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Section S1. Derivation of Strain Tensor Using Elastic Dipole Tensor

The chemical strain tensor at a given dilute oxygen vacancy concentration can be calculated 

by minimizing the total energy,  with respect to the applied stain.   consists of the ∆𝐸𝑡𝑜𝑡𝑎𝑙 ∆𝐸𝑡𝑜𝑡𝑎𝑙

energy due to local lattice distortion caused by oxygen vacancy formation,  and the long-∆𝐸𝑠ℎ𝑜𝑟𝑡

range elastic strain energy caused by oxygen vacancy formation, , as: ∆𝐸𝑙𝑜𝑛𝑔
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where  is the volume per formula unit of perfect CeO2 and  is the elastic stiffness tensor for 𝑉𝑈 𝐶

the perfect lattice.  Taking the derivative of Equation 4 with respect to  yields: 𝜀

𝑑∆𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝜀
=

𝑑∆𝐸𝑠ℎ𝑜𝑟𝑡

𝑑𝜀
+

𝑑∆𝐸𝑙𝑜𝑛𝑔

𝑑𝜀
= 0

𝑑∆𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝜀
= 0 =

𝛿
𝑉𝑈

𝐺 + 𝐶:𝜀

𝑑∆𝐸𝑠ℎ𝑜𝑟𝑡

𝑑𝜀
=

𝑑
𝑑𝜀( 𝛿

𝑉𝑈
𝐺:𝜀) =

𝛿
𝑉𝑈

𝐺

𝑑∆𝐸𝑙𝑜𝑛𝑔

𝑑𝜀
=  

1
2

𝑑
𝑑𝜀

{(𝐶:𝜀):𝜀} =
1
2{𝑑(𝐶:𝜀)

𝑑𝜀 }:𝜀 +
1
2

(𝐶:𝜀):
𝑑𝜀
𝑑𝜀

𝑑∆𝐸𝑙𝑜𝑛𝑔

𝑑𝜀
=

1
2{𝐶:

𝑑𝜀
𝑑𝜀}:𝜀 +

1
2

(𝐶:𝜀):
𝑑𝜀
𝑑𝜀

=
1
2

(𝐶:𝜀) +
1
2

(𝐶:𝜀) = 𝐶:𝜀

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2018



Supplementary Materials

𝑑∆𝐸𝑡𝑜𝑡𝑎𝑙

𝑑𝜀
=

𝛿
𝑉𝑈

𝐺 + 𝐶:𝜀 = 0

𝜀 =
‒ 𝛿 (𝐶 ‒ 1𝐺)

𝑉𝑈

Section S2. PDOS Calculations for Stoichiometric and Non-stoichiometric Ceria

Partial density of states (PDOS) were calculated for Ce and O atoms in perfect CeO2 lattice 

and shown in Figure S1. Figure S2-S4 show the Ce-5d and 4f orbitals in vacancy containing lattice 

for two different scenarios. Analysis of PDOS for Ce-5d and 4f orbitals before and after the 

formation of oxygen vacancy has shown the charge localization in 4f orbital after  formation. 𝑉••
𝑂

Electron localization in Ce-4f orbital observed in Figure S3 is consistent with previous 

computational studies.

Figure S1. Partial density of states plot for Ce-5s, 5p, 5d, 4f and O-2p orbitals in pure CeO2
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Figure S2. PDOS for Ce4+-5d and Ce4+-4f 
orbital for Ce4+ adjacent to , after   𝑉••

𝑂 𝑉••
𝑂

formation in asymmetric case. Orbitals show 
same shape as Ce4+ in perfect CeO2.

Figure S3. PDOS for Ce3+-5d and Ce3+-4f 
orbital for Ce3+ adjacent to , after   𝑉••

𝑂 𝑉••
𝑂

formation in asymmetric case. Figure shows 
localization of excess electron in 4f orbital.

Figure S4. PDOS for Ce3.5+-5d and Ce3.5+-4f orbital for Ce3.5+ adjacent to , after   formation 𝑉••
𝑂 𝑉••

𝑂

in symmetric case. Figure shows localization of excess electron in 4f orbital. This scenario is 
computational artifact as the structure was energetically unfavorable.
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Section S3. Elastic Dipole Moment Calculation

Dipole moment 
𝑝⃗ =  ∑

𝑖

𝑞𝑖𝑑𝑖

 = charge on the ith particle 𝑞𝑖

 = displacement of the ith particle𝑑𝑖

If we assume mean charge as 3.5+ then charge on Ce3+ is 0.5 e and the charge on Ce4+ is -0.5 e.

Therefore, displacement of Ce atoms from oxygen vacancy center:

vectors x-comp y-comp z-comp ||d||
Ce4+ 1.4846 -1.4846 -1.4658 2.5606
Ce4+ -1.4846 1.4846 -1.4658 2.5606
Ce3+ -1.4488 -1.4488 1.4665 2.5196
Ce3+ 1.4488 1.4488 1.4665 2.5196

Vector sums
Ce4+ 0.0000 0.0000 -2.9316
Ce3+ 0.0000 0.0000 2.9331

Resultant qi*di
0.0000 0.0000 2.9323 eÅ

𝑝⃗ 14.0847 D

1 D (Debye) = 0.20819434 eÅ [https://en.wikipedia.org/wiki/Debye]


