Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Static second hyperpolarizability of inverse sandwich compounds $(M_1-C_5H_5-M_2)$ of alkali $(M_1=Li, Na, K)$ and alkaline earth metals $(M_2=Be, Mg, Ca)$

Kaushik Hatua, Avijit Mondal and Prasanta K. Nandi*

Department of Chemistry,

Indian Institute of Engineering Science and Technology, Shibpur

Howrah-711103, India

*Corresponding author: e-mail address: <u>nandi.prasanta8@gmail.com</u>

Supplementary Information

Fable S1 . $HF/0-511++O(u,p)$ calculated second hyperpolarizability (10° au) obtained at different field strengths (au)									
	0.0007 au		0.0008 au		0.0009 au		0.0010 au		
	γ_{zzzz}	γ_{av}	γ_{zzzz}	γ_{av}	γ_{zzzz}	γ_{av}	γ_{zzzz}	γ_{av}	
Li-Cp-Be	24.1	11.8	24.11	11.8	24.2	11.8	24.1	11.8	
Na-Cp-Be	334	651	336	654	340	658	344	662	
K-Cp-Be	267	86.9	270	87.6	273	88.4	277	89.2	
Li-Cp-Mg	59.4	31.5	59.6	31.6	59.9	31.7	60.2	31.8	
K-Cp-Mg	294	109	299	111	304	112	310	113	

Table S1: HF/6-311++G(d,p) calculated second hyperpolarizability (10⁴ au) obtained at different field strengths (au)

Table S2: Axial components and the average value of second hyperpolarizability (10^6 au) of M₁-Cp-M₂ complexes calculated using the finite field method and cubic response function at the HF/6-311++G(d,p) level

	HF				Cubic response				
	γ_{xxxx}	γ_{yyyy}	γ_{zzzz}	γ_{av}	γ_{xxxx}	$\gamma_{ m yyyy}$	γ_{zzzz}	γ_{av}	
Li-Cp-Be	0.06	0.06	0.24	0.11	0.06	0.06	0.24	0.12	
Li-Cp-Mg	0.22	0.22	0.59	0.31	0.22	0.22	0.59	0.31	
Li-Cp-Ca	3.63	3.63	18.51	6.89	3.46	3.46	16.23	6.29	
Na-Cp-Be	6.16	6.16	3.57	6.63	6.02	6.02	3.52	6.54	
Na-Cp-Mg	0.43	0.43	3.92	1.21	0.43	0.43	3.73	1.17	
Na-Cp-Ca	8.78	8.78	91.94	28.77	8.39	8.39	112.02	32.52	
K-Cp-Be	0.27	0.27	2.70	0.87	0.27	0.27	2.57	0.85	
K-Cp-Mg	0.54	0.54	2.99	1.10	0.54	0.54	2.80	1.06	
К-Ср-Са	10.16	10.16	244.87	63.75	9.58	9.58	219.34	57.21	

	HF						MP2			
	γ_{xxxx}	γ_{yyyy}	γ_{zzzz}	γ_{av}	γ_{xxxx}	$\gamma_{ m yyyy}$	γ _{zzzz}	γ_{av}		
Li-Cp-Be	0.06	0.06	0.24	0.11	0.09	0.09	0.35	0.17		
Li-Cp-Mg	0.22	0.22	0.59	0.31	0.19	0.19	0.81	0.34		
Li-Cp-Ca	3.63	3.63	18.51	6.89	3.03	3.03	43.48	11.83		
Na-Cp-Be	6.16	6.16	3.57	6.63	1.33	1.33	0.24	7.91		
Na-Cp-Mg	0.43	0.43	3.92	1.21	0.38	0.38	7.61	1.99		
Na-Cp-Ca	8.78	8.78	91.94	28.77	7.37	7.37	77.54	26.65		
K-Cp-Be	0.27	0.27	2.70	0.87	0.26	0.26	16.44	3.09		
K-Cp-Mg	0.54	0.54	2.99	1.10	0.40	0.40	15.42	2.90		
K-Cp-Ca	10.16	10.16	244.87	63.75	4.00	4.00	253.44	55.64		

Table S3: Axial components and the average value of second hyperpolarizability (10^6 au) of M₁-Cp-M₂ complexes obtained at HF and MP2 levels for the 6-311++G(d,p) basis set

