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1 Time traces prior to background correction

Figure S1. PELDOR (black) and SIFTER time trace (red) prior to background correction 
along with background fitting functions (dotted) on 1. 

Figure S2. PELDOR time traces for set-ups P2a (black), P2b (red), P2c (green) and SIFTER 
time trace (blue) prior to background correction along with background fitting functions 
(dotted) on 2. The SIFTER time trace was shifted by -0.1 along the Intensity axis for clarity.
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Figure S3. PELDOR (black) and SIFTER time trace (red) prior to background correction 
along with background fitting functions (dotted) on 3. 

The DQC time traces did not require background correction and are therefore not included 
here.
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2 The effect of the pulse lengths and intensities on the echo intensity

As mentioned in the main text, the echo intensity was found to be much lower for the 
classical /2 –  –  –  than for the /2 –  – /2 –  echo sequence for a given 
duration of the /2 pulse at a fixed MW power for compounds 1 – 3. Figure S4 shows 
echo detected EPR spectra of 2 using the two aforementioned echo sequences. The 
spectra shown in Figure S4 have been recorded under identical conditions apart from 
the length of the second pulse (Table S1).

Figure S4. Echo detected EPR spectra of 2 at Q-band frequency using either the /2 –  –  
– (red graph) or the/2 –  –  – (green graph) pulse sequences.

Table S1. Pulse length and interpulse separation used for the measurement shown in Figure 
S4. All other parameters as indicated in Table 1 in the main text.
Color in Figure S1 1st pulsea [ns] 2nd pulsea [ns] [ns] Attc [dB]
Red 10 20 500 0
Green 10 10 500 0
a Lengths of the two pulses in a two-pulse echo sequence. At the applied MW attenuation, a 10 ns 
pulse corresponds to a flipping angle of /2. b Att = high power MW attenuation.

As can be seen in Figure S4, the red echo detected EPR spectrum recorded using 
the /2 –  –  –  sequence is clearly less intense than the green spectrum, which 
was recorded using two /2 pulses. In the /2 –  –  –  sequence, the second MW 
pulse is twice as long as the first pulse. Therefore, one could suspect that the 
reduced excitation bandwidth of the pulse sequence is responsible for the reduced 
echo intensity. If that was true however, the signal stemming from the E’ center (at 
~1200.5 mT in Figure S4) should be affected in the same manner. Instead, the 
opposite is observed for this signal and the classical sequence (i.e. /2 –  –  – ) 
yields better echo intensities than the /2 –  – /2 –  sequence. Thus, normally the 
combination of /2 and  pulses is expected to be superior. Here, the reason for the 
reduction of the echo intensity of compound 2 (and all other compounds investigated 
in this work) using the classical /2 –  –  –  echo sequence is the occurrence of 
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strong dipolar oscillations of the echo intensity in the polytrityl model compounds. 
This effect is so strong, that it overcompensates the gain in sensitivity when going 
from the usually inferior /2 –  – /2 –  sequence to the /2 –  –  –  sequence.  
This is also apparent in the SIFTER and DQC time traces presented in the main text, 
where a combination of /2 and  pulses is used to create coherences that evolve in 
two time intervals 1 (defocusing due to dipolar coupling) and 2 (refocusing of the 
dipolar couplings). The intensity of this echo is monitored as function of the two 
evolution periods. In the examples presented in the main text, the intensity peaks 
when the length of the first evolution period equals that of the second evolution 
period. Importantly, in these pulse sequences the coupled spins within a molecule 
have to be excited simultaneously to achieve de- and refocusing of the coherences 
due to dipolar interaction. In contrast, in a normal two pulse echo sequence, only one 
evolution period is present, in which the coherences defocus owed to the dipolar 
interaction. Therefore, the maximum echo intensity cannot be achieved in a two-
pulse echo experiment in polytrityl compounds at Q-band frequency, where the EPR 
spectrum is still narrow. Another way to demonstrate the effect is by monitoring the 
echo intensity of a two-pulse echo sequence as a function of the interpulse 
separation , i.e. by conducting a two-pulse ESEEM experiment. Figure S5 shows 
two-pulse ESEEM traces recorded at the maximum of the EPR spectrum using 
pulses with different flipping angles (Table S2).

Figure S5. Two-pulse ESEEM time traces of 2 at Q-band frequency using either the /2 –  – 
 – (red and blue graphs) or the/2 –  – /2 – (green graph) pulse sequences. The 
modulation period is determined by the dipolar coupling frequency of about 1.2 MHz.

