to the higher temperature driving desorption of H atoms from the walls,⁴⁹ or it might simply be due to the fact that chronologically #6 was actually run before #1 when the reactor was freshly-cleaned and B₂O₃ coated. Also unlike Experiment #1, no I₂ was measured.

Figure S 18: Summary of all time profiles measured (markers) with MBMS in Experiment 6 (700 K, 10 Torr, no propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

S5.7 Experiment 7: 700 K, 10 Torr, Low Propene

All of the results from Experiment #7 are shown and discussed in the main text, but they are reproduced here for convenience.

As noted in the main text, CH₃I at 142 amu is dramatically overpredicted by the model (no transient signal was even observed in Experiment #8-10) likely due to the lack of Pdependence in the CH₃ + I \rightarrow CH₃I rate taken from literature and used in the model.¹⁴ This explanation for the lack of observed CH₃I is supported by higher-P experiments (#13 and 15) where MBMS signal at 142 amu was observed, and increased with P. Interestingly, C₃H₅I at 168 amu exhibited the opposite trend: at lower P it matches the model (Figure S 20), but with increasing P (#13 and 15) the signal disappears, in disagreement with the model. This suggest that like I₂ (see Experiment #1), C₃H₅I might be partially formed by heterogeneous recombination on the walls, which will get slower at higher P due to slower diffusion to the walls. This is consistent with the 408.4 nm absorbance results shown in section S6, where removing C₃H₅ + I \rightarrow C₃H₅I from the gas-phase model resulted in much better agreement with the measured baseline-shift.

Figure S 19: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 7 (700 K, 10 Torr, "Low" propene). Lines are model results.

Figure S 20: Summary of all time profiles measured (markers) with MBMS in Experiment 7 (700 K, 10 Torr, "Low" propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

S5.8 Experiment 8: 700 K, 10 Torr, Medium Propene

Experiment #8 is identical to #7, except $[C_3H_6]$ has been doubled (Table 3). As expected, the measurements for Experiment #8, are similar to #7. In particular, the relative 78 amu (C₆H₆) signal did not decrease significantly upon doubling $[C_3H_6]$, suggesting that the C₆H₆ observed is from gas phase H-abstraction between C₆H₅ and C₃H₆ rather than from heterogeneous H-abstraction from the wall (see commentary for Experiment #1).

Figure S 21: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 8 (700 K, 10 Torr, "Medium" propene). Lines are model results.

Figure S 22: Summary of all time profiles measured (markers) with MBMS in Experiment 8 (700 K, 10 Torr, "Medium" propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

S5.9 Experiment 9: 700 K, 10 Torr, High Propene

Experiment #9 was conducted at the highest $[C_3H_6]$ and as expected the model and measurements are still in satisfactory agreement. As already mentioned for Experiment #8, the agreement of the gas-phase model with the measured 78 amu MBMS signal at three different $[C_3H_6]$ (varied over a factor of 4 from Experiment #7-9) is especially important, as it demonstrates that wall catalysis is not perturbing the primary $C_6H_5 + C_3H_6$ product distribution. Also note that the signal to noise is generally worse compared to #7 and 8 due to the higher $[C_3H_6]$ attenuating both VUV intensity and molecular beam density. Finally, this was one of the few experiments where the 505.3 nm absorbance did not match the model well. Most likely this is due to an imperfect background subtraction causing an apparent (non-reproducible) baseline shift, but it might also indicate the presence of a small leak that causes phenylperoxy radical, C_6H_5OO , formation (and subsequent visible absorbance⁵⁰).

Figure S 23: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 9 (700 K, 10 Torr, "High" propene). Lines are model results.

Figure S 24: Summary of all time profiles measured (markers) with MBMS in Experiment 9 (700 K, 10 Torr, "High" propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

S5.10 Experiment 10: 700 K, 10 Torr, Medium Propene, 2xC₆H₅I Control

Experiment #10 was conducted at identical conditions as #8, but with $2 \times [C_6H_5I]$. C_6H_5 was maintained around the same concentration in both experiments by adjusting the photolysis laser fluence (Table 3). The agreement between model and experiment is still satisfactory.

Figure S 25: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 10 (700 K, 10 Torr, "Medium" propene, $2 \times C_6H_5I$ control experiment). Lines are model results.

Figure S 26: Summary of all time profiles measured (markers) with MBMS in Experiment 10 (700 K, 10 Torr, "Medium" propene, $2 \times C_6H_5I$ control experiment). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

S5.11 Experiment 11: 700 K, 10 Torr, Medium Propene, 2xC₆H₅I/C₆H₅ Control

Experiment #11 was conducted at identical conditions as #8, but with $\sim 2 \times [C_6H_5]$ and $[C_6H_5I]$. Because of the higher initial concentration, the signal to noise is better for Experiment #11 than any of the other 700 K experiments (#7-9). The agreement with the model is still satisfactory for all of the m/z's with time-dependence (except for CH₃I, for the reasons discussed in the Experiment #7 commentary).

Figure S 27: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 11 (700 K, 10 Torr, "Medium" propene, $2 \times C_6H_5I/C_6H_5$ control experiment). Lines are model results.

Figure S 28: Summary of all time profiles measured (markers) with MBMS in Experiment 11 (700 K, 10 Torr, "Medium" propene, $2 \times C_6H_5I/C_6H_5$ control experiment). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

S5.12 Experiment 12: 700 K, 25 Torr, No Propene

Experiment #6 was conducted without C_3H_6 , and all of the commentary regarding Experiment #1 (also without C_3H_6 , but at 600 K and 10 Torr) still applies. Unlike the other experiments without C_3H_6 (#1, 6 and 14) biphenyl is noticeably underpredicted by ~2×. As discussed in the main text, the PICS for biphenyl is an estimate based on the bond-additivity approach of Bobeldijk,³² so it is expected that the modeled biphenyl signal will have large uncertainty.

Figure S 29: Summary of all time profiles measured (markers) with MBMS in Experiment 12 (700 K, 25 Torr, no propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

S5.13 Experiment 13: 700 K, 25 Torr, Low Propene

Experiment #13 is identical to #7 (and #15) except that the pressure is higher: 25 instead of 10 (or 50) Torr. As mentioned at the beginning of this section, Experiment #13 exhibits the worst agreement between the measured and predicted primary product branching at 700 K. Specifically, 91, 118 and 119 amu are all underpredicted by $\sim 2\times$. However, all of these products have relatively low concentrations compared to the major product, styrene, at 104 amu, which is described well by the model.

There are several other concerning features of Experiment #13. First, there is a clear baseline shift in the 505.3 nm absorbance that might indicate C₆H₅OO formation, which could explain some of the other discrepancies with the model. Second, although the steady-state 104 amu signal matches the model well, the measured time-dependence is slower than the model. As discussed in section S1.5 this is due to slower diffusion at higher-P inhibiting MBMS sampling. The delayed growth at 104 amu (and other time-dependent m/z's) becomes even more pronounced at higher-P (#15), consistent with this explanation. Figure S 32 shows all of the primary product profiles normalized by the instantaneous styrene/104 amu signal, such that transport delays should largely cancel out. As shown, the ratio of styrene to any of the other primary products is essentially flat as a function of reaction time after the first few milliseconds, confirming that although the absolute signals are distorted by transport effect, the ratios between products at any given time are still reliable. Finally, as discussed for Experiment #7, the iodide containing species exhibit contradictory behavior as a function of P. The large signal at 168 amu from C₃H₅I has disappeared when increasing P from 10 to 25 Torr, while the signals at the parent m/z of the other two iodide-containing species, CH₃I and i1-I at 142 and 248 amu, respectively, have increased. The latter behavior is consistent with P-dependent kinetics, while the former is contradictory. As already discussed, this might indicate that C₃H₅I is actually formed on the walls instead of in the gas-phase.

Figure S 30: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 13 (700 K, 25 Torr, "Low" propene). Lines are model results.

Figure S 31: Summary of all time profiles measured (markers) with MBMS in Experiment 13 (700 K, 25 Torr, "Low" propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

Figure S 32: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 13 (700 K, 25 Torr, "Low" propene). Lines are model results. Both measured and modeled results are plotted relative to the 104 amu/styrene signal at each time point.

S5.14 Experiment 14: 700 K, 50 Torr, No Propene

Experiment #14 was conducted without C_3H_6 , and all of the commentary regarding Experiment #1 (also without C_3H_6 , but at 600 K and 10 Torr) still applies.

Figure S 33: Summary of all time profiles measured (markers) with MBMS in Experiment 14 (700 K, 50 Torr, no propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

S5.15 Experiment 15: 700 K, 50 Torr, Low Propene

Experiment #15 is identical to #7 (and #15) except that the pressure is higher: 50 instead of 10 (or 25) Torr. Figure S 34 is shown in the main text and is reproduced here for convenience. All of the P-dependent trends highlighted for Experiment #13 continue for #15: the time-scale for primary product growth is noticeably slower (and in disagreement with the simple transport model), more $CH_{3}I$ is observed experimentally (and in closer agreement with the model) and $C_{3}H_{5}I$ is still absent. Most importantly, the steady state product branching matches the model satisfactorily, in agreement with the prediction made in Fig. 2 of the main text that at our experimental conditions the product branching would have negligible P-dependence. Figure S 36

shows the instantaneous primary product ratios (relative to styrene/104 amu) such that transport delays largely canceled out. Just as was observed at 25 Torr (Figure S 32), the product ratios are essentially flat after the first few milliseconds, in contrast to the absolute product signals shown in Figure S 34 and Figure S 35 that require \sim 30 ms to reach steady state. Furthermore, the model matches these ratios well, as expected, again supporting the predicted lack of P-dependence.

Figure S 34: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 15 (700 K, 50 Torr, "Low" propene). Lines are model results.

Figure S 35: Summary of all time profiles measured (markers) with MBMS in Experiment 15 (700 K, 50 Torr, "Low" propene). Lines are model results. Simultaneously recorded 505.3 nm absorbance is also shown with model comparison.

Figure S 36: Time profiles of primary phenyl radical + propene products measured (markers) with MBMS in Experiment 15 (700 K, 50 Torr, "Low" propene). Lines are model results. Both measured and modeled results are plotted relative to the 104 amu/styrene signal at each time point.

S6. Measured 505.3, 447.7 and 408.4 nm Absorbance

S6.1 Experimental Conditions

Table S 4: Conditions of laser absorbance experiments probing for products. Uncertainties represent two standard deviations.

Experiment #	Probe Laser Wavelength (nm)	Nominal T (K)	Real T (K)	P (Torr)	$[C_{3}H_{6}]^{a}$ $(10^{15} \text{ cm}^{-3})$	$\begin{bmatrix} C_6 H_5 I \end{bmatrix}^a$ (10 ¹³ cm ⁻³)	$\frac{\text{IR}[\text{I}]_{0}}{(10^{12}\text{cm}^{-3})}$	Photolysis Laser Fluence (mJ cm ⁻²)
16	408.4	600	605±8	10	7.5	6.1	4.5±1.5	18
17	408.4	600	605±8	10	15.0	6.1	4.5±1.5	18
18	408.4	600	605±8	10	30.0	6.1	4.5±1.5	18
19	408.4	700	707±11	10	7.5	6.1	3.5±1.2	18
20	408.4	700	707±11	10	15.0	6.1	3.5±1.2	18
21	408.4	700	707±11	10	30.0	6.1	3.5±1.2	18
22	447.7	600	605±8	10	7.5	6.1	4.2 ± 1.4	18
23	447.7	600	605±8	10	15.0	6.1	4.2 ± 1.4	18
24	447.7	600	605±8	10	30.0	6.1	4.2 ± 1.4	18
25	447.7	700	707±11	10	7.5	6.1	4.0±1.3	18
26	447.7	700	707±11	10	15.0	6.1	4.0±1.3	18
27	447.7	700	707±11	10	30.0	6.1	4.0±1.3	18

^a10% uncertainty in all values due to systematic uncertainty in mass flow controller calibrations.

S6.2 Model Comparison without $C_3H_5 + I = C_3H_5$

Figure S 37: Room temperature visible absorbance spectra measured by Tonokura *et al.* for allyl,⁵¹ benzyl⁵² and phenyl⁵³ radicals. Insets show representative absorbance traces (markers are measured and lines are modelled) measured in this work at the different wavelengths indicated and otherwise identical conditions (707 K, 10 Torr, $[C_3H_6] = 7.5 \times 10^{15} \text{ cm}^{-3}$). Identical to Fig. 19 in the main text, except the recombination reaction between C_3H_5 and I atom ($C_3H_5 + I \rightarrow C_3H_5I$) has been removed from the model.

S6.3 Model Comparison with $C_3H_5 + I = C_3H_5$

Table S 5 compares all of the absorbance traces measured and modeled at three different visible wavelengths: 408.4 nm where allyl radical is known to absorb,⁵¹ 447.7 nm for benzyl radical⁵² and 505.3 nm for phenyl radical.⁵³ In total, six different reactor conditions were explored: 600 and 700 K at "low", "medium" and "high" [C₃H₆] (see Table 3 and Table S 4). As already noted in the main text, C₆H₅ is known to absorb broadly throughout the visible range,⁵⁴

so at all three wavelengths the contribution of C_6H_5 had to be included in the model. Generally, the model matches all of the 447.7 and 505.3 nm experiments well, except for the 700 K, high $[C_3H_6]$ experiment where the 447.7 nm absorbance has a negative baseline shift and 505.3 nm has a positive shift, neither of which are matched by the model. Such shifts are usually within $\pm 10\%$ and are irreproducible, indicative of noise or an imperfect background subtraction.

In contrast, there is a clear and reproducible baseline shift at 408.4 nm and 700 K, indicative of absorbance by some relatively long-lived species (most likely allyl radical, C_3H_5). The model does not capture this ~30% shift, but if the recombination reaction between C_3H_5 and I atom is removed from the gas-phase model (Figure S 37) then the measurement and model are within 10% of each other. As discussed in the context of the MBMS results above, C_3H_5I is observed as a product at m/z=168 amu, but it exhibits an unexpected, inverse relationship with pressure. This suggest that perhaps $C_3H_5 + I \rightarrow C_3H_5I$ is not occurring in the gas phase being probed by absorbance, but rather it is occurring on the walls near where MBMS sampling occurs.

Table S 5: Absorbance decays measured at different probe laser wavelengths and otherwise (near) identical conditions while phenyl radical + propene is occurring.

S66

S7. G3(MP2, CC)//B3LYP Calculated Molecular Parameters

Table S 6: Summary of molecular parameters for all calculated stationary points on the C₉H₁₁ potential energy surface: B3LYP optimized species structures in Cartesian coordinates; scaled zero-point energy corrections (ZPE) calculated with B3LYP frequencies; CCSD(T), MP2, and G3 calculated energies; external symmetry numbers (σ_{ext}); numbers of optical isomers (**n**); unscaled vibrational frequencies (v_i); and moments of inertia (**I**). **Bolded** frequencies correspond to internal rotations that were modeled as hindered rotors (see Table S 7).

