Supporting Information for

Anisotropic Chemical Strain in Cubic Ceria due to Oxygen-Vacancy-Induced Elastic Dipoles

Tridip Das¹, Jason D. Nicholas¹, Brian W. Sheldon², and Yue Qi^{1,*}

¹Chemical Engineering & Materials Science Department, Michigan State University, East Lansing, MI 48824, USA

²School of Engineering, Brown University, Providence, RI 02912, USA

Section S1. Derivation of Strain Tensor Using Elastic Dipole Tensor

The chemical strain tensor at a given dilute oxygen vacancy concentration can be calculated by minimizing the total energy, ΔE_{total} with respect to the applied stain. ΔE_{total} consists of the energy due to local lattice distortion caused by oxygen vacancy formation, ΔE_{short} and the longrange elastic strain energy caused by oxygen vacancy formation, ΔE_{long} , as:

$$\Delta E_{total} = \Delta E_{short} + \Delta E_{long} = \frac{\delta}{V_U} G:\varepsilon + \frac{1}{2} (C:\varepsilon):\varepsilon$$

where V_U is the volume per formula unit of perfect CeO₂ and *C* is the elastic stiffness tensor for the perfect lattice. Taking the derivative of Equation 4 with respect to ε yields:

Supplementary Materials

$$\frac{d\Delta E_{total}}{d\varepsilon} = \frac{\delta}{V_U}G + C:\varepsilon = 0$$
$$\varepsilon = \frac{-\delta \left(C^{-1}G\right)}{V_U}$$

Section S2. PDOS Calculations for Stoichiometric and Non-stoichiometric Ceria

Partial density of states (PDOS) were calculated for Ce and O atoms in perfect CeO₂ lattice and shown in Figure S1. Figure S2-S4 show the Ce-5d and 4f orbitals in vacancy containing lattice for two different scenarios. Analysis of PDOS for Ce-5d and 4f orbitals before and after the formation of oxygen vacancy has shown the charge localization in 4f orbital after $V_0^{\bullet \bullet}$ formation. Electron localization in Ce-4f orbital observed in Figure S3 is consistent with previous computational studies.

Figure S1. Partial density of states plot for Ce-5s, 5p, 5d, 4f and O-2p orbitals in pure CeO₂

Figure S2. PDOS for Ce⁴⁺-5d and Ce⁴⁺-4f orbital for Ce⁴⁺ adjacent to V_{0}^{\bullet} , after V_{0}^{\bullet} formation in asymmetric case. Orbitals show same shape as Ce⁴⁺ in perfect CeO₂.

Figure S3. PDOS for Ce³⁺-5d and Ce³⁺-4f orbital for Ce³⁺ adjacent to V_{o}^{\bullet} , after V_{o}^{\bullet} formation in asymmetric case. Figure shows localization of excess electron in 4f orbital.

Figure S4. PDOS for Ce^{3.5+}-5d and Ce^{3.5+}-4f orbital for Ce^{3.5+} adjacent to V_0^{\bullet} , after V_0^{\bullet} formation in symmetric case. Figure shows localization of excess electron in 4f orbital. This scenario is computational artifact as the structure was energetically unfavorable.

Section S3. Elastic Dipole Moment Calculation

$$\vec{p} = \sum_{i} q_i d_i$$
Dipole moment

 q_i = charge on the ith particle

 d_i = displacement of the ith particle

If we assume mean charge as 3.5+ then charge on Ce³⁺ is 0.5 e and the charge on Ce⁴⁺ is -0.5 e.

Therefore, displacement of Ce atoms from oxygen vacancy center:

vectors	x-comp	y-comp	z-comp	d
Ce4+	1.4846	-1.4846	-1.4658	2.5606
Ce4+	-1.4846	1.4846	-1.4658	2.5606
Ce3+	-1.4488	-1.4488	1.4665	2.5196
Ce3+	1.4488	1.4488	1.4665	2.5196

Vector sums			
Ce4+	0.0000	0.0000	-2.9316
Ce3+	0.0000	0.0000	2.9331

Resultant	qi*di		
0.0000	0.0000	2.9323	eÅ
	\vec{p}	14.0847	D

1 D (Debye) = 0.20819434 eÅ [https://en.wikipedia.org/wiki/Debye]