Table S2. Pulse length and interpulse separation used for the measurement shown in Figure 
S5. All other parameters as indicated in Table 1 in the main text.
Color in Figure S2 1st pulsea [ns] 2nd pulsea [ns] b[ns] Attc [dB]
Red 10 20 300 0
Green 10 10 300 0
Blue 10 20 300 6
a Lengths of the two pulses in a two-pulse echo sequence. At an MW attenuation of 0 dB, a 10 ns 
pulse corresponds to a flipping angle of /2.  b Initial  value. c Att = high power MW attenuation.
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As can be seen in Figure S5, using the classical combination of /2 and  pulses (red 
graph) leads to the lowest overall, initial echo intensity and the strongest dipolar 
modulations. If the length of the second pulse is reduced by 50%, the overall echo 
intensity rises whereas the dipolar modulations diminish (green graph). The higher 
echo intensity is a consequence of the diminishing dipolar modulations, as the 
probability to flip several spins in one molecule simultaneously is strongly reduced if 
the second pulse is too short by 50%. A similar effect on the overall echo intensity 
and the modulation depth is observed if the pulse lengths are left unchanged but the 
attenuation is increased (blue graph). This has the same effect as shortening of both 
pulses would have. With an MW attenuation of 6 dB, the pulse lengths correspond to 
flipping angles of approximately 45 and 90°. Despite these low flipping angles, the 
overall echo intensity in the blue graph is higher than in the red graph. Again, this is 
caused by the diminishing of the dipolar modulation overcompensates the reduced 
echo intensity caused by the attenuation of the MW power.
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3 Attenuation of the ELDOR channel

To quantify the effect of attenuating the ELDOR channel, transient nutation 
experiments have been performed using the ELDOR channel for the first pulse of the 
sequence.  The position of the first minimum gives an estimate for the length required 
to achieve a flipping angle of . These experiments were conducted without any 
further attenuation of the MW power. Using our hardware, we found an irregular but 
consistent behavior of the ELDOR channel with respect to the MW attenuation. Thus, 
for low attenuation values hardly any change of the flipping angles were observed, 
and only at 16 dB a doubling of the required pulse length was observed. This 
corresponds to a reduction of 50% for the flipping angle for a given pulse length. 
From 16 dB on, normal behavior of the ELDOR channel was observed, i.e. reduction 
of the flipping angle by ~50% when increasing the attenuation by 6 dB. Figure S6. 
and Table S3 summarize the results of the transient nutation experiments.

Figure S6. Transient nutation experiments are various attenuations of the ELDOR channel. 
The minimum length of the ELDOR pulse amounts to 2 ns, where the graphs start.

Table S3. Pulse length and interpulse separation used for the measurement shown in Figure 
S6. All other parameters as indicated in Table 1 in the main text.
ELDOR Attenuation [dB] Approx. position of minimuma [ns] Reduction of 

flipping angleb

0 14 0%
6 16 ~0%
16 30 50%
22 58 75%
28 118 87.5%
a The resolution of the x axis amounts to 2 ns, limiting the accuracy of the value for low attenuation. At 
high attenuations, the minima get very broad, which also limits the accuracy of value.  b For a given 
pulse length relative to 0 dB ELDOR attenuation.
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4 RIDME

Figure S7 shows a RIDME time trace measured on 1 with a T value of 1 ms as an 
example of an unsuccessful measurement. Importantly, the chosen T value is on the 
same order as the spin lattice relaxation time for the trityl spin centers used herein, 
therefore fulfilling one of the experimental prerequisites to observe modulations in the 
RIDME experiment. In the case at hand no modulation is observed.  Furthermore, the 
quick decay of the signal intensities suggests that the method would be inferior to the 
other methods, even if modulations would be visible.

Figure S7. RIDME time trace obtained on 1.

Noteworthy, it was possible in one case to obtain a modulated RIDME time trace for 
3, using pure dichloromethane as solvent (i.e. a microcrystalline frozen solvent). This 
could be caused by the increased heterogeneity around the spin centers, leading to 
different relaxation behaviors for spins on different trityl groups. However, using non-
glassy solvent led to a strongly decreased overall sensitivity in all experiments and 
also stronger damping in the time traces of PELDOR, SIFTER, and DQC (data not 
shown). Furthermore, the modulated part at the end of the time trace shown in Figure 
S8 is noted. These modulations have the same period as those observed at the 
beginning of the time trace and appear to be caused by the dipolar interaction 
between the electrons. Thus, there appears to be an alternative coherence pathway 
in the five-pulse RIDME sequence which leads to the formation of a modulated time 
trace, possibly somewhat similar to the mechanism of the other single frequency 
sequences SIFTER and DQC.
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Figure S8. RIDME time trace obtained on 3 in pure DCM.
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5 Wavefunctions and energies in the different coupling regimes

5.1 Isotropic interactions

The isotropic case is of importance for the treatment of the exchange interaction 
observed in the room temperature cw EPR spectra and was discussed previously.1