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	$(amu*Å^2)$
phenyl radical	C 0.000 0.000 1.396	$ZPE(B3LYP/6-311G^{**}) = 0.0850$	2	1	401, 427, 602, 620, 674,	80.3
C ₆ H ₅	C 0.000 1.224 0.771	$E(CCSD(T)/6-311G^{**}) = -230.9695$			722, 813, 892, 964, 988,	89.9
	C 0.000 -1.224 0.771	$E(MP2/6-311G^{**}) = -230.8559$			993, 1016, 1050, 1072,	170.2
7H 1C 8H	C 0.000 1.212 -0.632	E(MP2/G3large) = -230.9906			1175, 1176, 1301, 1323,	
20 30	C 0.000 -1.212 -0.632	E(G3(MP2,CC) = -231.0193)			1462, 1470, 1573, 1629,	
	C 0.000 0.000 -1.322				3154, 3160, 3173, 3175,	
4C 5C	H 0.000 2.158 1.322				3187	
94 50 104	H 0.000 -2.158 1.322					
	H 0.000 2.151 -1.1/6					
110	H 0.000 - 2.151 - 1.1/6					
	H 0.000 0.000 -2.406				222 422 622 222 247	10.0
propene	C 1.291 0.150 0.000	$ZPE(B3LYP/6-311G^{**}) = 0.0//4$	1	I	229, 433, 600, 923, 947,	10.8
C_3H_6	C 0.001 0.4/2 0.000	$E(CCSD(1)/6-311G^{**}) = -11/.6002$			953, 1033, 1074, 1190,	54.6
74	$C = 1.137 = 0.505 \ 0.000$	$E(MP2/6-311G^{**}) = -117/.5435$			1327, 1411, 1450, 1482,	62.3
Ψ	H - 1./// -0.304 - 0.8/8	E(MP2/GStarge) = -117.0142			1497, 1701, 3000, 3042,	
20 50	H = 1.777 = 0.304 = 0.878	E(G3(MP2,CC) = -117.5934)			30/9, 3107, 3114, 3194	
8H 2C DH	H = 0.7515260000					
10 30 11	H = 0.275 1.320 0.000					
TI	H = 1618 - 0.886 0.000					
9H 6H	11 1.010 -0.000 0.000					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	$(amu*Å^2)$
il	C -0.040 -0.034 0.074	ZPE(B3LYP/6-311G**) = 0.1654	1	1	37 , 66 , 93 , 149, 259,	113.0
	C 0.015 0.113 1.462	$E(CCSD(T)/6-311G^{**}) = -348.6308$			320, 398, 415, 445, 500,	585.2
161 151	C 1.164 -0.146 -0.632	$E(MP2/6-311G^{**}) = -348.5035$			594, 636, 716, 762, 807,	659.9
171-70	C 1.238 0.150 2.131	E(MP2/G3large) = -348.7088			855, 872, 908, 927, 977,	
	C 2.387 -0.109 0.031	E(G3(MP2,CC) = -348.6707)			995, 1000, 1018, 1050,	
199	C 2.428 0.039 1.417				1065, 1116, 1141, 1181,	
8C 9C 20H	C -2.800 -1.608 -2.207				1201, 1202, 1229, 1300,	
180	C -1.692 -1.437 -1.225				1337, 1357, 1384, 1409,	
	C -1.365 -0.089 -0.659				1473, 1481, 1484, 1486,	
10	H -0.909 0.202 2.025				1524, 1625, 1642, 2947,	
30 104	Н 1.137 -0.265 -1.710				3010, 3018, 3053, 3082,	
20	H 1.259 0.266 3.209				3152, 3154, 3156, 3166,	
50	Н 3.309 -0.194 -0.533				3174, 3187	
131 40	H 3.380 0.070 1.935				·	
60	Н -3.792 -1.518 -1.732					
124	H -2.768 -0.842 -2.991					
14	H -2.769 -2.589 -2.688					
	H -1.272 -2.311 -0.740					
	H -1.369 0.653 -1.470					
	H -2.165 0.240 0.026					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
i2	C -0.172 -0.152 -0.127	ZPE(B3LYP/6-311G**) = 0.165342	1	1	47, 130, 144, 209, 257,	147.1
174	C 0.376 1.101 0.171	$E(CCSD(T)/6-311G^{**}) = -348.6288$			304, 332, 416, 455, 505,	455.6
201	C 0.698 -1.230 -0.310	$E(MP2/6-311G^{**}) = -348.5027$			549, 610, 637, 717, 763,	506.3
	C 1.754 1.269 0.285	E(MP2/G3large) = -348.7079			778, 859, 894, 929, 952,	
161-151	C 2.078 -1.067 -0.197	E(G3(MP2,CC) = -348.6687)			981, 1001, 1015, 1020,	
	C 2.610 0.185 0.101				1050, 1102, 1115, 1134,	
194	C -2.326 -0.407 1.185				1181, 1201, 1213, 1286,	
•	C -1.682 -0.344 -0.218				1303, 1342, 1364, 1406,	
191	C -2.344 0.681 -1.082				1457, 1484, 1498, 1500,	
111	H -0.284 1.951 0.309				1526, 1625, 1645, 2915,	
20 30	H 0.291 -2.209 -0.547				3026, 3091, 3102, 3132,	
T. C.	H 2.160 2.248 0.516				3151, 3157, 3167, 3175,	
	H 2.735 -1.916 -0.347				3187, 3238	
1 2 L 5C	H 3.683 0.316 0.187					
5C 1 1 20	H -1.877 -1.202 1.784					
136	H -2.187 0.538 1.718					
	H -3.400 -0.600 1.107					
141	Н -1.841 -1.333 -0.682					
	H -1.858 1.038 -1.982					
	H -3.378 0.958 -0.915					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
i3	C 0.294 -0.260 0.226	ZPE(B3LYP/6-311G**) = 0.1663	1	1	82, 153 , 196, 224, 340,	152.1
1 74	C -0.259 1.091 0.414	$E(CCSD(T)/6-311G^{**}) = -348.6100$			391, 418, 450, 468, 580,	402.0
	C -0.688 -1.282 -0.174	$E(MP2/6-311G^{**}) = -348.4578$			609, 655, 706, 733, 757,	472.0
- 70 100	C -1.585 1.356 0.200	E(MP2/G3large) = -348.6626			802, 856, 898, 921, 958,	
	C -2.004 -0.973 -0.380	E(G3(MP2,CC) = -348.6485)			965, 969, 1000, 1011,	
101	C -2.484 0.344 -0.205				1045, 1057, 1105, 1113,	
201-90	C 2.586 0.732 -0.780				1157, 1189, 1200, 1237,	
111	C 1.750 -0.439 -0.319				1328, 1336, 1396, 1418,	
10 20	C 1.481 -0.708 1.118				1432, 1466, 1481, 1495,	
100 20	H 0.404 1.884 0.739				1502, 1540, 1596, 3024,	
	Н -0.335 -2.299 -0.309				3077, 3099, 3109, 3126,	
50 131	H -1.954 2.365 0.350				3150, 3156, 3168, 3180,	
40	H -2.693 -1.756 -0.681				3194, 3197	
120	Н -3.529 0.574 -0.372					
144	H 2.284 1.068 -1.776					
	H 2.512 1.585 -0.102					
	H 3.642 0.445 -0.828					
	H 1.840 -1.319 -0.950					
	Н 1.459 -1.731 1.478					
	H 1.822 0.020 1.846					
Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
---------	------------------------	--------------------------------------	------------------	---	--	-------------
	(Å)	(Hartree)			(cm^{-1})	$(amu*Å^2)$
i4	C -0.059 -0.009 0.372	ZPE(B3LYP/6-311G**) = 0.1655	1	1	51 , 90 , 104, 114 , 281,	114.2
100	C -0.744 1.198 0.189	$E(CCSD(T)/6-311G^{**}) = -348.6273$			317, 346, 416, 479, 511,	576.0
170 100	C -0.769 -1.203 0.212	$E(MP2/6-311G^{**}) = -348.5007$			602, 637, 716, 741, 765,	644.5
70	C -2.096 1.211 -0.146	E(MP2/G3large) = -348.7061			826, 856, 884, 924, 976,	
	C -2.122 -1.195 -0.123	E(G3(MP2,CC) = -348.6672)			983, 1000, 1018, 1051,	l
194	C -2.790 0.013 -0.304				1070, 1083, 1114, 1171,	
80 201	C 3.770 0.002 -0.255				1182, 1202, 1226, 1289,	l
18H 9C	C 2.313 -0.013 -0.562				1313, 1341, 1361, 1375,	
151	C 1.417 -0.022 0.698				1461, 1467, 1485, 1500,	
	H -0.214 2.136 0.317				1528, 1625, 1647, 2927,	l
10	H -0.258 -2.150 0.358				3019, 3028, 3066, 3132,	
30	H -2.609 2.158 -0.279				3151, 3153, 3165, 3174,	
104	H -2.654 -2.133 -0.238				3187, 3233	
	H -3.843 0.022 -0.562					l
50	H 2.041 0.868 -1.169					
136 10	H 4.144 0.505 0.630					l
60 40	H 4.495 -0.366 -0.970					
124	H 2.066 -0.876 -1.191					
	H 1.657 -0.906 1.295					1
140	H 1.667 0.850 1.313					

Species	XYZ Coordinates	Energies	σ _{ext}	n	<i>v</i> _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
i5	C -0.175 0.745 0.171	ZPE(B3LYP/6-311G**) = 0.1686	1	1	74, 177, 214, 341, 392,	150.9
150 100	C -0.170 -0.745 0.405	$E(CCSD(T)/6-311G^{**}) = -348.6373$			478, 509, 547, 606, 638,	341.7
138 188	C 0.978 1.443 -0.035	$E(MP2/6-311G^{**}) = -348.4834$			680, 742, 764, 813, 867,	469.0
201 80	C 1.145 -1.396 0.105	E(MP2/G3large) = -348.6858			889, 910, 915, 965, 996,	
191-90	C 2.225 0.773 -0.109	E(G3(MP2,CC) = -348.6712			999, 1008, 1043, 1070,	
70 104	C 2.268 -0.646 -0.088				1117, 1130, 1163, 1183,	
10 1707 100	C -1.438 -1.202 -0.363				1193, 1228, 1283, 1284,	
20 20	C -2.448 -0.078 -0.047				1293, 1318, 1334, 1342,	
11H 3C	C -1.602 1.225 0.037				1404, 1429, 1477, 1494,	
AL AL	Н -0.397 -0.923 1.479				1509, 1540, 1605, 2825,	
121	H 0.943 2.516 -0.203				3013, 3032, 3034, 3044,	
50 60	H 1.199 -2.480 0.111				3079, 3091, 3143, 3148,	
13	H 3.136 1.339 -0.260				3166, 3190	
14	Н 3.221 -1.141 -0.249					
•	H -3.247 -0.010 -0.788					
	H -1.791 -2.191 -0.059					
	Н -1.217 -1.237 -1.434					
	H -2.922 -0.278 0.919					
	Н -1.717 1.839 -0.862					
	H -1.913 1.852 0.881					

Species	XYZ Coordinates	Energies	σ _{ext}	n	vi	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
i6	C 0.021 -0.361 0.311	ZPE(B3LYP/6-311G**) = 0.1655	1	1	46 , 80 , 112, 197, 305,	131.6
170	C -0.339 1.103 0.327	$E(CCSD(T)/6-311G^{**}) = -348.6103$			321, 396, 464, 513, 532,	521.8
	C -0.927 -1.305 0.033	$E(MP2/6-311G^{**}) = -348.4530$			589, 656, 674, 759, 783,	609.7
16H-7C	C -1.775 1.388 -0.001	E(MP2/G3large) = -348.6586			886, 917, 939, 939, 945,	
	C -2.271 -0.967 -0.258	E(G3(MP2,CC) = -348.6504			950, 968, 980, 1015,	
80 -184	C -2.666 0.394 -0.271				1035, 1104, 1129, 1174,	
	C 3.414 0.566 -0.327				1186, 1188, 1235, 1305,	
201	C 2.413 -0.296 -0.479				1310, 1325, 1354, 1424,	
401-9C-19H	C 1.457 -0.723 0.610				1431, 1443, 1449, 1473,	
	Н -0.087 1.529 1.316				1544, 1613, 1701, 2892,	
150	H -0.641 -2.354 0.036				2931, 2994, 3040, 3121,	
101-20	H -2.091 2.426 -0.013				3129, 3142, 3151, 3170,	
11	H -2.992 -1.747 -0.471				3192, 3208	
30	H -3.697 0.644 -0.501					
4C	H 0.325 1.656 -0.359					
121 50	H 3.622 1.033 0.631					
60	H 4.066 0.833 -1.151					
13	H 2.235 -0.740 -1.457					
14	H 1.527 -1.809 0.742					
	Н 1.769 -0.263 1.556					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	$(amu*Å^2)$
i7	C 0.040 -0.351 -0.171	$ZPE(B3LYP/6-311G^{**}) = 0.1671$	1	1	28 , 81 , 192, 200, 267 ,	124.0
154	C 0.425 1.021 -0.205	$E(CCSD(T)/6-311G^{**}) = -348.6458$			352, 411, 457, 481, 561,	543.4
171	C 1.079 -1.304 0.045	$E(MP2/6-311G^{**}) = -348.4829$			627, 681, 697, 762, 772,	626.9
18H 7C	C 1.746 1.398 -0.038	E(MP2/G3large) = -348.6888			827, 833, 893, 915, 970,	
	C 2.395 -0.915 0.209	E(G3(MP2,CC) = -348.6846			987, 990, 1029, 1040,	
8C 15H	C 2.744 0.441 0.168				1069, 1090, 1146, 1176,	
201 194	C -3.315 0.300 0.733				1190, 1247, 1283, 1330,	
90	C -2.497 0.069 -0.557				1332, 1351, 1404, 1440,	
	C -1.292 -0.790 -0.341				1483, 1490, 1497, 1503,	
1	H -0.328 1.784 -0.359				1514, 1578, 1601, 3011,	
	H 0.818 -2.357 0.076				3024, 3057, 3089, 3098,	
10H 11L	H 2.009 2.451 -0.068				3137, 3155, 3162, 3172,	
20 20	H 3.162 -1.665 0.369				3184, 3191	
30	H 3.776 0.745 0.297					
Π	H -2.718 0.820 1.485					
AC	H -4.206 0.900 0.525					
1 211 5 50	Н -3.641 -0.650 1.165					
5C 1 13H	Н -3.147 -0.412 -1.298					
	Н -1.467 -1.861 -0.262					
4	H -2.216 1.037 -0.981					
14						

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
i8	C -0.238 0.554 -0.064	ZPE(B3LYP/6-311G**) = 0.1669	1	1	113, 143, 235 , 270, 309,	143.9
	C 0.033 -0.894 -0.364	$E(CCSD(T)/6-311G^{**}) = -348.6006$			388, 417, 513, 558, 591,	380.3
1/19	C 0.738 1.479 0.129	$E(MP2/6-311G^{**}) = -348.4458$			667, 688, 760, 764, 794,	479.1
151 70	C 1.460 -1.292 -0.192	E(MP2/G3large) = -348.6480			868, 890, 910, 962, 964,	
18	C 2.093 1.066 0.011	E(G3(MP2,CC) = -348.6359)			985, 993, 1036, 1064,	
16H 8C 20H	C 2.414 -0.317 -0.080				1074, 1112, 1131, 1168,	
96 -19H	C -2.791 0.475 -0.520				1183, 1197, 1228, 1258,	
	C -1.634 0.283 0.466				1292, 1326, 1348, 1386,	
10	C -1.158 -1.210 0.623				1409, 1425, 1482, 1497,	
11H 10H2C	Н -0.306 -1.171 -1.379				1499, 1533, 1611, 2900,	
	H 0.506 2.489 0.457				3022, 3033, 3046, 3085,	
4	H 1.740 -2.340 -0.241				3091, 3113, 3144, 3147,	
5C . 12H	H 2.892 1.792 0.104				3165, 3187	
138 60	H 3.460 -0.604 -0.033					
	Н -2.954 1.537 -0.727					
14	Н -2.592 -0.023 -1.473					
	H -3.718 0.064 -0.111					
	H -1.866 0.793 1.406					
	H -0.800 -1.418 1.632					
	H -1.863 -1.984 0.310					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
i9	C 0.000 0.000 -0.186	ZPE(B3LYP/6-311G**) = 0.1660	1	1	45 , 69 , 115 , 139, 221,	149.1
174	C 0.000 1.211 0.563	$E(CCSD(T)/6-311G^{**}) = -348.6486$			341, 357, 416, 452, 516,	423.0
15- 18-	C 0.000 -1.211 0.563	$E(MP2/6-311G^{**}) = -348.4859$			525, 629, 690, 729, 765,	565.9
80	C 0.000 1.205 1.948	E(MP2/G3large) = -348.6925			823, 892, 911, 952, 969,	
16H 9C 19H	C 0.000 -1.205 1.948	E(G3(MP2,CC) = -348.6892)			988, 995, 1004, 1042,	
70 201	C 0.000 0.000 2.656				1048, 1104, 1114, 1178,	
110	C 0.000 0.000 -1.613				1202, 1233, 1328, 1356,	
10	C 0.000 -1.293 -2.380				1361, 1401, 1419, 1468,	
30 104	C 0.000 1.293 -2.380				1477, 1488, 1495, 1500,	
	H 0.000 2.160 0.043				1511, 1582, 1609, 2987,	
131 50	H 0.000 -2.160 0.043				2991, 3020, 3021, 3096,	
+51 - 4C	H 0.000 2.147 2.486				3106, 3158, 3165, 3184,	
121	H 0.000 -2.147 2.486				3193, 3196	
14	H 0.000 0.000 3.740					
	H 0.879 -1.909 -2.149					
	H -0.879 -1.909 -2.149					
	H 0.000 -1.114 -3.457					
	H 0.000 1.114 -3.457					
	H 0.879 1.909 -2.149					
	H -0.879 1.909 -2.149					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
i10	C -0.303 0.000 -0.718	ZPE(B3LYP/6-311G**) = 0.1655	1	1	61 , 73, 184, 185 , 269,	157.9
201	C 0.491 1.253 -0.438	$E(CCSD(T)/6-311G^{**}) = -348.6122$			361, 396, 450, 543, 545,	428.0
201	C 0.491 -1.252 -0.439	$E(MP2/6-311G^{**}) = -348.4552$			593, 626, 667, 730, 754,	458.5
90 19H	C 1.770 1.223 0.032	E(MP2/G3large) = -348.6607			782, 839, 900, 927, 963,	
174	C 1.771 -1.223 0.031	E(G3(MP2,CC) = -348.6522)			970, 977, 990, 1017,	
	C 2.439 0.000 0.283				1019, 1028, 1075, 1115,	
70 80	C -1.581 -0.001 1.534				1171, 1193, 1224, 1288,	
15H 18H	C -1.648 0.000 0.029				1290, 1347, 1397, 1409,	
10H 1C 11H	C -2.801 0.000 -0.639				1444, 1449, 1478, 1496,	
10H 3C	H -0.004 2.199 -0.630				1539, 1598, 1705, 2911,	
20	H -0.004 -2.199 -0.631				3022, 3069, 3106, 3125,	
T L	H 2.293 2.157 0.214				3149, 3151, 3169, 3170,	
40 50	H 2.293 -2.157 0.213				3194, 3204	
13H	H 3.455 0.000 0.657					
12H OL	H -1.039 -0.879 1.900					
	H -1.038 0.876 1.901					
14H	H -2.579 -0.001 1.976					
	H -0.572 0.001 -1.790					
	H -2.830 0.001 -1.724					
	H -3.756 0.000 -0.124					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
i11	C -0.105 1.636 -0.015	ZPE(B3LYP/6-311G**) = 0.1667	1	1	115, 175, 199, 242, 285,	198.2
154	C 0.377 -1.272 -0.495	$E(CCSD(T)/6-311G^{**}) = -348.5490$			311, 366, 419, 488, 522,	323.4
¥	C -1.365 1.405 -0.338	$E(MP2/6-311G^{**}) = -348.3759$			585, 683, 748, 779, 828,	471.5
18H 8C 16H	C -0.561 -1.442 0.438	E(MP2/G3large) = -348.5781			837, 860, 883, 914, 941,	
20H 7C 17H	C -2.263 0.241 -0.128	E(G3(MP2,CC) = -348.5845)			988, 996, 1007, 1030,	
9C 19H	C -1.952 -1.020 0.223				1071, 1100, 1163, 1216,	
	C 1.834 -1.115 -0.203				1236, 1249, 1314, 1321,	
10 121 20	C 2.148 0.405 -0.208				1326, 1343, 1350, 1366,	
12H	C 1.165 1.265 0.638				1424, 1465, 1486, 1494,	
40 -	H 0.056 -0.968 -1.490				1643, 1709, 1721, 2978,	
111	Н -1.878 2.234 -0.836				3003, 3019, 3035, 3036,	
50 60	Н -0.278 -1.767 1.440				3057, 3076, 3095, 3120,	
	Н -3.315 0.476 -0.275				3127, 3143	
13H	H -2.762 -1.724 0.400					
	H 3.159 0.558 0.182					
	H 2.472 -1.613 -0.942					
	H 2.074 -1.536 0.779					
	H 2.147 0.778 -1.236					
	H 0.959 0.754 1.590					
	H 1.687 2.192 0.910					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
i12	C -0.074 0.014 0.369	ZPE(B3LYP/6-311G**) = 0.1676	1	1	34 , 83 , 100, 238 , 274,	109.4
201	C -0.789 1.220 0.256	$E(CCSD(T)/6-311G^{**}) = -348.6129$			309, 331, 419, 509, 588,	599.7
15	C -0.815 -1.121 0.115	$E(MP2/6-311G^{**}) = -348.4499$			633, 704, 744, 748, 816,	664.9
16H 7C 15H	C -2.141 1.230 -0.085	E(MP2/G3large) = -348.6501			853, 876, 899, 939, 983,	
—	C -2.145 -1.182 -0.222	E(G3(MP2,CC) = -348.6455)			990, 1038, 1043, 1070,	
181	C -2.825 0.040 -0.325				1108, 1141, 1173, 1216,	
80 191	C 3.790 -0.170 -0.194				1239, 1286, 1313, 1321,	
178 90	C 2.300 -0.132 -0.541				1333, 1380, 1411, 1449,	
1419	C 1.400 -0.019 0.705				1475, 1489, 1497, 1500,	
	H -0.273 2.157 0.446				1512, 1574, 1634, 3018,	
1C	H -2.666 2.176 -0.160				3019, 3027, 3043, 3065,	
30 104	H -2.654 -2.123 -0.399				3085, 3088, 3145, 3159,	
20	H -3.877 0.052 -0.588				3172, 3184	
50	H 2.094 0.713 -1.207					
128	H 4.099 0.738 0.334					
40	H 4.405 -0.256 -1.094					
111	H 2.023 -1.034 -1.096					
	H 1.601 -0.867 1.368					
134	H 1.663 0.887 1.261					
	H 4.025 -1.023 0.451					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS 1-propenyl	C -1.717 -2.839 0.000	ZPE(B3LYP/6-311G**) = 0.1581	1	1	1580i, 23 , 51, 71, 140,	145.3
138	C -2.747 -1.745 0.000	$E(CCSD(T)/6-311G^{**}) = -348.5504$			174 , 269, 320, 403, 428,	694.6
	C -2.510 -0.445 0.000	$E(MP2/6-311G^{**}) = -348.3728$			505, 618, 635, 665, 700,	730.3
20	C -0.001 0.478 0.000	E(MP2/G3large) = -348.5799			731, 846, 906, 919, 922,	
11H 10H 14H	C 0.619 0.725 -1.214	E(G3(MP2,CC) = -348.5994)			962, 972, 1000, 1011,	
	C 0.619 0.725 1.214				1028, 1063, 1067, 1075,	
124	C 1.918 1.242 -1.210				1167, 1177, 1186, 1207,	
151	C 1.918 1.242 1.210				1274, 1326, 1326, 1343,	
	C 2.563 1.499 0.000				1410, 1474, 1485, 1488,	
160 40 170	H -1.835 -3.482 0.879				1498, 1603, 1627, 1687,	
	Н -1.835 -3.482 -0.879				3017, 3054, 3061, 3114,	
	H -0.703 -2.437 0.000				3152, 3157, 3167, 3172,	
li i	H -3.789 -2.079 0.000				3174, 3185	
70 80	H -3.247 0.351 0.000				<i>,</i>	
18H 9C 19H	H -1.259 0.003 0.000					
	H 0.110 0.524 -2.151					
201	H 0.110 0.524 2.151					
	H 2.423 1.444 -2.148					
	H 2.423 1.444 2.148					
	H 3.570 1.900 0.000					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS 2-propenyl	C 0.240 0.000 0.026	ZPE(B3LYP/6-311G**) = 0.1581	1	1	1527i, 20 , 52, 63, 158 ,	144.9
	C 0.907 1.209 0.128	$E(CCSD(T)/6-311G^{**}) = -348.5531$			164, 225, 306, 402, 435,	691.5
178 208	C 0.903 -1.208 -0.105	$E(MP2/6-311G^{**}) = -348.3761$			438, 617, 630, 665, 699,	729.0
T L	C 2.304 1.206 0.095	E(MP2/G3large) = -348.5835			730, 844, 907, 917, 922,	
90	C 2.301 -1.202 -0.137	E(G3(MP2,CC) = -348.6025)			964, 971, 1000, 1011,	
15H	C 2.996 0.002 -0.037				1026, 1054, 1061, 1077,	
164 80	C -3.110 0.192 -1.209				1175, 1177, 1186, 1218,	
	C -2.441 -0.015 0.106				1290, 1325, 1342, 1401,	
194	C -2.956 -0.211 1.307				1432, 1467, 1474, 1484,	
101	H 0.361 2.141 0.235				1497, 1601, 1626, 1714,	
	H 0.355 -2.142 -0.181				3005, 3067, 3069, 3086,	
101 10	H 2.849 2.141 0.174				3151, 3156, 3166, 3171,	
201 114	H 2.844 -2.137 -0.238				3179, 3184	
30	H 4.080 0.003 -0.062					
	Н -2.828 1.156 -1.647					
	Н -2.817 -0.581 -1.927					
124 50	H -4.200 0.169 -1.106					
50	H -1.143 -0.002 0.052					
13H	H -2.330 -0.347 2.182					
1	H -4.034 -0.242 1.468					
141						

