Supporting Information for

Anisotropic Chemical Strain in Cubic Ceria due to Oxygen-Vacancy-Induced Elastic

Dipoles

Tridip Das ${ }^{1}$, Jason D. Nicholas ${ }^{1}$, Brian W. Sheldon ${ }^{2}$, and Yue Qi ${ }^{1, *}$
${ }^{1}$ Chemical Engineering \& Materials Science Department, Michigan State University, East Lansing, MI 48824, USA
${ }^{2}$ School of Engineering, Brown University, Providence, RI 02912, USA

Section S1. Derivation of Strain Tensor Using Elastic Dipole Tensor

The chemical strain tensor at a given dilute oxygen vacancy concentration can be calculated by minimizing the total energy, $\Delta E_{\text {total }}$ with respect to the applied stain. $\Delta E_{\text {total consists of the }}$ energy due to local lattice distortion caused by oxygen vacancy formation, $\Delta E_{\text {short }}$ and the longrange elastic strain energy caused by oxygen vacancy formation, $\Delta E_{\text {long, as: }}$

$$
\Delta E_{\text {total }}=\Delta E_{\text {short }}+\Delta E_{\text {long }}=\frac{\delta}{V_{U}} G: \varepsilon+\frac{1}{2}(C: \varepsilon): \varepsilon
$$

where V_{U} is the volume per formula unit of perfect CeO_{2} and C is the elastic stiffness tensor for the perfect lattice. Taking the derivative of Equation 4 with respect to ε yields:

$$
\begin{aligned}
& \frac{d \Delta E_{\text {total }}}{d \varepsilon}=\frac{d \Delta E_{\text {short }}}{d \varepsilon}+\frac{d \Delta E_{\text {long }}}{d \varepsilon}= 0 \\
& \frac{d \Delta E_{\text {total }}}{d \varepsilon}=0=\frac{\delta}{V_{U}} G+C: \varepsilon \\
& \frac{d \Delta E_{\text {short }}}{d \varepsilon}=\frac{d}{d \varepsilon}\left(\frac{\delta}{V_{U}} G: \varepsilon\right)=\frac{\delta}{V_{U}} G \\
& \frac{d \Delta E_{\text {long }}}{d \varepsilon}= \\
& \frac{1 d}{2 d \varepsilon}\{(C: \varepsilon): \varepsilon\}=\frac{1}{2}\left\{\frac{d(C: \varepsilon)}{d \varepsilon}\right\}: \varepsilon+\frac{1}{2}(C: \varepsilon): \frac{d \varepsilon}{d \varepsilon} \\
& d \varepsilon=\frac{1}{2}\left\{C: \frac{d \varepsilon}{d \varepsilon}\right\}: \varepsilon+\frac{1}{2}(C: \varepsilon): \frac{d \varepsilon}{d \varepsilon}=\frac{1}{2}(C: \varepsilon)+\frac{1}{2}(C: \varepsilon)=C: \varepsilon
\end{aligned}
$$

$$
\begin{gathered}
\frac{d \Delta E_{\text {total }}}{d \varepsilon}=\frac{\delta}{V_{U}} G+C: \varepsilon=0 \\
\varepsilon=\frac{-\delta\left(C^{-1} G\right)}{V_{U}}
\end{gathered}
$$

Section S2. PDOS Calculations for Stoichiometric and Non-stoichiometric Ceria

Partial density of states (PDOS) were calculated for Ce and O atoms in perfect CeO_{2} lattice and shown in Figure S1. Figure S2-S4 show the Ce- $5 d$ and $4 f$ orbitals in vacancy containing lattice for two different scenarios. Analysis of PDOS for Ce-5d and $4 f$ orbitals before and after the formation of oxygen vacancy has shown the charge localization in $4 f$ orbital after V_{o}^{*} formation. Electron localization in Ce-4f orbital observed in Figure S3 is consistent with previous computational studies.

Figure S1. Partial density of states plot for $\mathrm{Ce}-5 \mathrm{~s}, 5 \mathrm{p}, 5 \mathrm{~d}, 4 \mathrm{f}$ and $\mathrm{O}-2$ p orbitals in pure CeO_{2}

Figure S2. PDOS for $\mathrm{Ce}^{4+}-5 \mathrm{~d}$ and $\mathrm{Ce}^{4+}-4 \mathrm{f}$ orbital for Ce^{4+} adjacent to $V^{\bullet \bullet}$, after V_{o}^{*} formation in asymmetric case. Orbitals show same shape as Ce^{4+} in perfect CeO_{2}.

Figure S3. PDOS for $\mathrm{Ce}^{3+}-5 \mathrm{~d}$ and $\mathrm{Ce}^{3+}-4 \mathrm{f}$ orbital for Ce^{3+} adjacent to $V_{o}^{\bullet \bullet}$, after V_{o}^{\bullet} formation in asymmetric case. Figure shows localization of excess electron in 4f orbital.

Figure S4. PDOS for $\mathrm{Ce}^{3.5+}-5 \mathrm{~d}$ and $\mathrm{Ce}^{3.5+}-4 \mathrm{f}$ orbital for $\mathrm{Ce}^{3.5+}$ adjacent to $V^{\bullet \bullet}$, after $V^{\bullet \bullet}$ formation in symmetric case. Figure shows localization of excess electron in 4 f orbital. This scenario is computational artifact as the structure was energetically unfavorable.

Supplementary Materials

Section S3. Elastic Dipole Moment Calculation

Dipole moment $\vec{p}=\sum_{i} q_{i} d_{i}$
$q_{i}=$ charge on the $\mathrm{i}^{\text {th }}$ particle
$d_{i}=$ displacement of the $\mathrm{i}^{\text {th }}$ particle
If we assume mean charge as $3.5+$ then charge on Ce^{3+} is $0.5 e$ and the charge on Ce^{4+} is $-0.5 e$.
Therefore, displacement of Ce atoms from oxygen vacancy center:

vectors	x-comp	y-comp	z-comp	$\\|\mathrm{d}\\|$
Ce4+	1.4846	-1.4846	-1.4658	2.5606
Ce4+	-1.4846	1.4846	-1.4658	2.5606
Ce3+	-1.4488	-1.4488	1.4665	2.5196
Ce3+	1.4488	1.4488	1.4665	2.5196

Vector sums			
Ce4+	0.0000	0.0000	-2.9316
$\mathrm{Ce} 3+$	0.0000	0.0000	2.9331

Resultant	qi*di		
0.0000	0.0000	2.9323	$\mathrm{e} \AA$
	\vec{p}	14.0847	D

$1 \mathrm{D}($ Debye $)=0.20819434 \mathrm{e} \AA[$ https://en.wikipedia.org/wiki/Debye]