5.2 Assessment of the  values in frozen solution

As discussed in the main text and above, the ratio |J-D/2|/|is of large importance. 
To evaluate this ratio, it is necessary to assess the accessible values of  in a given 
molecule and experiment. For the investigation of the exchange coupling constants in 
liquid solution, molecules of 3 with one 13C nucleus have been considered. The very 
small linewidth of the main signal and of the satellite lines in liquid solution (< 1 MHz) 
was clearly lower than the hyperfine coupling constants of all satellite lines. Hence, 
 for the two electron spins on the two trityl groups was entirely determined by the 
hyperfine coupling constant in this situation. Therefore, it was possible to neglect 
residual contributions to the frequency difference caused by the EPR linewidth (for 
example stemming from coupling to 1H nuclei within the diamagnetic backbone of 1, 
for example) when considering the spectra obtained from liquid samples. The echo 
detected EPR spectrum of 3 (and the other trityls measured in this work) in frozen 
solution at Q-band frequency however has a larger linewidth, which is of the same 
order as the other EPR parameters. Furthermore, in SIFTER and DQC the main line 
is used for observation and pumping simultaneously. Thus, in these experiments the 
 of the two spins within a molecule 3 is entirely caused by anisotropic broadening 
due to hyperfine coupling to nearby protons (or deuterons from the solvent) and g 
anisotropy. To analyze  in 3 in frozen solution, Figure S9 is considered.
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Figure S9. a) Echo detected EPR spectrum of 3 at Q band frequency and Gaussian fit to the 
main signal. The arrow indicates the lower and upper limit of the integration window used to 
obtain the plot shown in b), the dotted red lines include 98% of the signal’s intensity. b) 
Integral of the Gaussian fitting function. The x axis has been converted from magnetic field 
scale to a frequency scale and shifted to start at 0 MHz.

Figure S9a) shows the echo detected EPR spectrum of 3 along with a Gaussian 
function which has been used to fit the main part of the EPR signal. The agreement 
between the Gaussian fitting function and the main part of the signal is quite good. 
This suggests that the main signal can be treated as isotropic, despite being 
recorded in frozen solution. In an isotropic signal, the resonance fields of the two 
electron spins in 3 are uncorrelated. For a molecule of 3 without 13C nuclei, the most 
extreme case would be encountered if electron A had its resonance field at the low 
field edge of the main signal while electron B had its resonance field at the high field 
edge of the signal. By integrating the signal it is possible to assess the probability for 
either of the two spins to have a given resonance field. To avoid complications 
stemming from noise and the satellite lines, the Gaussian function is integrated 
instead of the actual signal. The result of the integration is shown in Figure S9b) and 
demonstrates that 98 % of all molecules resonate within a frequency window of 16 
MHz. If this window is subdivided into 16 intervals one can calculate the probabilities 
of either spin to resonate at a frequency range of 1 MHz (Table S4).
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Table S4. Probability of either spin to resonate within a certain frequency window as defined 
in the x axis of Figure S9b).
Freqency 
range [MHz]

Probability [%] Freqency range 
[MHz]

Probability [%]

11 – 10 1.3 19 – 18 11.3
12 – 11 2.1 20 – 19 10.4
13 – 12 3.3 21 – 20 8.7
14 – 13 5 22 – 21 7
15 – 14 7 23 – 22 5
16 – 15 8.7 24 – 23 3.3
17 – 16 10.3 25 – 24 2.1
18 – 17 11.3 26 – 25 1.3

With these values it is possible to calculate the probability to find a certain frequency 
difference for any spin pair. Taking the definition for the occurrence of strong coupling 
given in the main text (i.e. |J-D/2|/ ≥ 10), J = 37.5 MHz, and D/2 = 2.4 MHz one 
arrives at |J-D/2| = 35.1 MHz (the relative sign of J and D is discussed below. This 
means, that all spin pairs with a frequency offset of 3.5 MHz or lower are expected to 
be strongly coupled. Using the tabulated values one can calculate that 51.7 % of all 
spin pairs in 3 have a frequency offset of 3 MHz or less, while 63.2 % of all spins 
have a frequency offset of 4 MHz. Thus, taking the average of these two values one 
can estimate that ~57.5 % of all molecules will be in the strong coupling regime. 
Since the contribution from the satellites to the signal is not considered in this 
calculation, this value is probably an overestimation and should be taken as an upper 
bound. If one assumes that only the strongly coupled carbon atoms (i.e. the 18 ortho 
and para 13C nuclei) resonate outside the main signal one can estimate a lower 
bound by multiplying the obtained value with 0.82 to arrive at an estimate of 47.1%. 
Thus, between 47.1 and 57.5 % off all spin pairs in 3 are expected to be in the strong 
coupling regime in SIFTER and DQC. An experimental assessment on the fraction of 
molecules which are coupled strongly can be obtained by integrating the distance 
distribution derived from these experiments (Figure S10). Since the distance 
distribution has a rather complicated shape it is difficult to justify an exact integration 
window. Here, the lower bound is defined as 1.90 nm, which is the average distance 
of the intense peak minus 0.035 nm which is about 1.5 times the half width at half 
height. The distances in between the dashed line correspond to distances caused by 
molecules in the strong coupling regime. Molecules in the intermediate coupling 
regime are responsible for the broad shoulder towards higher distances. Here, the 
upper bound for the integral is taken to be ~2.24 nm as indicated in Figure S10a). 
Figure S10b) shows the integral of the distance distributions. Importantly, the Figure 
shows that 54% of all molecules are experimentally observed to be in the strong 
coupling regime in agreement with the estimate given above. As will be discussed 
below, the second value indicated in Figure S10b) is also in agreement with 
theoretical predictions based on the arguments outlined above.
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Figure S10. a) Experimental distance distribution of 3 obtained from SIFTER and DQC. The 
left dashed line indicates the start of the integration window, the arrow indicates the end of 
the integration window. b) Integral of the distance distribution with the upper and lower 
bounds as indicated in a).