Species	XYZ Coordinates	Energies	σ _{ext}	n	<i>v</i> _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS allyl	C 2.241 1.121 -0.069	ZPE(B3LYP/6-311G**) = 0.1589	1	1	1083i, 26 , 40, 66, 117 ,	131.3
	C 3.085 0.031 0.454	$E(CCSD(T)/6-311G^{**}) = -348.5583$			178, 358, 401, 424, 435,	724.6
140	C 3.805 -0.814 -0.293	$E(MP2/6-311G^{**}) = -348.3814$			528, 614, 631, 692, 729,	837.0
3C 13H	C -0.403 0.350 -0.015	E(MP2/G3large) = -348.5888			730, 837, 904, 925, 948,	
134 22	C -0.646 -1.009 0.017	E(G3(MP2,CC) = -348.6068)			969, 973, 998, 1013,	
1111C LON	C -1.403 1.303 -0.039				1022, 1036, 1072, 1079,	
tin	C -1.978 -1.439 0.025				1093, 1178, 1183, 1199,	
121	C -2.731 0.861 -0.030				1318, 1320, 1326, 1362,	
	C -3.013 -0.505 0.002				1413, 1441, 1471, 1478,	
160	H 2.259 2.028 0.538				1493, 1593, 1626, 1673,	
50-40	H 2.415 1.350 -1.122				3057, 3116, 3127, 3135,	
6C 17H	H 1.061 0.782 -0.021				3150, 3155, 3165, 3170,	
70	H 3.087 -0.100 1.535				3184, 3213	
189 80	H 4.389 -1.610 0.153					
90	Н 3.838 -0.727 -1.375					
T ta	H 0.168 -1.727 0.034					
201	H -1.177 2.364 -0.064					
	H -2.203 -2.500 0.049					
	H -3.541 1.583 -0.048					
	H -4.043 -0.842 0.008					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	$(amu*Å^2)$
TS i1	C 0.286 0.327 -0.177	ZPE(B3LYP/6-311G**) = 0.1670	1	1	194i, 16 , 49 , 77, 119,	139.1
	C 1.207 1.299 0.152	$E(CCSD(T)/6-311G^{**}) = -348.5671$			149, 248, 400, 424, 432,	644.4
171	C 0.594 -1.005 -0.343	$E(MP2/6-311G^{**}) = -348.3886$			581, 611, 646, 689, 725,	729.6
	C 2.538 0.900 0.326	E(MP2/G3large) = -348.5949			831, 877, 897, 922, 943,	
16H 7C	C 1.929 -1.390 -0.166	E(G3(MP2,CC) = -348.6103			964, 987, 993, 998,	
86 194	C 2.894 -0.439 0.168				1018, 1050, 1053, 1076,	
	C -3.418 -0.589 0.807				1176, 1178, 1189, 1305,	
2019 90	C -2.822 -0.039 -0.452				1312, 1323, 1407, 1439,	
19	C -2.020 1.043 -0.515				1463, 1475, 1479, 1492,	
	H 0.925 2.340 0.273				1579, 1624, 1627, 3006,	
	Н -0.165 -1.736 -0.602				3046, 3092, 3129, 3135,	
10 11	H 3.293 1.636 0.585				3147, 3152, 3163, 3168,	
10H 3C	H 2.211 -2.431 -0.288				3183, 3223	
20	H 3.925 -0.743 0.304					
Li 50	H -3.061 -1.607 1.004					
4C 13H	H -3.167 0.030 1.672					
12H 6C	H -4.510 -0.651 0.734					
- <u>T</u>	Н -3.030 -0.590 -1.367					
14	H -1.688 1.439 -1.467					
	H -1.865 1.671 0.355					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	$(amu*Å^2)$
TS i2	C 0.074 -0.026 -0.158	ZPE(B3LYP/6-311G**) = 0.1632	1	1	272i, 27 , 67, 98, 160 ,	151.1
174	C 0.653 1.174 0.194	$E(CCSD(T)/6-311G^{**}) = -348.5653$			200, 254, 401, 420, 440,	541.6
	C 0.787 -1.185 -0.386	$E(MP2/6-311G^{**}) = -348.3864$			518, 605, 612, 691, 726,	636.3
20H 16H 7C	C 2.044 1.210 0.340	E(MP2/G3large) = -348.5927			833, 865, 898, 900, 942,	
90	C 2.179 -1.135 -0.239	E(G3(MP2,CC) = -348.6084)			952, 966, 994, 1004,	
19H 8C 19H	C 2.801 0.059 0.124				1021, 1046, 1059, 1078,	
1011	C -2.596 -0.968 0.843				1176, 1180, 1184, 1292,	
	C -2.280 -0.152 -0.386				1314, 1324, 1409, 1439,	
	C -2.645 1.144 -0.528				1463, 1476, 1486, 1496,	
10H 1C 11H	H 0.052 2.064 0.353				1578, 1599, 1627, 3019,	
20 30	Н 0.299 -2.113 -0.668				3079, 3108, 3128, 3140,	
	H 2.534 2.138 0.620				3145, 3153, 3163, 3169,	
	H 2.771 -2.029 -0.409				3184, 3217	
40 50	H 3.879 0.092 0.236				,	
12H 6C 13H	Н -1.825 -1.711 1.054					
	H -2.703 -0.330 1.724					
14H	H -3.540 -1.506 0.701					
	Н -2.031 -0.714 -1.282					
	H -2.527 1.666 -1.470					
	H -3.016 1.721 0.314					

Species	XYZ Coordinates	Energies	σ _{ext}	n	vi	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i1-i3	C 0.220 -0.326 0.421	ZPE(B3LYP/6-311G**) = 0.1652	1	1	495i, 100 , 116, 161, 219,	159.0
174	C -0.296 1.005 0.634	$E(CCSD(T)/6-311G^{**}) = -348.6036$			329, 406, 425, 437, 493,	403.8
	C -0.716 -1.303 -0.085	$E(MP2/6-311G^{**}) = -348.4452$			622, 664, 701, 741, 782,	468.7
18H	C -1.574 1.340 0.244	E(MP2/G3large) = -348.6508			804, 829, 880, 938, 959,	
151 8C 19H	C -1.988 -0.939 -0.465	E(G3(MP2,CC) = -348.6439)			969, 986, 993, 1020,	
16H 20H 9C	C -2.434 0.388 -0.328				1038, 1111, 1135, 1164,	
111	C 2.520 0.833 -0.840				1168, 1190, 1195, 1232,	
10 - 30	C 1.824 -0.421 -0.408				1330, 1345, 1392, 1417,	
	C 1.541 -0.759 1.005				1458, 1478, 1480, 1489,	
10H-2C	H 0.336 1.746 1.111				1497, 1546, 1595, 2993,	
5C 13H	Н -0.394 -2.336 -0.175				3058, 3077, 3098, 3146,	
40 - 50	H -1.929 2.353 0.404				3150, 3156, 3168, 3170,	
	H -2.661 -1.693 -0.858				3176, 3192	
12H 14H	H -3.437 0.664 -0.628					
	H 2.171 1.174 -1.818					
	H 2.373 1.650 -0.129					
	H 3.603 0.664 -0.919					
	Н 1.794 -1.237 -1.121					
	H 1.607 -1.803 1.301					
	H 1.954 -0.090 1.757					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	$(amu*Å^2)$
TS i1-i4	C 0.002 -0.002 -0.003	ZPE(B3LYP/6-311G**) = 0.1617	1	1	1921i, 42 , 78 , 142, 241,	113.8
	C -0.002 -0.001 1.394	$E(CCSD(T)/6-311G^{**}) = -348.5586$			334, 369, 411, 416, 494,	577.9
164	C 1.235 -0.001 -0.665	$E(MP2/6-311G^{**}) = -348.4317$			603, 637, 705, 717, 724,	651.8
70	C 1.192 0.000 2.115	E(MP2/G3large) = -348.6399			760, 818, 858, 892, 926,	
	C 2.430 -0.002 0.050	E(G3(MP2,CC) = -348.6050)			932, 979, 1001, 1018,	
154	C 2.412 -0.001 1.444				1049, 1060, 1104, 1149,	
201 80	C -2.583 1.409 -2.565				1181, 1202, 1216, 1237,	
19H 9C 10H	C -1.577 1.328 -1.466				1257, 1332, 1342, 1359,	
107	C -1.294 0.014 -0.787				1370, 1429, 1479, 1486,	
	Н -0.949 -0.005 1.923				1527, 1626, 1646, 2194,	
10 11	H 1.257 0.001 -1.750				2952, 3045, 3144, 3153,	
10H 3C	H 1.167 -0.001 3.199				3155, 3159, 3167, 3175,	
20	H 3.376 -0.006 -0.481				3187, 3260	
T il	H 3.342 -0.003 2.002					
5C	Н -1.289 1.449 -2.725					
40 13H	H -3.024 0.496 -2.945					
121 60	Н -3.064 2.352 -2.785					
• <u>T</u>	Н -1.366 2.244 -0.926					
14	H -2.128 -0.239 -0.113					
	Н -1.277 -0.784 -1.541					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i1-i6	C 0.114 -0.534 0.490	ZPE(B3LYP/6-311G**) = 0.1619	1	1	1940i, 117, 181, 267,	158.7
174	C -0.132 0.891 0.598	$E(CCSD(T)/6-311G^{**}) = -348.5594$			358, 373, 431, 461, 507,	396.8
18H	C -1.441 1.368 0.238	$E(MP2/6-311G^{**}) = -348.3883$			541, 620, 632, 709, 732,	486.9
BL ST GC -16H	C -2.385 0.520 -0.298	E(MP2/G3large) = -348.5937			790, 810, 861, 902, 922,	
194	C -2.110 -0.852 -0.429	E(G3(MP2,CC) = -348.6029)			942, 956, 972, 999,	
154	C -0.862 -1.357 -0.044				1027, 1046, 1085, 1100,	
	C 1.557 -0.983 0.639				1170, 1178, 1183, 1208,	
10	C 2.267 -0.349 -0.534				1255, 1275, 1292, 1341,	
111 20 104	C 2.347 1.035 -0.581				1345, 1395, 1421, 1458,	
	H 0.345 1.408 1.436				1482, 1494, 1541, 1548,	
30	Н -0.649 -2.414 -0.178				1619, 2989, 3029, 3067,	
40 40	H -1.675 2.417 0.389				3089, 3148, 3150, 3158,	
131	Н -2.863 -1.521 -0.830				3173, 3176, 3187	
14	Н -3.355 0.905 -0.594					
	H 0.884 1.287 -0.264					
	H 2.624 1.580 0.322					
	H 2.643 1.524 -1.505					
	H 2.312 -0.927 -1.452					
	H 1.632 -2.072 0.624					
	H 1.975 -0.619 1.587					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i1-i7	C -0.028 -0.456 -0.076	ZPE(B3LYP/6-311G**) = 0.1624	1	1	1847i, 34 , 145, 163, 239 ,	132.4
18	C -0.263 0.935 -0.155	$E(CCSD(T)/6-311G^{**}) = -348.5630$			273, 308, 415, 451, 477,	496.0
17	C -1.161 -1.294 0.055	$E(MP2/6-311G^{**}) = -348.4002$			575, 627, 643, 701, 750,	619.2
70 80	C -1.553 1.449 -0.087	E(MP2/G3large) = -348.6091			773, 833, 849, 899, 916,	
15H 20H 19H	C -2.444 -0.775 0.117	E(G3(MP2,CC) = -348.6095)			968, 986, 1006, 1024,	
16H 9C	C -2.654 0.606 0.053				1046, 1075, 1107, 1150,	
	C 3.005 0.944 0.194				1178, 1205, 1230, 1279,	
101 10 111	C 2.655 -0.485 -0.093				1338, 1355, 1380, 1420,	
20 30	C 1.285 -1.082 -0.134				1431, 1482, 1486, 1501,	
	H 0.564 1.617 -0.293				1526, 1594, 1628, 2170,	
	H -1.015 -2.368 0.110				2965, 3050, 3088, 3146,	
40 50	H -1.699 2.522 -0.155				3152, 3160, 3170, 3171,	
	H -3.289 -1.448 0.216				3187, 3216	
, I	H -3.657 1.013 0.104					
141	H 2.873 1.592 -0.685					
	H 2.397 1.369 0.997					
	H 4.052 1.023 0.496					
	Н 3.432 -1.134 -0.478					
	Н 1.287 -2.114 -0.470					
	H 1.997 -1.122 0.910					

Species	XYZ Coordinates	Energies	σ _{ext}	n	vi	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i1-i12	C 0.023 -0.136 -0.261	ZPE(B3LYP/6-311G**) = 0.1622	1	1	1752i, 41, 156, 191, 207 ,	129.4
168	C -0.157 -0.008 1.109	$E(CCSD(T)/6-311G^{**}) = -348.5799$			318, 391, 415, 472, 489,	493.5
	C 1.322 -0.073 -0.770	$E(MP2/6-311G^{**}) = -348.4133$			607, 660, 704, 745, 797,	591.7
17H 7C 18H	C 0.878 0.178 2.005	E(MP2/G3large) = -348.6182			831, 866, 884, 912, 947,	
15H 8C 20H	C 2.390 0.116 0.109	E(G3(MP2,CC) = -348.6226			990, 1002, 1038, 1071,	
30	C 2.175 0.241 1.484				1096, 1115, 1130, 1174,	
100	C -3.430 0.727 0.030				1206, 1220, 1247, 1286,	
10 11	C -2.381 -0.360 0.063				1307, 1332, 1360, 1408,	
20 30	C -1.283 -0.330 -1.013				1466, 1476, 1485, 1490,	
I I	H -1.570 -0.160 1.084				1492, 1602, 1628, 1683,	
40 50	Н 1.505 -0.170 -1.836				2994, 3017, 3045, 3054,	
12H 6C 13H	H 0.706 0.273 3.072				3079, 3095, 3147, 3155,	
Ţ	H 3.401 0.165 -0.280				3168, 3180	
149	H 3.019 0.387 2.150					
	H -2.970 1.720 -0.005					
	H -4.071 0.633 -0.857					
	H -4.082 0.686 0.908					
	H -2.790 -1.355 0.247					
	H -1.268 -1.252 -1.603					
	H -1.449 0.491 -1.720					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i1-p2	C 0.075 -0.301 -0.278	ZPE(B3LYP/6-311G**) = 0.1580	1	1	118i, 28 , 73, 104, 143,	122.2
17	C 0.477 1.039 -0.291	$E(CCSD(T)/6-311G^{**}) = -348.5659$			190, 291, 324, 400, 415,	548.3
	C 1.033 -1.282 -0.010	$E(MP2/6-311G^{**}) = -348.4386$			502, 549, 636, 677, 716,	634.7
	C 1.802 1.388 -0.050	E(MP2/G3large) = -348.6463			760, 835, 857, 912, 927,	
160 150	C 2.362 -0.936 0.234	E(G3(MP2,CC) = -348.6156)			943, 949, 978, 1001,	
70 - 435	C 2.750 0.400 0.214				1018, 1027, 1051, 1097,	
201	C -3.379 0.629 0.255				1126, 1181, 1203, 1214,	
19H 8C	C -2.323 -0.150 0.498				1232, 1311, 1324, 1342,	
184	C -1.375 -0.673 -0.548				1362, 1451, 1477, 1486,	
	H -0.257 1.814 -0.488				1528, 1626, 1645, 1679,	
10 100	H 0.738 -2.326 0.003				3015, 3052, 3128, 3135,	
118 20	H 2.096 2.432 -0.068				3154, 3158, 3168, 3176,	
30	H 3.091 -1.712 0.439				3188, 3216	
T d	H 3.783 0.672 0.403					
5C 12H	H -4.019 0.984 1.054					
50	H -3.613 0.972 -0.748					
13	H -5.112 -1.008 -0.145					
140	Н -2.109 -0.453 1.522					
	Н -1.455 -1.765 -0.588					
	H -1.680 -0.300 -1.532					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
-	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i1-p3	C 0.026 -0.423 0.216	ZPE(B3LYP/6-311G**) = 0.1587	1	1	553i, 54 , 122, 162 , 209,	142.5
18	C -0.306 0.917 0.461	$E(CCSD(T)/6-311G^{**}) = -348.5658$			257, 290, 359, 417, 430,	477.0
15	C -0.993 -1.291 -0.203	$E(MP2/6-311G^{**}) = -348.3949$			478, 550, 634, 670, 715,	569.6
171-70-80	C -1.605 1.377 0.265	E(MP2/G3large) = -348.6032			735, 782, 819, 857, 932,	
100	C -2.290 -0.831 -0.404	E(G3(MP2,CC) = -348.6153)			936, 981, 999, 1004,	
16H 20H 9C	C -2.601 0.508 -0.175				1017, 1050, 1053, 1091,	
	C 2.780 0.921 -0.650				1110, 1182, 1203, 1205,	
	C 2.560 -0.418 -0.019				1269, 1333, 1355, 1403,	
100 110 110	C 1.393 -0.964 0.398				1436, 1474, 1486, 1493,	
20 30	H 0.450 1.594 0.840				1527, 1614, 1640, 1645,	
	Н -0.759 -2.336 -0.380				3003, 3056, 3110, 3131,	
40 50	H -1.842 2.416 0.467				3149, 3158, 3164, 3175,	
124 134	H -3.060 -1.519 -0.735				3186, 3194	
	Н -3.613 0.867 -0.325				,	
14	H 3.518 0.842 -1.454					
	H 1.864 1.346 -1.061					
	H 3.187 1.637 0.076					
	H 3.456 -1.012 0.144					
	H 1.429 -2.001 0.721					
	H 1.581 -0.611 2.383					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i2-i3	C 0.274 -0.191 -0.033	ZPE(B3LYP/6-311G**) = 0.1651	1	1	535i, 120, 143, 219 , 234,	145.8
17	C -0.265 1.132 0.163	$E(CCSD(T)/6-311G^{**}) = -348.6026$			335, 401, 410, 442, 525,	414.1
T	C -0.680 -1.235 -0.320	$E(MP2/6-311G^{**}) = -348.4440$			620, 660, 681, 694, 737,	484.2
15 70	C -1.626 1.347 0.178	E(MP2/G3large) = -348.6496			791, 798, 841, 877, 925,	
161 181	C -2.034 -0.991 -0.299	E(G3(MP2,CC) = -348.6431			958, 970, 986, 1020,	
80	C -2.532 0.296 -0.035				1028, 1077, 1122, 1163,	
9C -19H	C 2.686 0.658 -0.662				1170, 1196, 1214, 1231,	
200	C 1.752 -0.454 -0.219				1324, 1346, 1394, 1418,	
10 110	C 1.505 -0.675 1.224				1459, 1467, 1480, 1498,	
101	H 0.411 1.966 0.310				1504, 1550, 1595, 3030,	
20	Н -0.308 -2.230 -0.545				3079, 3091, 3105, 3146,	
	H -2.001 2.352 0.342				3151, 3158, 3169, 3183,	
50	H -2.724 -1.802 -0.508				3193, 3256	
4C 13H	H -3.600 0.480 -0.023				,	
12H 6C	H 2.507 0.929 -1.705					
	H 2.570 1.557 -0.053					
14	H 3.725 0.331 -0.565					
	Н 1.922 -1.372 -0.781					
	H 1 328 -1 665 1 617					
	H 1 687 0 125 1 930					
10H 2C 3C 4C 5C 13H 12H 6C 13H	H 0.411 1.966 0.310 H -0.308 -2.230 -0.545 H -2.001 2.352 0.342 H -2.724 -1.802 -0.508 H -3.600 0.480 -0.023 H 2.507 0.929 -1.705 H 2.570 1.557 -0.053 H 3.725 0.331 -0.565 H 1.922 -1.372 -0.781 H 1.328 -1.665 1.617 H 1.687 0.125 1.930				1504, 1550, 1595, 3030, 3079, 3091, 3105, 3146, 3151, 3158, 3169, 3183, 3193, 3256	