Table S4 : γ_{zzzz} (10 ⁶ au) of Cp-M ₁ and M ₁ -Cp-M ₂ complexes obtained at the MP2/6-311++G(3df,3pd) level								
Complexes	γzzzz							
Li-Cp	0.04							
Na-Cp	0.08							
К-Ср	6.01							
Li-Cp-Be	0.32							
Li-Cp-Mg	0.80							
Li-Cp-Ca	42.65							
Na-Cp-Be	22.07							
Na-Cp-Mg	6.91							
Na-Cp-Ca	131.44							
K-Cp-Be	17.81							
K-Cp-Mg	16.49							
К-Ср-Са	201.12							

	BSSE corrected β_{zzz}				BSSE uncorrected β_{zzz}				%BSSE effect			
	BS-I	BS-II	BS-III	BS-IV	BS-I	BS-II	BS-III	BS-IV	BS-I	BS-II	BS-III	BS-IV
Li-Cp-Be	0.079	-0.3913	-0.46531	0.1563	0.114	0.1089	0.01638	0.014	30.70	459.32	2940.72	-1016.43
Li-Cp-Mg	0.282	-0.1511	0.14069	0.343	0.324	0.3563	0.3996	0.05474	12.96	142.40	64.79	-526.59
Li-Cp-Ca	49.925	47.0288	47.7363	49.198	50.351	47.502	48.216	48.78584	0.84	0.99	0.99	-0.84
Na-Cp-Be	264.183	237.8004	234.5509	240.195	264.215	237.832	234.641	240.1644	0.01	0.01	0.03	-0.01
Na-Cp-Mg	12.506	12.8913	12.6552	13.34	12.565	12.9622	12.764	13.28147	0.46	0.54	0.85	-0.44
Na-Cp-Ca	665.148	626.8224	649.474	660.769	665.537	626.901	649.769	660.3295	0.05	0.012	0.04	-0.06
K-Cp-Be	76.488	75.6458	74.1146	75.843	77.016	75.805	74.911	75.4791	0.68	0.21	1.06	-0.48
K-Cp-Mg	66.155	63.5033	63.81067	66.319	66.708	63.65	64.701	65.7918	0.82	0.23	1.37	-0.80
К-Ср-Са	313.551	368.0207	326.1991	307.072	314.501	368.211	327.051	306.0662	0.30	0.05	0.26	-0.32

Table S5: MP2 Calculated longitudinal component of first hyperpolarizability (β_{zzz} , 10³ au) of M₁-Cp-M₂ complexes obtained at BS-I (6311++G(3df,3pd)), BS-II (Sadlej's Pol), BS-III (Def2-TZVPPD) and BS-IV (aug-cc-pVTZ) basis sets

Table S6: %BSSE effect on γ_{zzzz} and β_{zzz} obtained at HF level for different basis sets								
Complexes	6-31++G(d,p)	6-311++G(3df,3pd)	aug-cc-pVTZ*					
			γzzzz					
Li-Cp-Be	24.42	43.68	43.10	50.42				
Li-Cp-Mg	28.77	35.42	35.62	37.59				
			β_{zzz}					
Li-Cp-Be	19.68	8.02	2.75	15.23				
Li-Cp-Mg	7.44	2.38	0.62	2.28				

*without 'f' type diffuse function for Li, Be, C and Mg

Complexes	γ(0;0,0,0,0)	$\gamma(-\omega;\omega,-\omega,\omega,)$	$\gamma(-2\omega;\omega,\omega,\theta,)$	$\gamma(-\omega;\omega,0,0,)$	$\gamma(-3\omega;\omega,\omega,\omega,)$
Li-Cp-Be	0.11	0.17	0.22	0.14	0.55
Li-Cp-Mg	0.31	0.64	0.99	0.43	-81.31
Li-Cp-Ca	6.89	-29.82	161.16	47.79	101.57
Na-Cp-Be	6.63				
Na-Cp-Mg	1.21			2.22	
Na-Cp-Ca	28.77	-80.14	234.56	-4.63	-33.60
K-Cp-Be	0.87	6.41	29.97	1.51	-58.52
K-Cp-Mg	1.10	12.11	96.32	1.96	104.72
К-Ср-Са	63.75			-12.74	

Table S7: Static and dynamic (1064 nm) second hyperpolarizability (10⁶ au) IDRI $\gamma(-\omega;\omega,-\omega,\omega)$, DC-Kerr $\gamma(-\omega;-\omega,0,0)$, SHG $\gamma(-2\omega;\omega,\omega,0)$, THG $\gamma(-3\omega;\omega,\omega,\omega)$ of M₁-Cp-M₂ complexes obtained at the HF/6-311++G(d,p) level

*The missing data in some cases arises from the convergence failure problem.