5.3 Anisotropic and isotropic interactions

The discussion of the different coupling regimes including anisotropic coupling 
proceeds along the same lines as discussed above for the isotropic case.1 The most 
important difference is that the discussion in this chapter focuses on those molecules 
of 3 which do not contain any 13C atom. Therefore, only the spin functions of the two 
electrons have to be considered. First, the spin Hamiltonian matrix is inspected. 
Taking the biradical wavefuntions

(S-1)|1 >  = |𝛼1𝛼2 >

(S-2)|2 >  = |𝛼1𝛽2 >

(S-3)|3 >  = |𝛽1𝛼2 >

(S-4)|4 >  = |𝛽1𝛽2 >

and the spin Hamilton operator given by eq. 1 in the main text, one arrives at the spin 
Hamiltonian matrix for a spin system consisting of two electron spins and  no nuclear 
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spins. To simplify the equations, the factor  is dropped from the (1 ‒ 3(𝑐𝑜𝑠𝜃)2)

equations. This means that only molecules in which the interspin vector is aligned 
perpendicular to the external field B0 are taken into account.i In frequency units, the 
spin Hamiltonian matrix is given as

(S-5)

𝐻̿ = (𝜔 +
𝐽 + 𝐷

4
∆𝜔
2

‒
𝐽 + 𝐷

4

2𝐽 ‒ 𝐷
4

                    

                     
2𝐽 ‒ 𝐷

4

  ‒
∆𝜔
2

‒
𝐽 + 𝐷

4

‒ 𝜔 +
𝐽 + 𝐷

4

)
very similar to the matrix obtained in the isotropic case. The derivations made here 
are general and apply for any spin pair with different resonance frequencies 
regardless of the origin of the frequency difference /2. For 3, | may have any 
value lower or equal to the linewidth of the EPR spectrum (see section 3.2) and may 
stem from hyperfine coupling of the nuclei to nearby protons or the small g-
anisotropy. As for the isotropic case, the block diagonal form of the matrix  reveals 𝐻̿

that the functions |1> and |4> do not mix with any other function, i.e. are 
eigenfunctions of the spin Hamiltonian operator in all coupling regimes. The 
eigenvalues of these functions can be read off directly from the matrix. Therefore, the 
remaining discussion focusses on the functions |2> and |3>, for which the submatrix

(S-6)

̿𝐻𝑓𝑟𝑒𝑞,|2 > ,|3 > = (∆𝜔
2

‒
𝐽 + 𝐷

4
2𝐽 ‒ 𝐷

4
2𝐽 ‒ 𝐷

4
‒

∆𝜔
2

‒
𝐽 + 𝐷

4
)

has to be considered to obtain the eigenvalues and eigenfunctions. For the 
eigenvalues, the determinant

(S-7)
|∆𝜔

2
‒

𝐽 + 𝐷
4

‒ 𝐸
2𝐽 ‒ 𝐷

4
2𝐽 ‒ 𝐷

4
‒

∆𝜔
2

‒
𝐽 + 𝐷

4
‒ 𝐸| = 0

or

(S-8)
𝐸2 +

𝐽 + 𝐷
2

𝐸 ‒
3

16
𝐽2 +

6
16

𝐽𝐷 ‒
∆𝜔2

4
= 0

has to be solved, yielding eigenvalues of

(S-9)
𝐸2',3' =‒

𝐽 + 𝐷
4

±
1
2 (𝐽 ‒

𝐷
2)2 + ∆𝜔2

i These molecules contribute the highest weight to the ensemble of molecules. The omitted factor can 
be reintroiduced at later stages to consider coupling frequencies at arbitrary orientations.
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where the subscripts 2’and 3’ refer to the eigenfunctions |2’> and |3’> and the plus 
sign before the square root is valid for |2'>. The simplest cases are the weak and 
strong coupling regimes. In the weak coupling regime 

|  holds and the eigenvalues amount to
∆𝜔| ≫ |𝐽 ‒

𝐷
2

|

(S-10)
𝐸2' =‒

𝐽 + 𝐷
4

+
1
2

∆𝜔

(S-11)
𝐸3' =‒

𝐽 + 𝐷
4

‒
1
2

∆𝜔

In accordance with expectations for a biradical system, in which the pseudosecular 
parts of the spin Hamiltonian operator can be omitted. Therefore, the eigenfunctions 
|2’> and |3’> are identical with the biradical basis set functions |2> and |3>, 
respectively. For distance measurements in such a biradical system the energy 
differences of the transitions |1>  |2> and |4>  |3> monitored in PELDOR are of 
interest