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i2-i8	C -0.224 0.471 -0.154	ZPE(B3LYP/6-311G**) = 0.1652	1	1	653i, 129, 154, 231 , 295,	143.6
170	C 0.113 -0.926 -0.362	$E(CCSD(T)/6-311G^{**}) = -348.5774$			307, 403, 439, 559, 585,	400.3
1=1	C 0.744 1.407 0.095	$E(MP2/6-311G^{**}) = -348.4123$			596, 643, 719, 732, 789,	475.8
70 135	C 1.494 -1.294 -0.310	E(MP2/G3large) = -348.6164			816, 846, 864, 907, 926,	
164	C 2.109 1.028 0.083	E(G3(MP2,CC) = -348.6163)			956, 967, 994, 1017,	
80	C 2.456 -0.317 -0.078				1026, 1076, 1093, 1158,	
20H	C -2.759 0.334 -0.687				1163, 1177, 1200, 1233,	
9C	C -1.644 0.393 0.363				1304, 1335, 1361, 1406,	
100 190 10 110	C -1.330 -0.960 1.022				1444, 1451, 1489, 1498,	
20 30	Н -0.526 -1.524 -1.010				1501, 1536, 1611, 3024,	
	H 0.465 2.418 0.374				3025, 3083, 3086, 3093,	
Li i	H 1.790 -2.322 -0.485				3098, 3152, 3156, 3175,	
40 50	H 2.880 1.770 0.254				3187, 3196	
12H 6C 13H	H 3.503 -0.600 -0.049					
	H -2.849 1.289 -1.212					
140	Н -2.568 -0.441 -1.435					
131	Н -3.721 0.113 -0.215					
	H -1.868 1.189 1.081					
	H -0.847 -0.918 1.992					
	H -2.016 -1.794 0.885					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i2-i9	C 0.169 0.029 0.044	ZPE(B3LYP/6-311G**) = 0.1620	1	1	1821i, 43 , 145, 190 , 252,	145.1
20	C -0.599 1.216 0.034	$E(CCSD(T)/6-311G^{**}) = -348.5675$			358, 379, 406, 419, 444,	429.3
170160	C -0.540 -1.191 0.007	$E(MP2/6-311G^{**}) = -348.4059$			510, 544, 634, 638, 700,	567.9
100 90 70	C -1.986 1.179 0.003	E(MP2/G3large) = -348.6166			733, 768, 826, 891, 915,	
	C -1.929 -1.221 -0.032	E(G3(MP2,CC) = -348.6162			965, 979, 988, 1009,	
181 4 151	C -2.666 -0.038 -0.031				1038, 1050, 1107, 1122,	
	C 2.422 -1.235 -0.030				1181, 1209, 1224, 1241,	
100 110	C 1.635 0.049 0.098				1332, 1359, 1365, 1415,	
30	C 2.407 1.306 -0.127				1444, 1477, 1491, 1506,	
	H -0.109 2.181 0.063				1530, 1600, 1633, 2175,	
121 121	H 0.000 -2.129 -0.004				3003, 3073, 3101, 3158,	
	H -2.542 2.110 0.000				3165, 3171, 3184, 3192,	
14	H -2.438 -2.178 -0.067				3197, 3288	
•	H -3.749 -0.064 -0.060					
	H 2.054 -2.021 0.631					
	H 2.380 -1.611 -1.060					
	H 3.474 -1.067 0.212					
	H 2.056 0.744 1.062					
	H 1.915 2.248 -0.307					
	H 3.476 1.233 -0.262					

Species	XYZ Coordinates	Energies	σ _{ext}	n	Vi	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i2-i10	C 0.193 0.054 0.096	ZPE(B3LYP/6-311G**) = 0.1606	1	1	1615i, 95, 135, 215, 254 ,	144.9
201	C -0.504 -1.197 -0.022	$E(CCSD(T)/6-311G^{**}) = -348.5486$			355, 400, 413, 457, 517,	427.3
179	C -1.885 -1.241 -0.071	$E(MP2/6-311G^{**}) = -348.3851$			525, 587, 625, 677, 711,	564.6
	C -2.652 -0.071 -0.046	E(MP2/G3large) = -348.5955			723, 775, 787, 859, 929,	
19H 8C 16H	C -1.994 1.164 0.012	E(G3(MP2,CC) = -348.5985)			962, 978, 985, 1010,	
7C 15H	C -0.617 1.243 0.065				1018, 1036, 1083, 1109,	
	C 1.699 0.124 0.036				1117, 1177, 1210, 1259,	
180	C 2.451 -1.192 0.005				1305, 1355, 1388, 1413,	
101 10	C 2.392 1.299 -0.166				1437, 1468, 1494, 1495,	
111	H -0.142 2.213 0.116				1505, 1557, 1563, 1626,	
20	H 0.056 -2.121 -0.071				3021, 3078, 3115, 3159,	
	H -2.572 2.082 0.003				3160, 3165, 3191, 3200,	
50	Н -2.376 -2.205 -0.150				3205, 3248	
12	Н -3.733 -0.119 -0.087					
40 13H	H 2.123 -1.887 0.782					
Ţ	H 2.310 -1.687 -0.962					
14	H 3.518 -1.016 0.143					
-	H 0.943 0.093 1.226					
	H 1.906 2.256 -0.293					
	H 3.473 1.291 -0.168					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i2-p1	C -0.164 -0.053 -0.300	ZPE(B3LYP/6-311G**) = 0.1618	1	1	474 i, 54 , 101, 113 , 197,	169.8
	C 0.404 1.118 0.222	$E(CCSD(T)/6-311G^{**}) = -348.5770$			224, 290, 415, 431, 469,	472.6
201	C 0.682 -1.140 -0.554	$E(MP2/6-311G^{**}) = -348.3996$			526, 545, 575, 594, 636,	510.7
17)	C 1.770 1.201 0.467	E(MP2/G3large) = -348.6073			712, 774, 786, 815, 852,	
18H 9C	C 2.051 -1.059 -0.312	E(G3(MP2,CC) = -348.6229)			876, 925, 977, 990, 999,	
70 80 194	C 2.602 0.114 0.199				1015, 1035, 1053, 1106,	
15H 16H	C -2.325 -0.770 1.484				1181, 1201, 1210, 1280,	
	C -1.614 -0.172 -0.597				1325, 1354, 1419, 1422,	
111 10	C -2.405 0.881 -0.969				1431, 1480, 1525, 1557,	
30 10	H -0.230 1.967 0.451				1624, 1644, 3083, 3140,	
1 20	H 0.261 -2.058 -0.954				3145, 3155, 3161, 3171,	
A T	H 2.188 2.115 0.873				3178, 3189, 3231, 3240,	
50	H 2.687 -1.912 -0.523				3247	
131	H 3.666 0.180 0.392					
121	H -1.701 -1.640 1.649					
	H -2.066 0.122 2.040					
Tab	H -3.381 -0.949 1.320					
	H -1.931 -1.164 -0.902					
	Н -2.079 1.910 -0.873					
	H -3.418 0.717 -1.314					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i2-p4	C -0.002 -0.002 0.003	ZPE(B3LYP/6-311G**) = 0.1627	1	1	780i, 60 , 137, 201, 236 ,	145.3
201	C -0.001 0.041 1.404	$E(CCSD(T)/6-311G^{**}) = -348.5652$			332, 380, 416, 429, 500,	430.5
17H	C 1.236 -0.040 -0.656	$E(MP2/6-311G^{**}) = -348.4269$			534, 541, 578, 636, 667,	547.4
	C 1.194 0.073 2.119	E(MP2/G3large) = -348.6333			714, 746, 787, 856, 897,	
19H 7C 16H	C 2.429 -0.011 0.057	E(G3(MP2,CC) = -348.6090)			925, 937, 982, 1003,	
19H 8C 15H	C 2.414 0.049 1.450				1017, 1022, 1050, 1058,	
	C -2.540 -0.476 -0.064				1107, 1136, 1183, 1207,	
	C -1.285 0.009 -0.766				1295, 1326, 1353, 1409,	
11H 1C 10H	C -1.388 0.716 -1.921				1427, 1475, 1483, 1496,	
30 20	H -0.938 0.063 1.946				1526, 1599, 1624, 1643,	
	Н 1.260 -0.123 -1.736				3028, 3091, 3117, 3141,	
	H 1.169 0.114 3.203				3161, 3169, 3180, 3186,	
50 40	H 3.373 -0.049 -0.475				3192, 3229	
13H 6C 12H	H 3.344 0.067 2.007					
- -	H -2.380 -1.429 0.443					
14H	H -2.860 0.254 0.687					
	Н -3.356 -0.596 -0.778					
	H -0.998 -1.698 -1.600					
	H -0.535 1.209 -2.369					
	H -2.329 0.774 -2.455					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i4-i5	C -0.060 0.137 -0.028	ZPE(B3LYP/6-311G**) = 0.1664	1	1	536i, 51, 146, 213, 327,	155.5
1-24	C -0.105 0.120 1.405	$E(CCSD(T)/6-311G^{**}) = -348.5997$			404, 464, 506, 586, 618,	364.9
20H 15H	C 1.132 -0.125 -0.674	$E(MP2/6-311G^{**}) = -348.4358$			640, 709, 732, 768, 813,	460.4
90 000	C 1.103 -0.083 2.125	E(MP2/G3large) = -348.6402			843, 849, 876, 904, 936,	
	C 2.313 -0.356 0.051	E(G3(MP2,CC) -348.6378			964, 975, 1017, 1032,	
10 100 70 -160	C 2.285 -0.347 1.449				1039, 1067, 1105, 1172,	
11H 2C 17H	C -1.526 -1.466 1.271				1183, 1188, 1216, 1230,	
30	C -2.341 -0.780 0.199				1296, 1329, 1337, 1355,	
	C -1.411 0.122 -0.693				1455, 1468, 1483, 1505,	
50 121	H -0.900 0.666 1.907				1512, 1568, 1606, 3016,	
13H 6C	Н 1.150 -0.183 -1.759				3026, 3056, 3078, 3109,	
- T	H 1.095 -0.027 3.208				3117, 3150, 3159, 3174,	
14	Н 3.241 -0.552 -0.474				3186, 3198	
	H 3.198 -0.524 2.008					
	Н -2.866 -1.510 -0.427					
	Н -1.966 -1.587 2.256					
	Н -0.885 -2.288 0.966					
	Н -3.116 -0.165 0.666					
	Н -1.333 -0.266 -1.712					
	Н -1.836 1.128 -0.771					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i4-p2	C 0.000 -0.002 -0.007	ZPE(B3LYP/6-311G**) = 0.1588	1	1	574i, 43 , 72 , 111, 282,	131.0
18	C -0.011 0.013 1.392	$E(CCSD(T)/6-311G^{**}) = -348.5616$			318, 348, 374, 395, 415,	516.9
160	C 1.234 -0.015 -0.663	$E(MP2/6-311G^{**}) = -348.4298$			505, 560, 635, 637, 715,	605.9
201	C 1.179 0.022 2.115	E(MP2/G3large) = -348.6375			760, 831, 854, 905, 917,	
19H 9C 8C	C 2.428 -0.010 0.057	E(G3(MP2,CC) = -348.6104			924, 940, 976, 1001,	
15	C 2.404 0.010 1.448				1018, 1027, 1051, 1087,	
	C -3.182 -1.483 0.037				1127, 1182, 1203, 1218,	
10 10	C -2.041 -1.325 -0.656				1225, 1308, 1324, 1340,	
111 20	C -1.301 -0.012 -0.793				1360, 1446, 1477, 1485,	
	H -0.960 0.015 1.918				1528, 1626, 1634, 1648,	
40	H 1.260 -0.024 -1.748				3007, 3065, 3129, 3140,	
50 12	H 1.151 0.038 3.199				3151, 3158, 3168, 3176,	
131 60	H 3.375 -0.018 -0.471				3188, 3218	
	H 3.331 0.016 2.011					
140	H -1.500 -2.207 -0.989					
	Н -3.719 -0.632 0.444					
	H -3.631 -2.460 0.173					
	Н -2.815 -1.419 -2.523					
	H -1.079 0.177 -1.846					
	H -1.950 0.802 -0.454					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i4-p10	C -0.052 0.102 -0.022	ZPE(B3LYP/6-311G**) = 0.1634	1	1	542i, 51 , 78, 81, 238,	132.1
1	C -0.039 0.065 1.390	$E(CCSD(T)/6-311G^{**}) = -348.5859$			241, 347, 407, 417, 504,	601.0
	C 1.191 0.043 -0.690	$E(MP2/6-311G^{**}) = -348.4104$			549, 633, 702, 720, 768,	656.2
174 160	C 1.155 -0.015 2.094	E(MP2/G3large) = -348.6181			798, 814, 834, 845, 863,	ł
	C 2.382 -0.037 0.018	E(G3(MP2,CC) = -348.6302			911, 975, 994, 1006,	ł
n	C 2.373 -0.067 1.414				1007, 1015, 1017, 1044,	l
	C -3.062 -1.972 -1.783				1117, 1179, 1195, 1237,	ł
or 19H 20H	C -1.885 -1.922 -1.082				1246, 1277, 1332, 1355,	l
100 00	C -1.293 0.145 -0.756				1464, 1480, 1486, 1515,	l
151 2	H -0.981 0.110 1.928				1555, 1599, 1622, 3123,	ł
U U	H 1.209 0.072 -1.775				3133, 3136, 3154, 3156,	l
111 10	H 1.139 -0.034 3.179				3169, 3175, 3189, 3198,	ł
101	Н 3.325 -0.073 -0.517				3223, 3227	l
30 20	H 3.305 -0.128 1.966					l
li II	H -1.886 -2.120 -0.016					ł
	H -4.022 -1.934 -1.280					l
50, 40	Н -3.077 -1.956 -2.867					ł
13H 6C 12H	Н -0.950 -2.141 -1.585					ł
4	H -1.257 0.438 -1.798					l
	H -2.186 0.456 -0.228					ł
14						l

