Supplementary file

The effect of copper on the redox behaviour of iron oxide for chemical-looping hydrogen production probed by *in situ* X-ray absorption spectroscopy

Nur Sena Yüzbasi¹, Paula M. Abdala¹, Qasim Imtiaz¹, Sung Min Kim¹, Agnieszka M. Kierzkowska¹, Andac Armutlulu¹, Wouter van Beek² and Christoph R. Müller¹, *

¹Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland

² Swiss Norwegian Beamlines, European Synchrotron Radiation Facility (ESRF), Grenoble, France

Figure S1: Scanning electron micrographs of the calcined oxygen carriers (a) Fe30Zr70 and (b) Fe30Cu10Zr60.

Figure S2: EDX maps of calcined (a) Fe30Zr70 and (b) Fe30Cu10Zr60, Copper, zirconium and iron are represented with the colours pink, green and red, respectively.

Figure S3: Equilibrium thermodynamics calculations for the Fe/O, Cu/O and Fe/Cu/O systems during oxidative (steam and oxygen) conditions (molar ratio Fe:Cu = 3:1).

A thermodynamic evaluation of the materials is given in Figure S3. The equilibrium mole fractions of the different phases considered (Cu, Cu₂O, CuO, CuFe₂O₄, Fe₂O₃, Fe₃O₄, FeO and Fe) were calculated by Gibbs free energy minimization using the HSC chemistry software 6.0 and the thermochemical data of Barin and Platzki.¹ The equilibrium thermodynamics calculations were performed for the i) Fe/O, ii) Cu/O and iii) Fe/Cu/O systems under steam oxidation (molar ratio of Fe:Cu:H₂O = 3:1:100) and oxygen oxidation (molar ratio of Fe:Cu:O₂ = 3:1:100) conditions, as a function temperature.

- i. **Oxidation in steam:** In the metallic state, there is no alloy formation between Cu and Fe, in line with experimental evidence (XRD and XANES) and literature.² A thermodynamic assessment of the steam oxidation of metallic Fe indicates that Fe can be oxidized up to Fe₃O₄. The steam oxidation of metallic Cu gives only a small quantity of Cu₂O (3 %), with the majority being Cu (97 %), indicating that Cu cannot be oxidized to a sensible extent with steam (i.e. no water splitting reaction using Cu according to equilibrium thermodynamic calculations). In the bimetallic Fe-Cu system, the mole fraction of Cu is not affected by the presence of steam (100 %) and Cu₂O does not form (in line with XRD of Fe3OCu10Zr60 after steam oxidation, Figure S4). Fe is oxidized up to Fe₃O₄, while the formation of CuFe₂O₄ or Fe₂O₃ is thermodynamically not favoured under steam oxidation conditions.
- ii. Oxidation in O₂: For the thermodynamic assessment of the oxidation in O₂, the reactants were Fe₃O₄ and Cu. At 700 °C, Fe₃O₄ is oxidized to Fe₂O₃ (complete oxidation) in the Fe/O system while Cu was oxidized to CuO in the Cu/O system. The formation of Fe₂O₃, CuO and CuFe₂O₄ is predicted in the Cu/Fe system.

¹ I. Barin, G. Platzki, Thermochemical data of pure substances. Wiley Online Library, **1989**; Vol. 304. ² A. Bachmaier, M. Kerberb, D. Setman, R. Pippan, Acta Materialia, 60, **2012**, 860-871.

Figure S4: XRD patterns of Fe30Cu10Zr60 (previously reduced in 2.5 % H₂ in N₂) subjected to oxidation in steam/N₂ and followed by O_2/N_2 . Cu is in its metallic state after steam oxidation and CuFe₂O₄ is formed after oxidation in O_2/N_2 for 20 min.

Figure S5: Overall XRD series (a) Fe30Zr70 and (b) Fe30Cu10Zr60 30 at room temperature after H₂ reduction at various temperatures in the temperature range from 25 - 1050 °C.

Figure S6: XRD series Fe30Cu10Zr60 at room temperature after H₂ reduction 400 °C representing CuFe₂O4 to Fe₃O₄ and Cu transition.

Figure S7: Cu-edge XANES spectra of Fe30Cu10Zr60 together with Cu foil.

Figure S8: Time-resolved Fe K-edge XANES spectra during reduction of (a) Fe30Zr70 and (b) Fe30Cu10Zr70 at 750 °C using 5 vol.% H₂ in He. The square (\Box) and circle (\circ) symbols correspond to the initial and final states, respectively. The arrows indicate the direction of the changes with time.

Figure S9: (a) Fe K-edge XANES spectra of (—) CuFe₂O₄ reference, (—) α -Fe₂O₃ reference, (—) Fe₃O₄ reference, (—) FeO reference and (—) Fe reference.

Figure S10: Fe K-edge XANES experimental data (solid black) and corresponding fitting using the least-squares linear combination of standard samples (red dash).

Figure S11: The loss of oxygen in (a) Fe30Zr70 and (b) Fe30Cu10Zr60 as a function of time.

Figure S12: Fe-edge XANES spectra of fresh and cycled Fe30Cu10Zr60 together with α -Fe₂O₃ reference and CuFe₂O₄ reference.

Figure S13: XRD of (—) fresh and cycled and oxidized Fe30Cu10Zr60. The oxygen carrier was oxidized for (—) 5 min. and (—) 20 min after being subjected to 15 redox cycles.