(S-12)
𝐸1 ‒ 𝐸2' = 𝜔 ‒

∆𝜔
2

+
𝐽 + 𝐷

2

(S-13)
𝐸3' ‒ 𝐸4 = 𝜔 ‒

∆𝜔
2

‒
𝐽 + 𝐷

2

The coherent superposition of these two transitions yields the modulation frequency 
in PELDOR for the weak coupling case as

(S-14)𝜐𝑚𝑜𝑑,𝑤𝑒𝑎𝑘 = 𝐽 + 𝐷

in accordance with eq. 5 in the main text. In the strong coupling regime 

 holds and the eigenvalues amount to
|∆𝜔| ≪ |𝐽 ‒

𝐷
2

|

(S-15)
𝐸2' =+

𝐽
4

‒
𝐷
2

(S-16)
𝐸3' =‒

3𝐽
4

As for the isotropic case, |2’> corresponds to a triplet state function whereas |3’> is a 
singlet state function in the strong coupling regime.

(S-17)
|2'𝑠𝑡𝑟𝑜𝑛𝑔 >  =

1
2

(|2 >+ |3 > )

(S-18)
|3'

𝑠𝑡𝑟𝑜𝑛𝑔 >  =
1
2

(|2 >‒ |3 > )
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As before, transitions are only allowed between the triplet state functions in this 
regime, i.e. the transitions |1>|2’> and |4>|2’>. The superposition of the 
coherences from these transitions yield the modulation frequency

(S-19)
𝜐𝑚𝑜𝑑,𝑠𝑡𝑟𝑜𝑛𝑔 =

3𝐷
2

in accordance with eq. 8 in the main text. In the intermediate coupling regime the 
general eq. S-9 has to be used. Before this is discussed, the wavefunctions |2’> and 
|3’> have to be considered in more detail. As in the isotropic case, the wavefunctions 
|2’> and |3’> are admixtures of the biradical wavefunctions with coefficients c2 and c3. 
These coefficients can be obtained by solving the secular equations

(S-20)

(
∆𝜔
2

‒
𝐽 + 𝐷

4
‒ 𝐸) ∙ 𝑐1       +     (2𝐽 ‒ 𝐷

4 ) ∙ 𝑐2         = 0

(2𝐽 ‒ 𝐷
4 ) ∙ 𝑐1      + ( ‒

∆𝜔
2

‒
𝐽 + 𝐷

4
‒ 𝐸) ∙ 𝑐2   = 0

and by taking into account the normalization condition

(S-21)𝑐2
1 + 𝑐2

2 = 1

This yields 

(S-22)|2' >  = 𝑐1|2 >+ 𝑐2|3 >

(S-23)|3' >  = 𝑐2|2 >‒ 𝑐1|3 >

And

(S-

𝑐1 =
(𝐽 ‒

𝐷
2

)²

(𝐽 ‒
𝐷
2

)² + (( (𝐽 ‒
𝐷
2

)2 + ∆𝜔2 ∓ ∆𝜔))²

24)

(S-

𝑐2 =
(( (𝐽 ‒

𝐷
2

)2 + ∆𝜔2 ∓ ∆𝜔))²

(𝐽 ‒
𝐷
2

)² + (( (𝐽 ‒
𝐷
2

)2 + ∆𝜔2 ∓ ∆𝜔))²

25)

where the upper sign corresponds to |2’> and the lower sign to |3’>. As apparent from 
eqs. S-24 and S-25, the coefficients are complex functions of the coupling constants 
J and D as well as the frequency difference .  Figure S11 shows the coefficients c1 
and c2 as a function of |(J+D/2)/.
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Figure S11. Coefficients C1 and C2 for |2’> as a function of |J-D/2|/

Noteworthy, below |J+D/2|/ = 0.1 and above |J+D/2|/ = 10 the coefficients only 
change marginally and are already almost identical to the coefficients needed to 
reproduce the functions of the weak and strong coupling regimes, respectively. In the 
intermediate coupling regime, the coefficients and the energies of the spin states 
depend in a complex manner on J, D, and and change rapidly as a function of 
|J+D/2|/. Therefore, it is not possible to give simple instructions on how to read off 
J and D from the frequency spectrum in the intermediate coupling regime. However, 
using eqs. S-5 and S-9, it is possible to calculate the modulation frequency obtained 
from the superposition of coherences stemming from two different transitions. Since 
 amounts to a maximum value of only ~15 MHz (and is even lower than 10 MHz 
for more than 94 % of the molecules without 13C atom, see section 5.2), it can be 
assumed that even the molecules in the intermediate coupling regime are still close 
to the strong coupling regime. This is also in agreement with the coefficients shown in 
Figure S11. Consequently, the dominating transitions that can be observed are still 
|1>|2’> and |4>|2’> as in the strong coupling case. The superposition of these 
transitions leads to