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
-	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i5-i11	C 0.068 1.419 0.114	ZPE(B3LYP/6-311G**) = 0.1654	1	1	149i, 158, 191, 195, 279,	189.5
	C 0.215 -1.215 -0.376	$E(CCSD(T)/6-311G^{**}) = -348.5438$			301, 350, 382, 417, 512,	335.4
201	C -1.221 1.522 -0.115	$E(MP2/6-311G^{**}) = -348.3696$			539, 686, 741, 766, 815,	489.7
80 154	C -0.838 -1.436 0.420	E(MP2/G3large) = -348.5723			833, 850, 870, 910, 948,	
19H 7C	C -2.255 0.460 -0.224	E(G3(MP2,CC) = -348.5812)			984, 993, 1014, 1022,	
10 104 174	C -2.136 -0.850 0.078				1069, 1111, 1164, 1199,	
111 30	C 1.668 -1.265 -0.031				1230, 1256, 1300, 1315,	
	C 2.254 0.142 -0.302				1328, 1345, 1362, 1369,	
50 40	C 1.491 1.297 0.405				1423, 1450, 1485, 1491,	
13 60 12	H 0.002 -0.796 -1.359				1617, 1695, 1768, 2940,	
14	H -1.660 2.529 -0.160				2966, 2998, 3010, 3028,	
•	H -0.718 -1.921 1.389				3052, 3070, 3105, 3119,	
	H -3.248 0.837 -0.459				3121, 3146	
	H -3.036 -1.459 0.126				- -	
	H 3.302 0.181 0.010					
	H 2.213 -1.990 -0.648					
	Н 1.812 -1.551 1.016					
	H 2.238 0.325 -1.382					
	Н 1.595 1.171 1.492					
	H 2.021 2.233 0.167					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i5-p5	C -0.145 0.719 -0.013	ZPE(B3LYP/6-311G**) = 0.1621	1	1	792i, 153, 188, 254, 358,	147.1
150	C -0.148 -0.696 0.047	$E(CCSD(T)/6-311G^{**}) = -348.5912$			411, 457, 507, 528, 535,	343.3
1.5	C 1.052 1.419 -0.001	$E(MP2/6-311G^{**}) = -348.4332$			603, 628, 712, 745, 766,	471.1
18H-00	C 1.071 -1.398 -0.040	E(MP2/G3large) = -348.6379			838, 861, 874, 905, 918,	
BL	C 2.258 0.712 0.014	E(G3(MP2,CC) = -348.6339)			947, 987, 1007, 1042,	
16H 7C 7H 920H19H	C 2.264 -0.687 -0.024				1060, 1103, 1151, 1176,	
	C -1.555 -1.209 -0.214				1178, 1198, 1216, 1241,	
	C -2.439 0.001 0.162				1290, 1293, 1331, 1344,	
10H 2C = 1C	C -1.559 1.246 -0.118				1349, 1474, 1483, 1484,	
	H -0.323 -0.824 1.869				1498, 1504, 1596, 1628,	
120 100	H 1.058 2.504 -0.016				3006, 3011, 3046, 3061,	
121-40 30 -114	H 1.076 -2.482 -0.072				3085, 3097, 3157, 3163,	
	H 3.198 1.252 0.030				3175, 3187	
6C - 5C	H 3.209 -1.218 -0.047					
	H -3.385 0.022 -0.382					
141 131	H -1.804 -2.112 0.347					
-	H -1.654 -1.446 -1.281					
	H -2.670 -0.046 1.230					
	Н -1.737 1.633 -1.129					
	H -1.760 2.069 0.574					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
-	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i6-p2	C -0.008 0.017 0.005	ZPE(B3LYP/6-311G**) = 0.1588	1	1	743i, 27 , 87 , 151, 260,	124.2
	C 0.001 -0.006 1.418	$E(CCSD(T)/6-311G^{**}) = -348.5595$			311, 321, 387, 396, 460,	527.3
171 161	C 1.214 0.026 -0.665	$E(MP2/6-311G^{**}) = -348.3981$			515, 545, 632, 665, 733,	623.3
	C 1.217 0.085 2.123	E(MP2/G3large) = -348.6055			753, 830, 872, 913, 936,	
18, ⁸⁰ 20H.9H	C 2.419 0.055 0.038	E(G3(MP2,CC) = -348.6081			945, 951, 987, 1007,	
ac	C 2.421 0.094 1.435				1018, 1029, 1050, 1088,	
	C -1.610 0.397 -3.208				1122, 1181, 1196, 1209,	
110 10 10	C -1.385 0.828 -1.970				1231, 1310, 1325, 1336,	
30 20 13	C -1.324 -0.049 -0.748				1360, 1450, 1469, 1479,	
	Н -0.933 0.131 1.953				1522, 1604, 1624, 1703,	
50 40	H 1.224 0.024 -1.749				3011, 3046, 3123, 3135,	
131 60 121	H 1.204 0.125 3.206				3155, 3162, 3170, 3180,	
	H 3.357 0.063 -0.505				3190, 3209	
14)	H 3.358 0.143 1.977					
	Н -0.413 -1.833 1.674					
	Н -1.763 -0.656 -3.425					
	H -1.656 1.081 -4.048					
	H -1.232 1.891 -1.796					
	H -2.130 0.235 -0.062					
	H -1.522 -1.090 -1.035					

Species	XYZ Coordinates	Energies	σ _{ext}	n	vi	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i7-p1	C 0.094 -0.421 -0.214	ZPE(B3LYP/6-311G**) = 0.1615	1	1	313i, 35 , 61, 85 , 164,	151.4
18	C 0.411 0.934 -0.432	$E(CCSD(T)/6-311G^{**}) = -348.5826$			235, 286, 411, 415, 437,	567.2
160	C 1.125 -1.270 0.229	$E(MP2/6-311G^{**}) = -348.4033$			458, 485, 562, 634, 685,	637.2
17H 7C 8C 20H	C 1.698 1.410 -0.220	E(MP2/G3large) = -348.6115			711, 731, 790, 799, 844,	
194	C 2.414 -0.793 0.440	E(G3(MP2,CC) = -348.6292			898, 919, 973, 977, 998,	
150	C 2.708 0.550 0.216				1012, 1043, 1057, 1111,	
	C -3.497 0.677 1.048				1181, 1200, 1227, 1304,	
1C INF	C -2.339 -0.319 -0.876				1333, 1356, 1412, 1418,	
111 20	C -1.240 -0.974 -0.425				1443, 1481, 1524, 1587,	
- JL I	Н -0.358 1.620 -0.767				1617, 1639, 3094, 3135,	
40 124	H 0.903 -2.317 0.407				3153, 3157, 3163, 3173,	
50. 50	Н 1.917 2.457 -0.394				3182, 3190, 3236, 3257,	
13	H 3.189 -1.470 0.781				3266	
14	H 3.711 0.926 0.380					
	H -2.679 1.280 1.416					
	H -4.295 1.171 0.508					
	Н -3.735 -0.230 1.586					
	Н -3.251 -0.863 -1.081					
	H -1.352 -2.021 -0.150					
	H -2.285 0.685 -1.277					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i7-p6	C -0.096 -0.219 0.010	ZPE(B3LYP/6-311G**) = 0.1581	1	1	239i, 37 , 109, 152, 168 ,	106.2
150	C -0.610 1.089 -0.028	$E(CCSD(T)/6-311G^{**}) = -348.5713$			238, 263, 295, 352, 413,	596.9
164	C -1.012 -1.283 0.034	$E(MP2/6-311G^{**}) = -348.3987$			416, 508, 626, 635, 704,	690.1
70-170	C -1.980 1.316 -0.052	E(MP2/G3large) = -348.6074			754, 832, 838, 851, 926,	
Т	C -2.384 -1.056 0.009	E(G3(MP2,CC) = -348.6219			956, 976, 991, 1004,	
95	C -2.876 0.246 -0.035				1015, 1051, 1059, 1098,	
201 80	C 3.809 -0.061 -0.129				1123, 1183, 1205, 1233,	
181	C 2.364 0.342 -0.086				1308, 1329, 1353, 1366,	
30	C 1.340 -0.522 0.028				1415, 1479, 1481, 1495,	
	H 0.066 1.935 -0.031				1528, 1617, 1642, 1679,	
101 10	H -0.636 -2.301 0.069				3013, 3061, 3097, 3121,	
2C 11H	Н -2.353 2.334 -0.079				3144, 3157, 3164, 3174,	
H 30	H -3.070 -1.896 0.026				3184, 3191	
	H -3.944 0.428 -0.052					
121 50	H 4.235 0.137 -1.119					
6C 12H	H 4.405 0.509 0.591					
	H 3.936 -1.124 0.088					
14	H 2.283 1.049 2.108					
C C	H 1.581 -1.576 0.151					
	H 2.161 1.396 -0.257					

Species	XYZ Coordinates	Energies	σ _{ext}	n	vi	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i8-p7	C -0.184 0.499 0.207	ZPE(B3LYP/6-311G**) = 0.1606	1	1	302i, 73, 83 , 90, 202,	163.1
1.74	C 0.066 -0.871 -0.380	$E(CCSD(T)/6-311G^{**}) = -348.5183$			214, 360, 373, 399, 413,	421.6
	C 0.806 1.534 0.176	$E(MP2/6-311G^{**}) = -348.3432$			511, 552, 600, 666, 698,	517.8
151-70	C 1.508 -1.264 -0.295	E(MP2/G3large) = -348.5465			710, 773, 802, 818, 877,	
164	C 2.085 1.128 -0.049	E(G3(MP2,CC) = -348.5609)			935, 952, 958, 979, 990,	
18 20	C 2.432 -0.287 -0.193				1004, 1082, 1111, 1146,	
80	C -3.251 0.605 -0.729				1156, 1196, 1209, 1219,	
90 194	C -1.322 0.128 0.865				1288, 1331, 1385, 1408,	
10 104	C -1.107 -1.356 0.566				1411, 1428, 1479, 1520,	
	Н -0.266 -0.954 -1.428				1570, 1651, 2938, 3032,	
111 30	H 0.572 2.566 0.416				3085, 3097, 3143, 3157,	
	H 1.806 -2.301 -0.413				3165, 3181, 3199, 3264,	
40 120	H 2.894 1.850 -0.040				3269	
50 60	H 3.487 -0.540 -0.212					
13	H -3.247 1.685 -0.679					
14	H -2.818 0.130 -1.598					
	H -4.000 0.064 -0.165					
	H -1.955 0.632 1.583					
	Н -0.731 -1.914 1.427					
	Н -1.925 -1.917 0.104					
Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
-----------------	------------------------	--------------------------------------	------------------	---	-----------------------------------	-----------------------
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i8-p8	C -0.209 -0.472 -0.182	ZPE(B3LYP/6-311G**) = 0.1600	1	1	767i, 115, 175, 228 , 277,	147.6
	C 0.124 0.876 0.053	$E(CCSD(T)/6-311G^{**}) = -348.5480$			344, 388, 426, 461, 522,	375.5
	C 0.739 -1.476 -0.193	$E(MP2/6-311G^{**}) = -348.3893$			542, 571, 644, 735, 749,	484.7
70	C 1.463 1.288 0.129	E(MP2/G3large) = -348.5941			782, 787, 866, 882, 902,	
15H 18H 20H 10H	C 2.069 -1.077 0.008	E(G3(MP2,CC) = -348.5928)			946, 989, 1012, 1022,	
8C 9C	C 2.421 0.275 0.146				1067, 1088, 1106, 1150,	
T T	C -2.713 -0.683 0.522				1169, 1180, 1200, 1219,	
	C -1.675 -0.164 -0.471				1235, 1300, 1328, 1364,	
101- 20	C -1.276 1.364 -0.337				1407, 1465, 1478, 1486,	
	H -0.186 0.946 1.874				1496, 1499, 1602, 1624,	
40-128	H 0.494 -2.518 -0.374				3021, 3027, 3051, 3083,	
	H 1.748 2.330 0.217				3093, 3102, 3158, 3167,	
50 60	H 2.854 -1.826 0.021				3177, 3186	
	H 3.469 0.534 0.253					
131 141	Н -2.795 -1.773 0.469					
_	Н -2.440 -0.414 1.546					
	H -3.700 -0.262 0.308					
	Н -1.970 -0.428 -1.492					
	H -1.301 1.905 -1.287					
	H -1.830 1.931 0.413					

Species	XYZ Coordinates	Energies	σ _{ext}	n	vi	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
TS i10-p4	C 0.204 0.037 0.130	ZPE(B3LYP/6-311G**) = 0.1590	1	1	901i, 63 , 141, 181 , 226,	145.7
	C -0.604 1.201 0.262	$E(CCSD(T)/6-311G^{**}) = -348.5618$			355, 378, 401, 444, 501,	428.1
201 171	C -0.462 -1.175 -0.201	$E(MP2/6-311G^{**}) = -348.3909$			525, 550, 579, 628, 689,	544.3
164	C -1.983 1.128 0.184	E(MP2/G3large) = -348.5992			718, 741, 800, 841, 921,	
104	C -1.844 -1.235 -0.280	E(G3(MP2,CC) = -348.6111)			928, 938, 980, 998,	
80 15H	C -2.616 -0.091 -0.078				1005, 1022, 1043, 1067,	
I a	C 2.526 -1.065 0.304				1112, 1125, 1180, 1207,	
10 11	C 1.690 0.143 -0.041				1289, 1319, 1353, 1410,	
30	C 2.257 1.256 -0.518				1441, 1471, 1483, 1499,	
10H 2C 18H	H -0.126 2.146 0.490				1509, 1587, 1624, 1691,	
50	H 0.119 -2.072 -0.371				3022, 3070, 3111, 3142,	
40- 131	H -2.575 2.025 0.328				3163, 3170, 3185, 3193,	
124 60	Н -2.326 -2.179 -0.511				3199, 3223	
	Н -3.697 -0.143 -0.136					
14	H 2.302 -1.422 1.314					
	H 2.336 -1.896 -0.383					
	Н 3.590 -0.829 0.245					
	H 0.353 -0.260 1.906					
	H 1.678 2.118 -0.823					
	Н 3.332 1.325 -0.637					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	$(amu*Å^2)$
TS i12-i4 180 170-70 200-90 100 201-90 100 201-90 100 100 100 100 100 100 100 1	$\begin{array}{c} (A) \\ \hline \\ C \ 0.106 \ -0.126 \ -0.082 \\ C \ 0.199 \ -0.496 \ 1.252 \\ C \ 1.274 \ 0.334 \ -0.704 \\ C \ 1.367 \ -0.429 \ 1.989 \\ C \ 2.469 \ 0.417 \ 0.011 \\ C \ 2.522 \ 0.040 \ 1.353 \\ C \ -2.269 \ -1.287 \ 1.248 \\ C \ -2.099 \ -1.369 \ -0.258 \\ C \ -1.231 \ -0.211 \ -0.795 \\ H \ -1.063 \ -0.991 \ 1.620 \\ H \ 1.249 \ 0.628 \ -1.749 \\ H \ 1.398 \ -0.733 \ 3.030 \\ H \ 3.365 \ 0.774 \ -0.483 \\ H \ 3.456 \ 0.105 \ 1.901 \\ H \ -1.620 \ -2.319 \ -0.519 \\ H \ -2.542 \ -2.217 \ 1.746 \\ H \ -2.874 \ -0.446 \ 1.594 \\ H \ -3.072 \ -1.357 \ -0.765 \\ H \ -1.076 \ -0.323 \ -1.872 \\ H \ -1.772 \ 0.735 \ -0.658 \end{array}$	$\frac{(Hartree)}{ZPE(B3LYP/6-311G^{**}) = 0.1627}$ E(CCSD(T)/6-311G^{**}) = -348.5905 E(MP2/6-311G^{**}) = -348.4241 E(MP2/G3large) = -348.6286 E(G3(MP2,CC) = -348.6323	1	1	(CIII) 1577i, 86, 164, 262, 296, 405, 416, 454, 483, 527, 592, 669, 719, 749, 778, 856, 867, 884, 903, 945, 989, 1015, 1030, 1049, 1080, 1110, 1137, 1177, 1208, 1231, 1244, 1280, 1310, 1323, 1359, 1367, 1455, 1464, 1466, 1486, 1492, 1559, 1597, 1634, 2998, 3005, 3046, 3062, 3065, 3141, 3146, 3154, 3166, 3181	(anu 'A) 141.9 426.1 549.7
Н	H 0.000 0.000 0.000	ZPE(B3LYP/6-311G**) = 0.0000 E(CCSD(T)/6-311G**) = -0.4998 E(MP2/6-311G**) = -0.4998 E(MP2/G3large) = -0.4998 E(G3(MP2,CC) = -0.4998	-	1	-	-
methyl radical CH ₃ 4H 1C 2H 3H	C 0.000 0.000 0.000 H -0.936 -0.540 0.000 H 0.936 -0.540 0.000 H 0.000 1.080 0.000	ZPE(B3LYP/6-311G**) = 0.0286 E(CCSD(T)/6-311G**) = -39.7321 E(MP2/6-311G**) = -39.7072 E(MP2/G3large) = -39.7305 E(G3(MP2,CC) = -39.7268	6	1	505, 1403, 1403, 3105, 3284, 3284	1.8 1.8 3.5

Species	XYZ Coordinates	Energies	σ _{ext}	n	Vi	Ι
	(Å)	(Hartree)			(cm^{-1})	$(amu^* Å^2)$
ethene C_2H_4 4H 5H 1C 2C 3H 6H	C -0.012 0.000 -0.007 C -1.162 0.000 -0.671 H 0.021 0.000 1.077 H 0.944 0.000 -0.520 H -1.195 0.000 -1.755 H -2.117 0.000 -0.157	ZPE(B3LYP/6-311G**) = 0.0497 E(CCSD(T)/6-311G**) = -78.3837 E(MP2/6-311G**) = -78.3442 E(MP2/G3large) = -78.3918 E(G3(MP2,CC) = -78.3817	4	1	834, 973, 974, 1067, 1239, 1379, 1472, 1691, 3122, 3137, 3193, 3222	3.4 16.7 20.1
1-propenyl radical CH ₃ CHCH 7H 2C 3C 8H 2C 3C 5H 4H 1C 6H	C -0.973 -0.708 0.000 C 0.000 0.445 0.000 C 1.304 0.352 0.000 H -1.621 -0.664 0.881 H -1.621 -0.664 -0.881 H -0.451 -1.665 0.000 H -0.451 1.445 0.000 H 2.156 1.015 0.000	ZPE(B3LYP/6-311G**) = 0.0639 E(CCSD(T)/6-311G**) = -116.9174 E(MP2/6-311G**) = -116.8533 E(MP2/G3large) = -116.9210 E(G3(MP2,CC) = -116.9211	1	1	195, 409, 612, 790, 813, 931, 1062, 1106, 1271, 1404, 1485, 1485, 1684, 3006, 3021, 3069, 3115, 3239	8.7 53.1 58.8
2-propenyl radical CH ₃ CCH ₂ 7H 2C 3C 5H 4H 1C 8H	C -1.183 -0.471 0.000 C 0.000 0.400 0.000 C 1.306 0.329 0.000 H -1.806 -0.295 0.882 H -1.806 -0.295 -0.882 H -0.891 -1.533 0.000 H 1.939 1.212 0.000 H 1.827 -0.635 0.000	ZPE(B3LYP/6-311G**) = 0.0636 E(CCSD(T)/6-311G**) = -116.9222 E(MP2/6-311G**) = -116.8588 E(MP2/G3large) = -116.9272 E(G3(MP2,CC) = -116.9270	1	1	183, 315, 478, 882, 897, 936, 1052, 1099, 1392, 1416, 1456, 1473, 1747, 2961, 3023, 3050, 3075, 3144	6.7 58.5 62.0

Species	XYZ Coordinates	Energies	σ _{ext}	n	Vi	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
allyl radical CH ₂ CHCH ₂	C 0.000 1.227 -0.196 C 0.000 0.000 0.442 C 0.000 -1.227 -0.196 H 0.000 1.296 -1.278 H 0.000 2.155 0.363 H 0.000 0.000 1.530 H 0.000 -2.155 0.363 H 0.000 -1.296 -1.278	ZPE(B3LYP/6-311G**) = 0.0643 E(CCSD(T)/6-311G**) = -116.9525 E(MP2/6-311G**) = -116.8892 E(MP2/G3large) = -116.9585 E(G3(MP2,CC) = -116.9575	2	1	429, 532, 553, 786, 811, 936, 1014, 1037, 1208, 1270, 1423, 1511, 1517, 3128, 3134, 3141, 3232, 3235	9.2 48.9 58.1
benzene C_6H_6 7H 2C 3C 4C 5C 12H 2C 3C 11H 12H 3C 11H 12H	$\begin{array}{c} C \ 0.000 \ 1.394 \ 0.000 \\ C \ 1.207 \ 0.697 \ 0.000 \\ C \ -1.207 \ 0.697 \ 0.000 \\ C \ -1.207 \ -0.697 \ 0.000 \\ C \ -1.207 \ -0.697 \ 0.000 \\ C \ -1.207 \ -0.697 \ 0.000 \\ C \ 0.000 \ -1.394 \ 0.000 \\ H \ 0.000 \ 2.479 \ 0.000 \\ H \ 2.147 \ 1.239 \ 0.000 \\ H \ -2.147 \ -1.239 \ 0.000 \\ H \ -2.147 \ -1.239 \ 0.000 \\ H \ 0.000 \ -2.479 \ 0.000 \\ H \ 0.000 \ -2.479 \ 0.000 \end{array}$	ZPE(B3LYP/6-311G**) = 0.0969 E(CCSD(T)/6-311G**) = -231.6539 E(MP2/6-311G**) = -231.5777 E(MP2/G3large) = -231.7160 E(G3(MP2,CC) = -231.6952	12	1	414, 414, 623, 623, 692, 724, 865, 865, 983, 983, 1012, 1018, 1023, 1060, 1060, 1174, 1197, 1197, 1333, 1381, 1512, 1512, 1636, 1636, 3155, 3164, 3164, 3180, 3180, 3191	88.6 88.6 177.1

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
pl (styrene) C_8H_8 16 14 7 12 5 6 12 6 11 14 16 16 16 16 16 16 16 16 16 16	$\begin{array}{c} (11) \\ \hline C \ 0.000 \ 0.559 \ 0.000 \\ \hline C \ -1.006 \ -0.422 \ 0.000 \\ \hline C \ -1.336 \ 0.130 \ 0.000 \\ \hline C \ -0.685 \ -1.773 \ 0.000 \\ \hline C \ -0.685 \ -1.773 \ 0.000 \\ \hline C \ -0.283 \ 2.003 \ 0.000 \\ \hline C \ -0.283 \ 2.003 \ 0.000 \\ \hline C \ -0.283 \ 2.003 \ 0.000 \\ \hline C \ -0.283 \ 2.003 \ 0.000 \\ \hline C \ -1.477 \ 2.601 \ 0.000 \\ \hline H \ -2.048 \ -0.126 \ 0.000 \\ \hline H \ -2.048 \ -0.126 \ 0.000 \\ \hline H \ -2.128 \ 0.872 \ 0.000 \\ \hline H \ -1.477 \ -2.513 \ 0.000 \\ \hline H \ -1.529 \ 0.000 \\ \hline H \ 0.603 \ 2.635 \ 0.000 \\ \hline H \ -2.411 \ 2.049 \ 0.000 \\ \hline H \ -1.558 \ 3.681 \ 0.000 \end{array}$	$ZPE(B3LYP/6-311G^{**}) = 0.1284$ $E(CCSD(T)/6-311G^{**}) = -308.8574$ $E(MP2/6-311G^{**}) = -308.7534$ E(MP2/G3large) = -308.9384 E(G3(MP2,CC) = -308.9140	1	1	14, 204, 236, 412, 447, 449, 561, 635, 656, 711, 787, 799, 850, 927, 929, 977, 999, 1015, 1029, 1040, 1056, 1112, 1183, 1205, 1226, 1318, 1346, 1362, 1452, 1483, 1529, 1618, 1645, 1691, 3129, 3143, 3157, 3163, 3173, 3182, 3190, 3222	97.2 328.2 425.4
p2 (3-phenylpropene)	C -0.002 -0.322 0.277	$ZPE(B3LYP/6-311G^{**}) = 0.1557$ $E(CCSD(T)/6, 311G^{**}) = 348,0682$	1	1	28, 86, 145, 284, 322, 308, 415, 501, 540, 636	121.1
C9H10 19 19 10 10 10 10 10 10 10 10 10 10	C -0.988 -1.275 0.012 C -1.682 1.415 0.045 C -2.307 -0.893 -0.233 C -2.658 0.453 -0.216 C 3.459 0.544 -0.237 C 2.405 -0.226 -0.489 C 1.436 -0.733 0.548 H 0.389 1.783 0.480 H -0.723 -2.327 0.001 H -1.947 2.467 0.059 H -3.058 -1.649 -0.436	E(MP2/6-311G**) = -347.9467 E(MP2/G3large) = -348.1536 E(G3(MP2,CC) = -348.1194			669, 716, 760, 834, 857, 913, 927, 942, 949, 978, 1001, 1018, 1034, 1051, 1097, 1125, 1181, 1203, 1214, 1232, 1310, 1326, 1342, 1362, 1451, 1478, 1487, 1527, 1626, 1646, 1704, 3015, 3051, 3122, 3131, 3153, 3158, 3168, 3176, 3188, 3208	605.8
	H -3.683 0.753 -0.405 H 4.123 0.876 -1.028 H 3.700 0.868 0.771 H 2.195 -0.526 -1.514 H 1.485 -1.828 0.582 H 1.745 -0.376 1.536					

Species	XYZ Coordinates	Energies	σ _{ext}	n	vi	Ι
-	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
p3 (cis-1- phenylpropene) C_9H_{10} 169 70 80 159 90 199 169 20 30 11 109 20 109 10 109 109 109 109 109 109 109 109 109 109	(A) C -0.041 -0.437 -0.206 C 0.262 0.919 -0.405 C 1.012 -1.299 0.147 C 1.557 1.398 -0.225 C 2.304 -0.821 0.332 C 2.582 0.533 0.151 C -2.870 0.876 0.530 C -2.580 -0.453 -0.106 C -1.391 -1.001 -0.392 H -0.515 1.598 -0.734 H 0.804 -2.355 0.286 H 1.767 2.449 -0.390 H 3.096 -1.506 0.613 H 3.590 0.908 0.289 H -1.993 1.307 1.016 H -3.238 1.601 -0.206 H 2.650 0.768 1.281	$(Hartree)$ $ZPE(B3LYP/6-311G^{**}) = 0.1558$ $E(CCSD(T)/6-311G^{**}) = -348.0718$ $E(MP2/6-311G^{**}) = -347.9512$ $E(MP2/G3large) = -348.1585$ $E(G3(MP2,CC) = -348.1233$	1	1	(cm ¹) 52, 125, 159, 219, 291, 415, 418, 470, 526, 634, 670, 713, 717, 785, 822, 856, 933, 936, 980, 998, 1004, 1016, 1050, 1061, 1090, 1109, 1182, 1204, 1212, 1276, 1337, 1355, 1405, 1440, 1476, 1489, 1494, 1527, 1615, 1644, 1703, 3010, 3056, 3106, 3120, 3141, 3157, 3164, 3174, 3186, 3196	(amu*A ²) 133.7 471.5 575.2
14	H -3.659 0.768 1.281 H -3.458 -1.054 -0.333 H -1.402 -2.015 -0.786					
p4 (2-phenylpropene) C_9H_{10} 171 191 161 77 8C 9C 18H	C 0.206 0.052 -0.014 C -0.470 -1.158 -0.236 C -0.568 1.196 0.238 C -1.861 -1.216 -0.236 C -1.958 1.139 0.241 C -2.612 -0.068 0.000 C 2.458 -1.099 0.426 C 1.693 0.120 -0.035 C 2.339 1.214 -0.454	$ZPE(B3LYP/6-311G^{**}) = 0.1556$ $E(CCSD(T)/6-311G^{**}) = -348.0742$ $E(MP2/6-311G^{**}) = -347.9537$ E(MP2/G3large) = -348.1613 E(G3(MP2,CC) = -348.1262		1	47, 144, 194, 230, 352, 385, 416, 498, 536, 563, 636, 703, 720, 747, 798, 854, 923, 932, 939, 980, 1002, 1016, 1023, 1051, 1068, 1110, 1137, 1183, 1208, 1304, 1330, 1356, 1412, 1441, 1476, 1485, 1499, 1528, 1615, 1644,	140.8 423.7 541.7
$ \begin{array}{c} 10 \\ 10 \\ 20 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	H 0.093 -2.063 -0.427 H -0.072 2.134 0.458 H -2.358 -2.162 -0.421 H -2.531 2.037 0.444 H -3.695 -0.114 0.006 H 2.123 -1.427 1.415 H 2.315 -1.945 -0.256 H 3.528 -0.891 0.472 H 1.815 2.083 -0.833 H 3.422 1.263 -0.448				3140, 3160, 3168, 3180, 3187, 3192, 322	

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
p5 (indane)	C 0.051 0.149 0.700	ZPE(B3LYP/6-311G**) = 0.1585	1	1	145, 183, 256, 379, 428,	142.7
C ₀ H ₁₀	C 0.051 0.149 -0.700	$E(CCSD(T)/6-311G^{**}) = -348.1008$			511, 523, 594, 626, 721,	338.1
	C 0.004 -1.050 1.404	$E(MP2/6-311G^{**}) = -347.9835$			750, 765, 842, 865, 874,	467.9
141 171	C 0.004 -1.050 -1.404	E(MP2/G3large) = -348.1880			907, 915, 945, 989,	
19H 8C	C -0.047 -2.253 0.698	E(G3(MP2,CC) = -348.1468)			1006, 1046, 1060, 1105,	
	C -0.047 -2.253 -0.698				1152, 1178, 1180, 1199,	
	C 0.129 1.565 -1.229				1223, 1244, 1293, 1300,	
7C 15H	C -0.264 2.422 0.000				1331, 1343, 1357, 1483,	
164	C 0.129 1.565 1.229				1484, 1492, 1506, 1511,	
	H 0.001 -1.055 2.489				1626, 1648, 3004, 3005,	
TOH 3C	H 0.001 -1.055 -2.489				3038, 3065, 3068, 3091,	
	Н -0.092 -3.194 1.236				3153, 3159, 3170, 3184,	
10	Н -0.092 -3.194 -1.236					
50. 111	H 0.207 3.407 0.000					
60	H -0.521 1.739 -2.091					
121	Н 1.154 1.791 -1.551					
1.21	H -1.348 2.575 0.000					
131	Н 1.154 1.791 1.551					
	H -0.521 1.739 2.091					

Species	XYZ Coordinates	Energies	σ _{ext}	n	vi	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
p6 (trans-1- phenylpropene) C_9H_{10} 150 C 17 160 C 17 199 9C 180 100 10 10 10 10 10 10 10 10 10 10 10 10	$\begin{array}{c} (A) \\ \hline C -0.058 - 0.205 \ 0.000 \\ \hline C -0.584 \ 1.098 \ 0.000 \\ \hline C -0.584 \ 1.098 \ 0.000 \\ \hline C -0.967 - 1.275 \ 0.000 \\ \hline C -1.956 \ 1.316 \ 0.000 \\ \hline C -2.342 - 1.058 \ 0.000 \\ \hline C -2.342 \ -1.058 \ 0.000 \\ \hline C -2.344 \ 0.240 \ 0.000 \\ \hline C -2.344 \ 0.240 \ 0.000 \\ \hline C -2.397 \ 0.374 \ 0.000 \\ \hline H -0.584 \ -2.291 \ 0.000 \\ \hline H -0.584 \ -2.291 \ 0.000 \\ \hline H -2.336 \ 2.332 \ 0.000 \\ \hline H -3.020 \ -1.904 \ 0.000 \\ \hline H -3.020 \ -1.904 \ 0.000 \\ \hline H -3.914 \ 0.414 \ 0.000 \\ \hline H 4.362 \ 0.400 \ 0.878 \\ \hline H 4.362 \ 0.400 \ 0.878 \\ \hline H 3.979 \ -1.090 \ 0.000 \\ \hline H 1.628 \ -1.560 \ 0.000 \\ \hline H 2.189 \ 1.441 \ 0.000 \end{array}$	$(Hartree)$ $ZPE(B3LYP/6-311G^{**}) = 0.1554$ $E(CCSD(T)/6-311G^{**}) = -348.0742$ $E(MP2/6-311G^{**}) = -347.9532$ $E(MP2/G3large) = -348.1609$ $E(G3(MP2,CC) = -348.1265$	1	1	(cm ¹) 20, 124, 153, 195, 288, 351, 412, 413, 509, 627, 635, 704, 752, 833, 834, 850, 924, 958, 974, 992, 1006, 1015, 1052, 1064, 1098, 1123, 1182, 1205, 1233, 1307, 1334, 1353, 1367, 1415, 1479, 1479, 1495, 1529, 1618, 1644, 1715, 3008, 3048, 3092, 3116, 3135, 3156, 3162, 3172, 3181, 3190	(amu*A ²) 100.1 587.0 684.0
14 p7 C ₈ H ₈ 16 14 7C 9H 10 3C 4C 11 5C 6C 12 13	C $0.460 0.793 0.170$ C $0.599 -0.678 0.495$ C $-0.831 1.442 0.142$ C $-0.556 -1.469 -0.035$ C $-1.889 0.617 -0.042$ C $-1.726 -0.830 -0.230$ C $1.722 0.925 -0.285$ C $2.038 -0.560 -0.155$ H $0.703 -0.875 1.573$ H $-0.943 2.520 0.170$ H $-0.482 -2.546 -0.163$ H $-2.890 1.026 -0.128$ H $-2.603 -1.391 -0.537$ H $2.307 1.762 -0.649$ H $2.116 -1.084 -1.111$ H $2.885 -0.850 0.478$	ZPE(B3LYP/6-311G**) = 0.1282 E(CCSD(T)/6-311G**) = -308.7907 E(MP2/6-311G**) = -308.6819 E(MP2/G3large) = -308.8622 E(G3(MP2,CC) = -308.8430	1	1	190, 198, 368, 406, 507, 550, 601, 682, 709, 771, 815, 824, 875, 938, 950, 968, 984, 994, 1018, 1082, 1111, 1144, 1159, 1197, 1208, 1224, 1289, 1333, 1388, 1431, 1479, 1571, 1643, 1685, 2961, 3019, 3078, 3142, 3157, 3167, 3179, 3181	122.7 228.3 330.5

Species	XYZ Coordinates	Energies	σ _{ext}	n	<i>v</i> _i	Ι
	(Å)	(Hartree)			(cm^{-1})	(amu*Å ²)
n8	C -0.208 -0.429 -0.246	ZPE(B3LYP/6-311G**) = 0.1565	1	1	107, 170, 233, 285, 369,	144.7
C _o H ₁₀	C 0.145 0.902 -0.044	$E(CCSD(T)/6-311G^{**}) = -348.0578$			410, 455, 518, 568, 634,	367.9
C911[0	C 0.725 -1.454 -0.222	$E(MP2/6-311G^{**}) = -347.9402$			727, 754, 776, 789, 875,	481.1
	C 1.454 1.294 0.187	E(MP2/G3large) = -348.1450			880, 905, 946, 991,	
70 174 101188	C 2.053 -1.072 0.016	E(G3(MP2,CC) = -348.1061			1015, 1025, 1067, 1093,	
14H 15H 8C 9L	C 2.408 0.267 0.214				1109, 1150, 1172, 1178,	
	C -2.679 -0.721 0.552				1209, 1220, 1237, 1303,	
	C -1.690 -0.110 -0.436				1334, 1375, 1409, 1472,	
10 - 20	C -1.283 1.404 -0.193				1488, 1493, 1497, 1499,	
101 20 40 111	H 0.466 -2.495 -0.378				1635, 1644, 3018, 3028,	
	H 1.744 2.327 0.343				3036, 3079, 3082, 3087,	
5C 6C	H 2.828 -1.830 0.046				3154, 3163, 3173, 3182	
	H 3.449 0.512 0.393					
12 13	H -2.764 -1.802 0.406					
	Н -2.359 -0.548 1.584					
	Н -3.676 -0.288 0.427					
	Н -2.033 -0.280 -1.462					
	Н -1.470 2.074 -1.037					
	H -1.723 1.843 0.707					
p9 (indane)	C -0.193 0.779 0.130	$ZPE(B3LYP/6-311G^{**}) = 0.1571$	1	1	137, 171, 286, 350, 428,	147.8
$C_{9}H_{10}$	C -0.239 -0.713 0.441	$E(CCSD(T)/6-311G^{**}) = -348.0524$			494, 532, 538, 651, 668,	329.1
	C 1.093 1.443 0.082	$E(MP2/6-311G^{**}) = -347.9264$			706, 786, 817, 834, 877,	457.8
134 184	C 1.006 -1.435 0.007	E(MP2/G3large) = -348.1298			881, 924, 967, 978, 993,	
80	C 2.212 0.698 -0.058	E(G3(MP2,CC) = -348.0988)			998, 1013, 1060, 1081,	
194 164	C 2.150 -0.757 -0.185				1155, 1170, 1191, 1195,	
90 70	C -1.594 -1.138 -0.173				1240, 1270, 1291, 1315,	
178	C -2.456 0.147 -0.078				1326, 1364, 1399, 1445,	
10 20 100	C -1.425 1.250 -0.122				1483, 1498, 1593, 1651,	
20	H -0.310 -0.826 1.539				1694, 2898, 2972, 3033,	
	H 1.139 2.527 0.081				3051, 3085, 3145, 3155,	
11H-3C 4C 1 al	H 0.978 -2.517 -0.083				3167, 3179, 3180	
124	H 3.181 1.179 -0.141					
50	H 3.061 -1.285 -0.446					
BL	H -3.205 0.222 -0.873					
13	H -2.044 -1.997 0.331					
141	н -1.444 -1.400 -1.225					
	H -3.008 0.169 0.8/4					
	H -1.669 2.288 -0.317					

Species	XYZ Coordinates	Energies	σ _{ext}	n	v _i	Ι
	(Å)	(Hartree)			(cm^{-1})	$(amu*Å^2)$
p10 (benzyl radical)	C 1.209 0.073 -2.155	ZPE(B3LYP/6-311G**) = 0.1115	2	1	199, 359, 390, 479, 502,	91.1
C ₇ H ₇	C 1.210 0.047 -0.752	$E(CCSD(T)/6-311G^{**}) = -270.2173$			534, 628, 685, 707, 774,	186.7
	C 2.427 0.041 -0.010	$E(MP2/6-311G^{**}) = -270.0901$			829, 831, 898, 970, 972,	277.8
SH SH	C 2.421 0.015 1.373	E(MP2/G3large) = -270.2504			990, 995, 1036, 1116,	
10	C 1.212 -0.006 2.078	E(G3(MP2,CC) = -270.2661			1175, 1184, 1288, 1327,	
J J	C 0.002 -0.001 1.374				1352, 1474, 1490, 1502,	
100 20	C -0.006 0.025 -0.008				1577, 1598, 3145, 3158,	
14	H 0.282 0.078 -2.714				3160, 3173, 3177, 3191,	
30 70	H 2.136 0.090 -2.715				3241	
	Н 3.368 0.057 -0.550					
40 60	H 3.361 0.011 1.915					
110 50 130	Н 1.213 -0.026 3.162					
	Н -0.937 -0.017 1.917					
120	Н -0.947 0.029 -0.547					

Table S 7: Calculated hindered rotor parameters: reduced moments of inertia around the rotational axes (I _{red}); vibrational frequencies
corresponding to internal rotations (vint, also see Table S 6); and either cosine or Fourier fit parameters to dihedral angle energy scans,
$V(\varphi)$, at B3LYP/6-311G** level of theory.