(S-26)
|𝜐𝑚𝑜𝑑,𝑖𝑛𝑡| = |𝐽 + 𝐷 ‒ (𝐽 ‒

𝐷
2)2 + ∆𝜔2|

Eq. S-26 requires input-values for J, D, and . From the cw measurements it was 
possible to obtain an approximate value of |J| = 20 - 38 MHz (details concerning the 
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magnitude of the exchange coupling constant J are discussed in a previous paper1) 

whereas D could be determined from the singularities in the Pake pattern obtained 
3
2

from SIFTER and DQC as ~7.2 MHz. Figure S12 plots  according to eq. S-26 |𝜐𝑚𝑜𝑑,𝑖𝑛𝑡|

for both antiferromagnetic and ferromagnetic coupling against |J+D/2|/. 
Noteworthy, the results depend strongly upon whether or not J and D have the same 
sign. If J and D have the same sign (i.e. antiferromagnetic coupling), the expected 
modulation frequencies are lower than the frequency obtained in the strong coupling 
regime while the frequencies are higher if the signs are different. Since all 
measurements yield modulation frequencies of 7.2 MHz (strong coupling) or below, 
the first scenario is plausible. Furthermore, this scenario also agrees with 
expectations based on the p-substituition pattern of molecule 3, which leads to 
antiferromagnetic coupling.2,3 The plot of eq. S-26 in Figure S12 can be compared to 
the experimental data, with regimes of interest regarding |J+D/2|/for SIFTER and 
DQC as well as for PELDOR indicated in the Figure. 

For SIFTER and DQC, the plot shows that 94% of all molecules without 13C atom of 3 
(i.e. ~77% of all molecules of 3, if the contribution of molecules with one 13C atom in 
the strongly hyperfine coupling ortho- or para-positions to the molecular ensemble 
(amounting to about 18 %) is taken into account) for J = 38 MHz are expected to 
have a modulation frequency of 6.3 MHz or higher, corresponding to an apparent 
distance of 2.023 nm or lower. Assuming the lower bound of J = 20 MHz, this value 
reduces to ~62%. Both values agree reasonably with Figure S10, which shows that 
72% of all molecules yield apparent distances corresponding to such modulation 
frequencies. 

For PELDOR, the frequency offset of the pulses amounts to 15 MHz. Therefore, |J-
D/2|/ = 1.33 - 2.66 on average for PELDOR. At |J-D/2|/, the expected 
dipolar frequency at  = 90° amounts to ~4.6 MHz, in good agreement with the value 
of 4.5 MHz observed experimentally. In addition, Figure S13 shows that the 
modulation depends strongly on the angle  in the intermediate regime, in contrast to 
the strong or weak coupling regime, where the dipolar coupling frequency roughly 
changes at values of  close to 90°. This is shown in Figure S13 for a series of 
different frequency offsets assuming J = 37.5 MHz (the graph can also be used 
to estimate the behavior for J = 20 MHz, cf. Figure caption of Figure S13). 
Importantly, the frequencies decrease rapidly with decreasing  and reach zero at 
around 80°. Such angles have high statistical weights whereas contributions from low 
angles  decay rapidly.4 This explains the large contribution of low frequencies to the 
frequency spectrum observed in the PELDOR experiment and the lack of 
singularities. Now, the behavior for the lower bound of the exchange coupling with J 
= 20 cm-1 is discussed, for which |J-D/2|/ = 1.33 holds. Here, the expected dipolar 
frequency at  = 90° is close to zero, but the angular dependence leads to a rapid 
increase in the absolute value of modulation frequencies and values close to 4 MHz 
are expected for  around 80°. Thus, the frequencies observed in the PELDOR 
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experiment on 3 do not conflict with the frequencies observed experimentally for the 
range of coupling constants determined earlier.1

Figure S12. Expected modulation frequencies for J = 37.5 MHz and D/2 = 2.4 MHz (black) 
as well as for J = -37.5 MHz and D/2 = 2.4 MHz (red) plotted against |J-D/2|/. The dashed 
horizontal line indicates the value of D.

Figure S13. Dipolar coupling as a function of the angle  for J = 37.5 MHz and various 
frequency offsets. The red double arrow indicates the predominantly observed frequencies in 
the PELDOR experiment, coinciding with those orientations which have a high statistical 
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weight. An offset of 25 MHz for J = 37.5 MHz produces approximately the same angle 
dependence as J = 20 MHz for an offset of 15 Mhz, since |J-D/2|/  1.5 in both cases.≈

Finally, the expected modulation frequencies depend heavily on the exact frequency 
offset of the spin pairs used for observation, which also contributes to broadening of 
the frequency spectrum and the distance distribution (this statement is also 
corroborated by our data, that shows vastly different time traces for <> = 15 MHz 
in PELDOR as compared to <> = 0 for SIFTER and DQC). The heavy 
dependence of the frequencies on  and on  explain the very strong damping of 
the PELDOR time traces obtained on molecule 3 and the resulting, apparently 
strongly broadened distance distributions.
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6 Simulations of multi-spin effects using a geometrical model

In this section, some of the choices concerning parameters for the simulation of multi-
spin effects (MSEs) are discussed. In addition, the effect of including angular 
correlations between the three spin centers is demonstrated in section 4.1.

6.1 Correlated angles versus uncorrelated angles

As discussed in connection to Figure 2 in the main text, the angles ij between the 
magnetic field and the vectors joining spins i and j in a triangular molecule with spin 
centers i,j = A, B, or C are correlated. Thus, if spin A is observed, choosing the 
angles AB and AB suffices to define the angles AC and BC for a given conformation 
and geometry of the molecule incorporating the spin centers A, B, and C (see also 
Figure 2 in the main text). This means, the three-spin correlations T3 of an observed 
spin A can be calculated using eq. S-27:

(S-27)𝑇3 = ∬𝑐𝑜𝑠⁡(𝜔𝐴𝐵(𝜃𝐴𝐵) ∙ ∆𝑡) ∙ 𝑐𝑜𝑠⁡(𝜔𝐴𝐶(𝜃𝐴𝐵,𝜙𝐴𝐵) ∙ ∆𝑡)𝑑𝜃𝐴𝐵𝑑𝜙𝐴𝐵

Note, that the coupling frequency  of the spin pair AC for a given interspin 𝜔𝐴𝐶

distance depends on the angle  which in turn depends on  and . If no 𝜃𝐴𝐶 𝜃𝐴𝐵 𝜙𝐴𝐵

angular correlations were present, the three-spin correlation would instead be 
calculated using eq. S-28:

(S-28)𝑇3 = ∬𝑐𝑜𝑠⁡(𝜔𝐴𝐵(𝜃𝐴𝐵) ∙ ∆𝑡) ∙ 𝑐𝑜𝑠⁡(𝜔𝐴𝐶(𝜃𝐴𝐶) ∙ ∆𝑡)𝑑𝜃𝐴𝐵𝑑𝜃𝐴𝐶

Since the angles would then not be correlated, the integration of the two angles can 
be performed individually, yielding eq. S-29:

𝑇3 = ∫cos (𝜔𝐴𝐵(𝜃𝐴𝐵) ∙ ∆𝑡)𝑑𝜃𝐴𝐵 ∙ ∫cos (𝜔𝐴𝐶(𝜃𝐴𝐶) ∙ ∆𝑡)𝑑𝜃𝐴𝐶 = 𝑃𝐴𝐵
3 ∙ 𝑃𝐴𝐶

3

(S-29)

This equation shows, that for uncorrelated angles the three spin correlation of spin A 
are just the product of the two-spin form-factors in the three spin system ABC  and 𝑃𝐴𝐵

3

. Equations S-27 and S-29 are clearly different and thus the obtained form-factors 𝑃𝐴𝐶
3

are in general different as well for the two different equations. Figure S14 shows the 
form-factors obtained using the two different equations. Noteworthy, while the shape 
of the experimental time trace of compound 2 (black full line in Figure S14) is 
reproduced reasonably if equation S-27 is used (dotted black line in Figure S14), the 
coincidence of simulation and experiment is rather poor if equation S-29 is used 
(dotted red line in Figure S14) despite using identical molecular geometries for the 
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simulation in both cases, the only difference being whether or not angular correlation 
is taken into account.

Figure S14. Simulated form factor for 2 with and without angular correlation.

Noteworthy, DeerAnalysis is able to suppress MSEs in the simulated time traces only 
if eq. S-29 is used. Thus, taking the red dotted line as input and using the ghost 
suppression feature yields a form factor corresponding to the pair contribution, i.e. 
complete suppression of MSEs, which is not the case if the black dotted line is taken 
as input (Figure S15). In this second case, only partial suppression is achieved (this 
helps identifying MSEs).

Figure S15. Simulated time traces shown in Figure S14 after treatment in DeerAnalysis with 
the ghost suppression feature enabled. To use DeerAnalysis, a constant value of 0.07 was 
added to the form factors shown in Figure S15.
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The inability to fully suppress MSEs with a simple approach as implemented in 
DeerAnalysis is in line with observations made previously by Valera et al.5 and 
underlines the importance of either experimentally suppressing MSEs or simulating 
the time traces using a more sophisticated model as done herein.

6.2 The bending angle of the molecular triangle

As explained in the main text, the different conformations 2 have been obtained by 
treating the molecule as an object with bendable arms. Obviously, one needs to 
define a range of allowed angles for this bending motion. Empirically, this could be 
done by scanning a large variety of ranges and observing the resulting effect on the 
simulated time traces. However, since the script in its current form needs 
approximately three hours to run on a normal personal computer, this approach was 
unpractical here. Instead, a small, representative variety of angular ranges was 
tested. The results of these tests are summarized in Figure S16, which shows 
simulations (dashed lines) using bending angles of ±16.5° as already shown in the 
main text(black), ±14° (red), ±19° (green), ±9° (blue), and ±24° (cyan). As can 
immediately be seen, using bending angles which are far too small (±9°) or too large 
(±24°) produce time traces which do not compare favorably to the experimental data. 
Contrastingly, the red and green simulated time traces are of similar quality as the 
black simulated time trace. There, the range of angles is only slightly lower or larger 
than for the black time trace, respectively. If the deviation of the simulations from 
experiment is quantified by means of the root-mean-square deviation, it is recognized 
that a range of ±16.5° is indeed the best of the tried ranges (Table S5). Nevertheless, 
it is clear that the apparent precision of that value is not to be taken too seriously, 
and an error of about ±3° within the used geometrical model is estimated.
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Figure S16. Simulated form factors with different ranges of bending angle (dotted lines) and 
comparison to experimental data (full lines). The form factors of the three-spin system 2 are 
shifted by 0.4.