				Co Par	sine Fit ameters ^b	ine Fit Fourier Fit Parameters ^e (kJ/mol)									
Species	Rotor ^a	I_{red} (amu*Å ²)	v_{int} (cm ⁻¹)	σ_{rot}	Vo (kJ/mol)	A ₁	A ₂	A ₃	A_4	A ₅	B ₁	B ₂	B ₃	\mathbf{B}_4	B ₅
	8C-9C	5.6595	66	1	-	-2.3151	-1.0302	-1.0632	0.0819	-0.0471	2.0028	-1.5769	0.0081	0.2315	0.1766
i1	1C-9C	17.2971	37	2	-	-0.0261	-3.8250	-0.0232	0.8189	0.0563	0.0560	-0.3695	-0.0123	0.3059	-0.0394
	7C-8C	3.0012	93	3	-	-0.0075	-0.0145	-0.8062	-0.0122	0.0113	-0.0041	-0.0166	-0.3901	0.0038	0.0065
	8C-9C	1.4944	144	2	-	-0.1084	-1.8069	0.0329	-0.0165	-0.0731	-0.1724	-0.9570	0.1412	0.2635	0.1190
i2	1C-8C	35.3806	47	2	-	0.0515	-6.4005	0.0518	0.1550	-0.0857	-0.0391	-1.8292	0.0767	1.7917	-0.1500
	7C-8C	2.6697	257	3	14.3816	-	-	-	-	-	-	-	-	-	-
i3	7C-8C	2.7100	153	3	7.5899	-	-	-	-	-	-	-	-	-	-
	8C-9C	6.3022	90	1	-	-2.8712	1.3302	-7.3621	0.2458	-0.2367	-0.0958	-0.2113	0.0382	0.0133	-0.0177
i4	7C-8C	1.6410	114	2	-	-0.0461	-0.0682	-0.0122	-0.0428	-0.0178	-0.0259	-0.1458	0.0282	0.0353	-0.0005
	1C-9C	17.1400	51	2	-	0.0152	-3.2541	0.0208	-0.5305	0.0105	0.0317	0.0531	0.0288	0.0272	-0.0274
	8C-9C	8.5778	80	1	-	-0.6041	-3.1411	-4.5591	0.4441	0.4096	-1.8555	-1.0748	1.2905	0.4867	-0.1005
16	1C-9C	24.8240	46	1	-	0.2149	-3.3679	-3.6519	0.1572	0.1269	1.4573	-0.0082	-0.5358	0.1215	-0.2529
	8C-9C	15.9823	28	1	-	-1.6861	-4.1236	0.9888	-0.2768	0.4086	8.2137	-1.8439	-1.2816	-0.1710	-0.2897
i7	1C-9C	25.0086	81	2	-	0.4027	-24.9410	-0.3406	2.2689	0.0449	0.3066	2.0913	0.1184	-0.4278	-0.0951
	7C-8C	2.5236	267	3	-	0.2029	0.1525	-6.1333	-0.0144	-0.0362	0.0309	0.1183	0.3813	0.1319	0.0565
i8	7C-8C	2.8272	235	1	13.9826	-	-	-	-	-	-	-	-	-	-
	1C-7C	35.9427	115	2	-	-0.1756	-19.9706	0.0894	3.5782	0.0624	0.0040	-0.1911	-0.0049	0.3789	-0.0007
i9	7C-8C	2.8066	45/69	3	0.6342	-	-	-	-	-	-	-	-	-	-
	7C-9C	2.8066	45/69	3	0.6342	-	-	-	-	-	-	-	-	-	-
.10	1C-8C	34.8080	61	2	-	0.2922	-7.0125	-4.5044	1.0742	-0.0190	-0.1125	0.0868	0.0872	-0.1074	-0.0280
110	7C-8C	2.4752	185	3	7.1525										
	8C-9C	7.7439	83	1	-	-3.0269	1.6698	-7.6091	0.0331	-0.1003	0.0517	-0.1227	-0.0399	0.1337	-0.0832
i12	1C-9C	17.7124	34	1	-	-0.1902	-2.0477	-0.0878	-0.2296	0.1183	1.6847	-0.4806	0.2253	-0.1171	-0.1876
	7C-8C	2.9723	238	3	12.0219	-	-	-	-	-	-	-	-	-	-

				Co Par	sine Fit ameters ^b	Fourier Fit Parameters ^c (kJ/mol)									
Species	Rotor ^a	I _{red} (amu*Å ²)	v_{int} (cm ⁻¹)	σ _{rot}	Vo (kJ/mol)	A ₁	A ₂	A ₃	A ₄	A ₅	B ₁	B ₂	B ₃	B ₄	B ₅
TS 1-	3C-4C	32.8572	23	2	-	-0.0076	-2.2808	-0.0248	0.3671	0.0052	-0.0515	0.0661	-0.0161	-0.0302	0.0179
propenyl	1C-2C	2.0295	174	3	-	-0.0331	0.0252	-3.8321	-0.0174	0.0331	-0.0853	-0.0427	0.1746	-0.0390	-0.0727
TS 2-	1C-8C	34.2961	20	2	-	-0.0009	-1.4485	-0.0070	0.2124	0.0013	0.0123	-0.1750	-0.0095	0.0556	0.0018
propenyl	7C-8C	2.6012	158	3	6.2469	-	-	-	-	-	-	-	-	-	-
TO 11 1	1C-2C	11.4081	117	1		-0.2226	-9.7899	-2.2467	0.7307	0.0832	-0.8241	3.8520	-1.8023	-0.4292	-0.1245
15 aliyi	1C-4C	28.9826	26	2		0.0220	-1.0069	-0.0201	-0.1056	-0.0036	-0.0216	0.0990	0.0007	-0.0432	0.0017
TQ 1	1C-9C	31.6816	16	2	-	0.0122	-0.6067	-0.0083	-0.0832	-0.0070	-0.0082	-0.1808	-0.0007	0.0860	0.0084
1511	7C-8C	2.4229	149	3	-	-0.0513	0.0066	-3.1492	0.0029	0.0225	-0.0259	-0.0108	0.1555	-0.0134	-0.0463
TG :2	1C-8C	36.3981	27	2	-	-0.0288	-0.6448	-0.0089	-0.4506	0.0408	0.0085	-0.6538	0.0303	0.1184	0.0048
1812	7C-8C	2.4088	160	3	7.0663	-	-	-	-	-	-	-	-	-	-
TS i1-i3	7C-8C	2.6366	100	3	3.9552	-	-	-	-	-	-	-	-	-	-
TS i1-i4	8C-9C	5.6836	78	1	-	-2.4653	-1.0659	-3.9556	0.0398	-0.0617	-1.8198	1.3519	0.2856	-0.4167	-0.0130
	1C-9C	17.6891	42	2	-	-0.0212	-3.0023	-0.0403	0.3030	0.0267	-0.0182	-0.7443	-0.0091	0.5185	0.0400
TO 11 17	1C-9C	30.1520	34	2	-	0.1717	-9.0722	-0.1823	1.6436	-0.0374	0.0133	2.5321	0.0665	-1.0373	0.0002
1511-1/	7C-8C	2.2938	239	3	-	0.0657	-0.0972	-5.4144	0.1210	0.0670	-0.0182	-0.1021	-0.5071	-0.0256	0.0519
TS i1- i12	7C-8C	2.7244	207	3	10.6975	-	-	-	-	-	-	-	-	-	-
TS i1-p2	1C-9C	23.4631	28	2	-	-0.0261	-3.8250	-0.0232	0.8189	0.0563	0.0560	-0.3695	-0.0123	0.3059	-0.0394
TC :1 m2	1C-9C	32.8429	54	2	-	-0.0315	-1.9055	0.0495	-1.9752	-0.0525	-0.0039	-0.6371	-0.0801	0.8904	0.0338
1511-p5	7C-8C	2.2503	162	3	-	-0.0039	-0.6371	-0.0801	0.8904	0.0338	-0.0041	-0.0166	-0.3901	0.0038	0.0065
TS i2-i3	7C-8C	2.7468	219	3	10.3458	-	-	-	-	-	-	-	-	-	-
TS i2-i8	7C-8C	2.8139	231	3	13.0296	-	-	-	-	-	-	-	-	-	-
TG :2 :0	1C-8C	34.6201	43	2	-	0.0199	-9.9123	0.0291	1.2500	-0.0691	-0.1007	-3.6360	0.0183	1.0125	0.0287
1512-19	7C-8C	2.7968	190	3	-	-0.1632	0.0921	-3.4035	-0.1168	0.0899	0.0525	-0.1343	-0.0360	-0.1530	0.0415
TS i2- i10	7C-8C	2.7622	254	3	-	0.0367	-0.1031	-5.7767	0.1195	0.0316	0.0160	0.0448	-0.0025	0.0198	-0.0164
TS i2 m1	1C-8C	42.3694	54	2	-	0.0028	-9.3864	-0.0876	0.2095	0.0823	-0.3020	2.4722	-0.1202	-1.0984	0.0718
1512-p1	7C-8C	2.7767	113	3	-	0.0065	0.0068	-1.6404	-0.0076	-0.0021	-0.0114	-0.0095	0.0710	-0.0040	-0.0035
TS i2-p4	1C-8C	34.7358	60	2	-	-0.0641	-1.1635	0.0403	-2.0838	-0.0263	0.1113	-1.9256	-0.0177	1.3541	0.0762

				Co Par	sine Fit ameters ^b	it Fourier Fit Parameters ^c (kJ/mol)									
Species	Rotor ^a	I _{red} (amu*Å ²)	v_{int} (cm ⁻¹)	σ_{rot}	Vo (kJ/mol)	A ₁	A ₂	A ₃	A ₄	A ₅	B ₁	B ₂	B ₃	B ₄	B ₅
	7C-8C	2.7657	236	3	-	-0.0154	-0.0012	-5.8644	-0.0127	-0.0019	0.0385	-0.3837	0.0302	0.0857	0.0762
TS :4 m2	8C-9C	13.5706	72	1	-	-2.6712	-0.1320	-5.1592	-0.0185	-0.0031	-1.0875	-3.2612	1.6603	0.3576	0.0560
1 S 14-p2	1C-9C	27.4981	43	2	-	0.1127	-3.8903	-0.0672	0.0724	-0.0499	0.0792	2.6517	-0.0069	-1.0748	0.0606
TS i4- p10	8C-9C	6.9387	51	1	-	-2.8706	1.0742	-2.4460	0.0270	-0.0022	0.0334	-0.0206	0.0229	0.0117	0.0013
TS 16 m2	8C-9C	8.0231	87	1	-	-2.0225	-4.9825	-4.2958	0.9820	0.3527	-4.4316	-0.6771	2.3494	0.2216	-0.2907
13 l0-p2	1C-9C	22.7862	27	1	-	-1.2233	-1.8565	-0.1134	0.0809	-0.0201	0.7565	1.5767	-0.5789	-0.5768	-0.0858
TS :7 m1	7C-8C	36.7625	35	2	-	-0.4124	-13.1448	-0.0166	1.7877	-0.0367	-0.2166	1.9939	0.0778	-1.1914	-0.0091
151/-p1	1C-9C	2.6655	85	3	1.6317	-	-	-	-	-	-	-	-	-	-
TQ :7(1C-9C	15.2333	37	2	-	0.0324	-9.3613	-0.0501	1.6539	0.0293	-0.0022	-1.9110	0.0043	1.0156	0.0324
151/-po	7C-8C	2.9817	168	3	19.1809	-	-	-	-	-	-	-	-	-	-
TS i8-p7	7C-8C	3.1007	83	3	1.7609	-	-	-	-	-	-	-	-	-	-
TS i8-p8	7C-8C	2.7876	228	3	13.9821	-	-	-	-	-	-	-	-	-	-
TS i10- p4	1C-8C	33.6718	63	1	-	-0.5707	-1.5010	-2.6021	-0.6691	-0.0093	0.9409	-2.2977	0.1115	1.4939	-0.0837
	7C-8C	2.7806	181	3	-	0.0225	0.0289	-3.3993	-0.0071	-0.0492	-0.0159	0.0145	0.5976	0.0311	-0.0398

^aDefines the bond around with the dihedral angle scan was performed. Atom labels are defined in Table S 6. ^b $V(\phi) = \sum_{k=1}^{5} [A_k(\cos k\phi - 1) + B_k \sin k\phi]$ ^c $V(\phi) = 0.5 \times V_0(1 - \cos \sigma_{rot}\phi)$

S8. RRKM Calculations

Table S 8: RRKM calculated microcanonical rate constants for individual reaction steps of the phenyl radical + propene reaction on the C_9H_{11} potential energy surface at collision energies of 0-200 kJ/mol.

	Collision Energies (kJ/mol)																	
Channel	TS	σ	0	6	20	40	45	60	80	84	100	108	120	130	140	160	180	200
1 → 3	TS 4	1	1.82E+07	2.45E+07	4.42E+07	9.08E+07	1.05E+08	1.64E+08	2.73E+08	3.01E+08	4.26E+08	5.00E+08	6.29E+08	7.51E+08	8.88E+08	1.20E+09	1.59E+09	2.04E+09
$3 \rightarrow 1$	TS 4	1	1.48E+12	1.61E+12	1.89E+12	2.29E+12	2.38E+12	2.67E+12	3.04E+12	3.12E+12	3.40E+12	3.53E+12	3.73E+12	3.90E+12	4.06E+12	4.36E+12	4.65E+12	4.94E+12
$1 \rightarrow 4$	TS 1	3	0.00E+00	0.00E+00	1.75E-04	8.04E-01	2.12E+00	2.73E+01	3.40E+02	5.30E+02	2.37E+03	4.59E+03	1.15E+04	2.28E+04	4.28E+04	1.29E+05	3.45E+05	8.19E+05
$4 \rightarrow 1$	TS 1	2	0.00E+00	0.00E+00	5.20E-04	2.21E+00	5.76E+00	7.05E+01	8.30E+02	1.28E+03	5.51E+03	1.05E+04	2.54E+04	4.94E+04	9.11E+04	2.65E+05	6.84E+05	1.58E+06
$1 \rightarrow 6$	TS 3	3	0.00E+00	0.00E+00	0.00E+00	9.68E-03	2.77E-02	4.11E-01	5.65E+00	8.94E+00	4.19E+01	8.26E+01	2.11E+02	4.27E+02	8.16E+02	2.53E+03	6.92E+03	1.68E+04
$6 \rightarrow 1$	TS 3	2	0.00E+00	0.00E+00	0.00E+00	1.32E+01	3.41E+01	3.76E+02	3.65E+03	5.40E+03	2.00E+04	3.53E+04	7.71E+04	1.38E+05	2.34E+05	5.89E+05	1.33E+06	2.70E+06
1 → 7	TS 2	2	0.00E+00	0.00E+00	2.35E-01	1.75E+01	3.61E+01	2.64E+02	2.09E+03	3.02E+03	1.07E+04	1.89E+04	4.15E+04	7.51E+04	1.30E+05	3.42E+05	8.11E+05	1.74E+06
$7 \rightarrow 1$	TS 2	2	0.00E+00	0.00E+00	1.15E-02	1.09E+00	2.37E+00	2.03E+01	1.94E+02	2.91E+02	1.18E+03	2.21E+03	5.31E+03	1.03E+04	1.91E+04	5.69E+04	1.52E+05	3.63E+05
1 → 12	TS 7	1	1.33E+02	3.49E+02	1.99E+03	1.37E+04	1.99E+04	5.95E+04	2.01E+05	2.52E+05	5.55E+05	7.94E+05	1.32E+06	1.95E+06	2.80E+06	5.36E+06	9.67E+06	1.64E+07
$12 \rightarrow 1$	TS 7	2	1.11E+07	2.26E+07	7.85E+07	2.94E+08	3.78E+08	7.75E+08	1.69E+09	1.95E+09	3.21E+09	4.01E+09	5.49E+09	6.97E+09	8.70E+09	1.29E+10	1.83E+10	2.51E+10
1 → 15	TS 5	3	2.91E+00	2.65E+01	6.66E+02	1.49E+04	2.64E+04	1.34E+05	7.74E+05	1.07E+06	3.22E+06	5.30E+06	1.07E+07	1.81E+07	2.97E+07	7.11E+07	1.56E+08	3.16E+08
1 → 20	TS 6	2	2.56E-01	2.19E+00	5.21E+01	1.13E+03	1.98E+03	9.89E+03	5.60E+04	7.69E+04	2.30E+05	3.77E+05	7.53E+05	1.27E+06	2.08E+06	4.94E+06	1.08E+07	2.16E+07
1 → 23	TS 24	1	0.00E+00	9.43E-04	5.89E+00	4.79E+02	9.98E+02	7.53E+03	6.12E+04	8.90E+04	3.21E+05	5.67E+05	1.26E+06	2.28E+06	3.97E+06	1.05E+07	2.51E+07	5.41E+07
$2 \rightarrow 3$	TS 9	1	4.30E+07	5.77E+07	1.03E+08	2.08E+08	2.40E+08	3.70E+08	6.09E+08	6.69E+08	9.36E+08	1.09E+09	1.36E+09	1.62E+09	1.90E+09	2.54E+09	3.32E+09	4.23E+09
$3 \rightarrow 2$	TS 9	1	6.05E+11	6.68E+11	8.09E+11	1.01E+12	1.06E+12	1.22E+12	1.42E+12	1.46E+12	1.61E+12	1.69E+12	1.81E+12	1.90E+12	1.99E+12	2.17E+12	2.35E+12	2.52E+12
2 → 8	TS 8	1	6.38E-01	2.99E+00	3.61E+01	4.55E+02	7.31E+02	2.84E+03	1.24E+04	1.62E+04	4.14E+04	6.30E+04	1.14E+05	1.79E+05	2.71E+05	5.69E+05	1.11E+06	2.01E+06
8 → 2	TS 8	1	8.29E+06	2.62E+07	1.47E+08	7.48E+08	9.99E+08	2.24E+09	5.22E+09	6.07E+09	1.02E+10	1.28E+10	1.75E+10	2.22E+10	2.77E+10	4.05E+10	5.69E+10	7.67E+10
$2 \rightarrow 9$	TS 10	1	1.54E+00	9.16E+00	1.49E+02	2.38E+03	3.98E+03	1.72E+04	8.40E+04	1.12E+05	3.05E+05	4.79E+05	9.01E+05	1.46E+06	2.28E+06	5.02E+06	1.02E+07	1.93E+07
9 → 2	TS 10	3	2.67E-03	1.82E-02	3.85E-01	8.72E+00	1.57E+01	8.50E+01	5.42E+02	7.63E+02	2.51E+03	4.30E+03	9.19E+03	1.64E+04	2.83E+04	7.43E+04	1.79E+05	3.92E+05
2 ightarrow 10	TS 12	1	0.00E+00	0.00E+00	0.00E+00	2.41E-04	1.67E-03	9.15E-02	2.74E+00	4.85E+00	3.19E+01	7.18E+01	2.18E+02	4.97E+02	1.05E+03	3.87E+03	1.21E+04	3.30E+04
10 → 2	TS 12	1	0.00E+00	0.00E+00	0.00E+00	6.87E-02	4.41E-01	1.91E+01	4.33E+02	7.26E+02	3.95E+03	8.16E+03	2.18E+04	4.51E+04	8.72E+04	2.71E+05	7.30E+05	1.72E+06
$2 \rightarrow 16$	TS 23	1	3.17E+03	9.07E+03	5.97E+04	4.77E+05	7.11E+05	2.29E+06	8.34E+06	1.06E+07	2.44E+07	3.56E+07	6.08E+07	9.14E+07	1.34E+08	2.63E+08	4.86E+08	8.40E+08
2 → 19	TS 11	1	4.15E-03	1.25E-01	6.66E+00	2.18E+02	4.06E+02	2.34E+03	1.51E+04	2.11E+04	6.75E+04	1.14E+05	2.35E+05	4.08E+05	6.81E+05	1.68E+06	3.78E+06	7.78E+06
2 → 23	TS 25	1	0.00E+00	0.00E+00	8.56E-01	1.44E+02	3.21E+02	2.84E+03	2.60E+04	3.86E+04	1.47E+05	2.66E+05	6.05E+05	1.12E+06	1.98E+06	5.39E+06	1.31E+07	2.87E+07
4 → 5	TS 14	1	2.15E+06	3.09E+06	6.23E+06	1.45E+07	1.71E+07	2.85E+07	5.10E+07	5.70E+07	8.41E+07	1.01E+08	1.30E+08	1.58E+08	1.90E+08	2.65E+08	3.60E+08	4.74E+08
$5 \rightarrow 4$	TS 14	1	3.77E+07	5.72E+07	1.29E+08	3.44E+08	4.20E+08	7.64E+08	1.52E+09	1.74E+09	2.76E+09	3.42E+09	4.65E+09	5.89E+09	7.36E+09	1.10E+10	1.59E+10	2.22E+10