Table S5. RMSD values in arbitrary units of the simulations and the experimental data for 
different angular ranges in the geometrical model.
Angular range RMSD (two spins) RMSD (three spins)a

9.0 0.08985 0.02591
14.0 0.05760 0.01963
16.5 0.05717 0.01968
19.0 0.06384 0.03011
24.0 0.08141 0.03156
a The RMSD for the three-spin form factor is dominated by the error in the steep fall at the beginning. 
Therefore, the RMSD for a range of bending angles of ±9° is lower than the RMSD for an angular 
range of ±19°, despite the coincidence of the latter function qualitatively being better than that of the 
former function.

6.3 The weighting of the different conformers

Finally, the weighting of the different conformations within the molecular ensemble is 
discussed. To that end, Figure S17 is considered.
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Figure S17. a) Recapitulation of the geometrical model presented in Figure 2 in the main 
text. b) Conformer obtained by moving one arm about a certain angle. The dashed thin arrow 
is at the position of the “unmoved” arm. c)  Conformer obtained by moving arms about the 
same angle as in b) but in opposite directions. d) Conformer obtained by moving arms about 
the same angle as in b) but in the same direction.

Figure S17a) is similar to Figure 2a) in the main text and recapitulates the generation 
of conformers when the molecule is treated as triangular object with the interspin 
distance rij and the angles k. Parts b), c), and d) of Figure S17 show examples for 
conformers obtained by moving either one or two arms by a certain angle either 
clock- or counterclockwise. Now, for the simulations shown in the main text, each of 
that conformer would have the same probability/weighting in the simulation. This 
decision was made, as the simulations should only show that it was possible to 
simulate the time traces of 2 using a simple geometrical model if angular correlation 
is taken into account. Thus, not implementing any kind of weighting means reducing 
the number of parameters and focus entirely on the geometric relation between the 
spin centers A, B, and C. Introducing certain weighting would also mean using a 
more physical model to generate an ensemble of conformers. Implementing such a 
physical model is beyond the scope of the presented work, as this would require 
extended theoretical studies on the potential energy surface in the conformational 
space of 2. Two examples are discussed and the corresponding simulations are 
shown. First, one could argue that bending of the molecular arms comes at a certain 
energetic cost und should therefore reduce the probability of finding that 
conformation. Thus, the conformation shown in b) would be less likely than the 
undistorted conformation shown in a) and the “doubly” deformed conformation in c) 
would be even less likely, because two arms are now bent. The conformation in d) on 
the other hand has the same bending of the two arms as in c), just with the direction 
of one bending changed. Thus, since angle 2 is not affected by the overall 
deformation, this conformer is possibly more likely than the one shown in c) but less 
likely than the one shown in b). While it is of course possible to find a useful 
weighting relation taking this behavior into account based on qualitative arguments, it 
is now obvious that this would require a complex weighting function and therefore 
introduce many further parameters. In the second example, the deformed 
conformations are favored over the undeformed conformer. Obviously, finding an 
appropriate weighting function poses the same problem as in the case before. Here, 
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the movement of the individual arms is weighted using a Gaussian distribution to 
obtain simulations for the two discussed scenarios. For just one of the two arms, the 
functions are shown in Figure S18.

Figure S18. Weighting function for bending one of the two arms out of the position shown in 
Figure S17a) in dependence of the bending angle. Black line: No weighting, i.e. as used in 
the simulations shown above and in the main text. Red Line: Gaussian weighting, favoring 
undistorted conformations. Blue line: Gaussian weighting favoring the distorted conformers.

The resulting weighting functions in the two-dimensional coordinate space are shown 
in Figure S19.
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Figure S19. Weighting function for the movement of both arms favoring the undistorted 
conformation (a) or the distorted conformations (b).

Using the functions shown in Figures S18 and S19 to weight the different 
conformations yields the simulations shown in Figure S20.

 

Figure S20. Simulated form factors (dotted lines) with different with different weighting of the 
conformers and comparison to the experimental data (full lines). The form factors of the 
three-spin system 2 are shifted by 0.4, the color code is identical to the one used in Figure 
S18.

Figure S20 shows that using the weighting depicted in Figure S19a) simulations of 
similar quality to those obtained using uniform weighting of all conformers are 
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obtained, whereas favoring the conformers in which the arms are displaced from their 
positions leads to clearly worse agreement between simulation and experiment. This 
shows that implementing a physical model holds potential to improve the simulations. 
However, as already stated above, the effort necessary to find a justified model 
merits a study fully devoted to that subject and is therefore outside the scope of the 
present work.
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