4 → 12	TS 27	1	7.41E+04	1.23E+05	3.21E+05	9.99E+05	1.25E+06	2.46E+06	5.31E+06	6.13E+06	1.02E+07	1.29E+07	1.80E+07	2.32E+07	2.96E+07	4.55E+07	6.77E+07	9.67E+07
$12 \rightarrow 4$	TS 27	3	1.91E+09	2.53E+09	4.27E+09	7.79E+09	8.77E+09	1.24E+10	1.83E+10	1.97E+10	2.55E+10	2.86E+10	3.37E+10	3.83E+10	4.31E+10	5.33E+10	6.46E+10	7.69E+10
4 → 15	TS 13	2	0.00E+00	4.46E-03	4.33E+00	2.76E+02	5.59E+02	3.95E+03	3.03E+04	4.37E+04	1.53E+05	2.67E+05	5.82E+05	1.05E+06	1.80E+06	4.70E+06	1.11E+07	2.36E+07
4 → 22	TS 15	1	3.77E+05	7.18E+05	2.41E+06	9.83E+06	1.30E+07	2.95E+07	7.47E+07	8.88E+07	1.63E+08	2.16E+08	3.20E+08	4.33E+08	5.76E+08	9.56E+08	1.52E+09	2.30E+09
$5 \rightarrow 11$	TS 17	1	0.00E+00	8.00E-06	2.78E-03	1.67E-02	1.50E-01	6.75E-01	2.49E+00	2.14E+01	1.30E+02	5.97E+02						
11 → 5	TS 17	1	0.00E+00	3.35E+10	2.77E+11	4.07E+11	6.02E+11	7.58E+11	9.07E+11	1.18E+12	1.44E+12	1.67E+12						
5 ightarrow 17	TS 16	1	1.61E+06	2.67E+06	7.15E+06	2.33E+07	2.96E+07	6.04E+07	1.37E+08	1.60E+08	2.78E+08	3.58E+08	5.15E+08	6.81E+08	8.87E+08	1.43E+09	2.21E+09	3.28E+09
6 ightarrow 15	TS 18	2	0.00E+00	0.00E+00	2.08E+02	2.33E+04	4.80E+04	3.34E+05	2.33E+06	3.29E+06	1.04E+07	1.74E+07	3.51E+07	5.94E+07	9.63E+07	2.24E+08	4.72E+08	9.10E+08
7 → 14	TS 19	2	2.19E+01	7.84E+01	7.63E+02	9.42E+03	1.53E+04	6.38E+04	3.13E+05	4.21E+05	1.19E+06	1.91E+06	3.73E+06	6.23E+06	1.01E+07	2.38E+07	5.22E+07	1.06E+08
$7 \rightarrow 16$	TS 20	1	6.65E+03	1.56E+04	7.86E+04	5.21E+05	7.60E+05	2.33E+06	8.32E+06	1.06E+07	2.46E+07	3.62E+07	6.29E+07	9.61E+07	1.43E+08	2.93E+08	5.64E+08	1.02E+09
8 → 13	TS 21	1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.69E+02	1.25E+04	2.33E+04	1.64E+05	3.64E+05	1.05E+06	2.25E+06	4.45E+06	1.41E+07	3.78E+07	8.78E+07
8 → 18	TS 22	1	0.00E+00	4.98E-03	3.74E+00	1.52E+02	2.19E+03											
10 → 19	TS 26	1	0.00E+00	5.17E+00	6.19E+02	2.07E+04	3.75E+04	1.95E+05	1.07E+06	1.46E+06	4.11E+06	6.51E+06	1.23E+07	2.00E+07	3.11E+07	6.76E+07	1.35E+08	2.49E+08

Table S 9: Product branching ratios (in %) in the phenyl radical + propene reaction calculated at collision energies of 6-200 kJ/mol assuming different chemically activated initial adducts.

							Collis	ion Ene	ergy (kJ	/mol)						
Product	0	6	20	40	45	60	80	84	100	108	120	130	140	160	180	200
7-methylbicyclo[4.2.0]octa-1(6),2,4-triene (p8) + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
[(1E)-prop-1-en-1-yl]benzene (p6) + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(prop-2-en-1-yl)benzene (p2) + H	0.4	1.3	4.9	12.3	14.2	20.1	27.7	29.2	34.3	36.6	39.9	42.4	44.7	48.7	52.1	55.4
styrene (p1) + CH3	80.2	81.0	80.4	75.5	74.0	68.8	61.3	59.7	54.1	51.6	47.8	44.7	41.9	36.7	32.2	27.9
2,3-dihydro-1H-indene (p5) + H	3.7	2.8	1.7	0.9	0.8	0.6	0.4	0.3	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1
bicyclo[4.2.0]octa-2,4,8-triene (p7)+ CH3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(prop-1-en-2-yl)benzene (p4) + H	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3
[(1Z)-prop-1-en-1-yl]benzene (p3) + H	0.0	0.1	0.4	0.9	1.1	1.5	2.0	2.1	2.5	2.6	2.8	3.0	3.1	3.4	3.6	3.8
bicyclo[4.3.0]nona-2,4,9-triene (p9) + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
benzyl radical (p10) + ethene	15.7	14.7	12.6	9.9	9.4	7.8	6.2	5.9	5.0	4.6	4.1	3.7	3.4	2.9	2.5	2.2
phenyl radical + propene	0.0	0.0	0.0	0.4	0.6	1.2	2.4	2.6	3.7	4.3	5.2	5.9	6.6	7.9	9.2	10.4

Assuming 100% formation of phenyl radical + propene \rightarrow i1

Assuming 100% formation of phenyl radical + propene \rightarrow i2

							Collis	ion Ene	ergy (kJ	/mol)						
Product	0	6	20	40	45	60	80	84	100	108	120	130	140	160	180	200
7-methylbicyclo[4.2.0]octa-1(6),2,4-triene (p8) + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
[(1E)-prop-1-en-1-yl]benzene (p6) + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(prop-2-en-1-yl)benzene (p2) + H	0.4	1.3	4.9	12.2	14.1	19.9	27.1	28.6	33.1	34.9	37.3	39.0	40.3	42.0	42.4	42.2
styrene (p1) + CH3	80.2	81.0	80.4	75.6	74.1	69.1	62.0	60.6	55.8	53.8	51.0	48.9	47.3	45.1	44.2	44.1
2,3-dihydro-1H-indene (p5) + H	3.7	2.8	1.7	0.9	0.8	0.5	0.3	0.3	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.0
bicyclo[4.2.0]octa-2,4,8-triene (p7)+ CH3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(prop-1-en-2-yl)benzene (p4) + H	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.4
[(1Z)-prop-1-en-1-yl]benzene (p3) + H	0.0	0.1	0.4	0.9	1.1	1.5	2.0	2.1	2.4	2.5	2.6	2.7	2.8	2.9	2.9	2.9
bicyclo[4.3.0]nona-2,4,9-triene (p9) + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
benzyl radical (p10) + ethene	15.7	14.7	12.6	9.9	9.3	7.7	6.1	5.8	4.8	4.4	3.8	3.4	3.1	2.5	2.0	1.7
phenyl radical + propene	0.0	0.0	0.0	0.4	0.6	1.2	2.3	2.6	3.6	4.1	4.9	5.5	6.1	7.1	8.0	8.7

S9. TST-Calculated Rate Coefficients (CHEMKIN format)

REACTIONS KCAL/MOLE M	OLES				
C6H5 + C3H6 <=> C6H6 + CH3C	НСН	5.	510e-03	4.401	4.745
C6H5 + C3H6 <=> C6H6 + CH3C	CH2	6.7	725e-02	4.149	3.361
C6H5 + C3H6 <=> C6H6 + CH2C	HCH2	2	.601e-01	4.002	1.735
C6H5 + C3H6 <=> i1	3.132	2e+03	2.668	0.410	
C6H5 + C3H6 <=> i2	6.818	8e+02	2.750	2.279	
i1 <=> i3	2.597e+08	0.953	15.885		
i2 <=> i3	5.732e+09	0.671	15.317		
i1 <=> i4	1.680e-11	6.833	28.023		
i1 <=> i6	3.329e-13	6.797	28.919		
i1 <=> i7	1.842e-10	6.380	25.872		
i1 <=> p2 + H	7.532e+0	7 1.8	31 34.3	00	
i1 <=> p3 + H	4.133e+0	8 1.3	89 34.4	24	
i2 <=> i8	1.162e+09	0.771	31.613		
i2 <=> i9	6.414e-06	5.188	22.253		
i2 <=> i10	3.778e-02	4.026	36.559		
i2 <=> p1 + CH3	5.169e+	-10 0.	925 28	.785	
i2 <=> p4 + H	1.145e+0	9 1.2	55 34.3	91	
i4 <=> i5	1.066e+08	0.949	16.873		
$i4 \le p2 + H$	3.770e+0	8 1.5	06 35.1	56	
i5 <=> i11	4.255e+12	0.347	57.413	3	
i5 <=> p5 + H	4.595e+0	9 1.0	97 22.9	41	

i6 <=> p2 + H	7.600e+09 1.106 25.978
i7 <=> p1 + CH3	4.276e+11 0.842 35.998
i7 <=> p3 + H	3.757e+10 1.083 40.433
i8 <=> p7 + CH3	1.370e+13 0.610 48.173
i8 <=> p8 + H	9.945e+09 1.096 26.664
i10 <=> p4 + H	4.086e+10 0.921 25.035
i1 <=> i12	1.478e+00 3.436 23.671
i12 <=> i4	7.215e+02 2.460 3.681
$i4 \le p10 + C2H4$	4.390e+09 1.100 22.881
END	

S10. References

- 1. C. W. Gao, J. W. Allen, W. H. Green and R. H. West, *Comput. Phys. Commun.*, 2016, 203, 212-225.
- 2. V. V. Kislov, A. M. Mebel, J. Aguilera-Iparraguirre and W. H. Green, *J. Phys. Chem. A*, 2012, **116**, 4176-4191.
- 3. U. Brand, H. Hippler, L. Lindemann and J. Troe, J. Phys. Chem., 1990, 94, 6305-6316.
- 4. L. B. Harding, S. J. Klippenstein and Y. Georgievskii, *J. Phys. Chem. A*, 2007, **111**, 3789-3801.
- 5. R. S. Tranter, S. J. Klippenstein, L. B. Harding, B. R. Giri, X. Yang and J. H. Kiefer, *J. Phys. Chem. A*, 2010, **114**, 8240-8261.
- 6. A. Comandini, T. Malewicki and K. Brezinsky, J. Phys. Chem. A, 2012, 116, 2409-2434.
- B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network, ATcT.anl.gov).
- 8. S. W. Benson, *Thermochemical kinetics: methods for the estimation of thermochemical data and rate parameters*, Wiley, 1976.
- 9. T. F. Hunter and K. S. Kristjansson, J. Chem. Soc., Faraday Trans. 2, 1982, **78**, 2067-2076.
- 10. J. A. Guercione and M. H. J. Wijnen, J. Chem. Phys., 1963, 38, 1-3.
- 11. Y. Gao, K. Fessel, C. McLeod and P. Marshall, Chem. Phys. Lett., 2008, 451, 8-13.
- 12. S. S. Kumaran, M. C. Su and J. V. Michael, Chem. Phys. Lett., 1997, 269, 99-106.
- 13. A. Lifshitz, C. Tamburu and F. Dubnikova, J. Phys. Chem. A, 2008, 112, 925-933.
- 14. S. Mulenko, *Rev. Roum. Phys*, 1987, **32**, 173.
- 15. M. E. Jenkin, T. P. Murrells, S. J. Shalliker and G. D. Hayman, *J. Chem. Soc., Faraday Trans.*, 1993, **89**, 433-446.
- 16. W. Mueller-Markgraf and J. Troe, J. Phys. Chem., 1988, 92, 4899-4905.
- 17. D. L. Baulch, J. Duxbury, S. J. Grant and D. C. Montague, *Journal of Physical and Chemical Reference Data* 1981, **10**.
- 18. D. M. Golden, A. S. Rodgers and S. W. Benson, J. Am. Chem. Soc., 1966, 88, 3196-3198.
- 19. A. G. Sage, T. A. A. Oliver, D. Murdock, M. B. Crow, G. A. D. Ritchie, J. N. Harvey and M. N. R. Ashfold, *Phys. Chem. Chem. Phys.*, 2011, **13**, 8075-8093.
- 20. S. J. Blanksby and G. B. Ellison, Acc. Chem. Res., 2003, 36, 255-263.
- 21. D. L. Osborn, P. Zou, H. Johnsen, C. C. Hayden, C. A. Taatjes, V. D. Knyazev, S. W. North, D. S. Peterka, M. Ahmed and S. R. Leone, *Rev. Sci. Instrum.*, 2008, **79**, -.
- 22. T. A. Cool, J. Wang, K. Nakajima, C. A. Taatjes and A. McLlroy, *Int. J. Mass Spectrom.*, 2005, **247**, 18-27.
- 23. Z. Zhou, M. Xie, Z. Wang and F. Qi, *Rapid Commun. Mass Spectrom.*, 2009, **23**, 3994-4002.
- 24. Z. Zhou, L. Zhang, M. Xie, Z. Wang, D. Chen and F. Qi, *Rapid Commun. Mass Spectrom.*, 2010, **24**, 1335-1342.
- 25. B. Yang, J. Wang, T. A. Cool, N. Hansen, S. Skeen and D. L. Osborn, *Int. J. Mass Spectrom.*, 2012, **309**, 118-128.
- B. Gans, L. A. V. Mendes, S. Boyé-Péronne, S. Douin, G. Garcia, H. Soldi-Lose, B. K. C. de Miranda, C. Alcaraz, N. Carrasco, P. Pernot and D. Gauyacq, *J. Phys. Chem. A*, 2010, **114**, 3237-3246.
- 27. J. C. Robinson, N. E. Sveum and D. M. Neumark, Chem. Phys. Lett., 2004, 383, 601-605.

- 28. N. E. Sveum, S. J. Goncher and D. M. Neumark, *Phys. Chem. Chem. Phys.*, 2006, **8**, 592-598.
- 29. P. Constantinidis, F. Hirsch, I. Fischer, A. Dey and A. M. Rijs, *J. Phys. Chem. A*, 2017, **121**, 181-191.
- 30. Y. A. Dyakov, W. H. Hsu, C.-K. Ni, W.-C. Tsai and W.-P. Hu, *J. Chem. Phys.*, 2012, **137**, 064314.
- 31. K. H. Weber, J. M. Lemieux and J. Zhang, J. Phys. Chem. A, 2009, 113, 583-591.
- 32. M. Bobeldijk, W. J. van der Zande and P. G. Kistemaker, *Chem. Phys.*, 1994, **179**, 125-130.
- 33. F. Zhang, R. I. Kaiser, A. Golan, M. Ahmed and N. Hansen, *J. Phys. Chem. A*, 2012, **116**, 3541-3546.
- 34. H. Xu and S. T. Pratt, J. Phys. Chem. A, 2013, 117, 9331-9342.
- 35. J. C. Traeger and B. M. Kompe, *Int. J. Mass Spectrom. Ion Processes*, 1990, **101**, 111-120.
- 36. I. O. Antonov, J. Zádor, B. Rotavera, E. Papajak, D. L. Osborn, C. A. Taatjes and L. Sheps, *J. Phys. Chem. A*, 2016, **120**, 6582-6595.
- 37. W. Tang, R. S. Tranter and K. Brezinsky, J. Phys. Chem. A, 2005, 109, 6056-6065.
- 38. S. B. Moore and R. W. Carr, *International Journal of Mass Spectrometry and Ion Physics*, 1977, **24**, 161-171.
- 39. C. A. Taatjes, Int. J. Chem. Kinet., 2007, 39, 565-570.
- 40. M. T. Baeza-Romero, M. A. Blitz, A. Goddard and P. W. Seakins, *Int. J. Chem. Kinet.*, 2012, **44**, 532-545.
- 41. E. N. Fuller, P. D. Schettler and J. C. Giddings, *Industrial & Engineering Chemistry*, 1966, **58**, 18-27.
- 42. Z. J. Buras, R. M. I. Elsamra and W. H. Green, J. Phys. Chem. Lett., 2014, 5, 2224-2228.
- 43. C. A. Taatjes, D. L. Osborn, T. M. Selby, G. Meloni, H. Fan and S. T. Pratt, *J. Phys. Chem. A*, 2008, **112**, 9336-9343.
- H. Ismail, P. R. Abel, W. H. Green, A. Fahr, L. E. Jusinski, A. M. Knepp, J. Zádor, G. Meloni, T. M. Selby, D. L. Osborn and C. A. Taatjes, *J. Phys. Chem. A*, 2009, 113, 1278-1286.
- 45. J. J. Deakin and D. Husain, J. Chem. Soc., Faraday Trans. 2, 1972, 68, 41-47.
- 46. F. Greer, D. Fraser, J. W. Coburn and D. B. Graves, *Journal of Vacuum Science & Technology B*, 2003, **21**, 1391-1402.
- 47. J. R. Wyatt, J. J. Decorpo, M. V. McDowell and F. E. Saalfeld, *International Journal of Mass Spectrometry and Ion Physics*, 1975, **16**, 33-38.
- 48. L. N. Krasnoperov, J. T. Niiranen, D. Gutman, C. F. Melius and M. D. Allendorf, *J. Phys. Chem.*, 1995, **99**, 14347-14358.
- 49. G. P. Kota, J. W. Coburn and D. B. Graves, *Journal of Vacuum Science & Technology A*, 1999, **17**, 282-290.
- 50. T. Yu and M. C. Lin, J. Am. Chem. Soc., 1994, 116, 9571-9576.
- 51. K. Tonokura and M. Koshi, J. Phys. Chem. A, 2000, 104, 8456-8461.
- 52. K. Tonokura and M. Koshi, J. Phys. Chem. A, 2003, 107, 4457-4461.
- K. Tonokura, Y. Norikane, M. Koshi, Y. Nakano, S. Nakamichi, M. Goto, S. Hashimoto, M. Kawasaki, M. P. Sulbaek Andersen, M. D. Hurley and T. J. Wallington, *J. Phys. Chem. A*, 2002, **106**, 5908-5917.

54. T. J. Wallington, H. Egsgaard, O. J. Nielsen, J. Platz, J. Sehested and T. Stein, *Chem. Phys. Lett.*, 1998, **290**, 363-370.