Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

# SUPPORTING INFORMATION

# Unifying theoretical framework for deciphering the oxygen reduction reaction on platinum

Jun Huang,<sup>1,2,z</sup> Jianbo Zhang,<sup>2,3</sup> Michael Eikerling<sup>4</sup>

- <sup>1</sup> College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
- <sup>2</sup> Department of Automotive Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
  - <sup>3</sup> Beijing Co-innovation Center for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
- <sup>4</sup> Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Corresponding authors: <a href="mailto:jhuangelectrochem@qq.com">jhuangelectrochem@qq.com</a>

## Lateral interaction effect

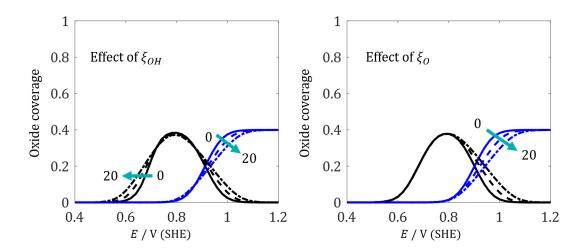



Figure S 1. Effect of  $\xi_{OH}$  on the coverage of adsorbed oxygen intermediates (left) with  $\xi_O = 10$  kJ mol<sup>-1</sup>. Effect of  $\xi_O$  on the coverage of adsorbed oxygen intermediates (right) with  $\xi_{OH} = 10$  kJ mol<sup>-1</sup>. Other parameters are given in Figure 2 of the main-text.

# Interfacial parameters

Table S1. Parameters of the electrified interface in calculation of  $\sigma_{\rm M}$ .

| Item                                 | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Gas constant, R                      | 8.314 J K <sup>-1</sup> mol <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Faraday constant, F                  | $96485 \ C \ mol^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Temperature, T                       | 298.15 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Typical value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Elementary charge, $e$               | $1.6 \times 10^{-19}$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Avogadro's number, $N_{\rm A}$       | s number, $N_{\rm A}$ 6.02 × 10 <sup>23</sup> mol <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Water dipole moment,                 | 3.1 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Typical value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $\mu_{ m w}$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Pt atom density, $N_{\text{tot}}$    | $1.6335 \times 10^{19} \text{ m}^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calculated using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4/\sqrt{3}a_{Pt}^2$ with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a_{Pt} = 3.92$ Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Vacuum permittivity, $\varepsilon_0$ | $8.85 \times 10^{-12} \text{ F m}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Permittivity of oxide                | 1.0 ε <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nothing but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| layer, $\varepsilon_{\text{PtO}}$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vacuum inside the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oxide layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Permittivity of the IHP,             | $06.0 \epsilon_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $arepsilon_{ m IHP}$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Permittivity of the OHP,             | $30.0 \ \epsilon_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $arepsilon_{ m OHP}$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Permittivity of bulk                 | $78.5 \epsilon_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Constant (bulk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| solution, $\varepsilon_{\rm s}$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Thickness of the oxide               | 0.18 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DFT calculation <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| layer, $\delta_{\rm PtO}$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                      | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFT calculation <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| _                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                      | 0.275 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Constant (the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | diameter of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1111                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dipole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Thickness of the OHP.                | 0.515 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| *                                    | 0.3 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| between bulk and                     | 3.5 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                      | Gas constant, R Faraday constant, F Temperature, T Elementary charge, $e$ Avogadro's number, $N_A$ Water dipole moment, $\mu_W$ Pt atom density, $N_{\text{tot}}$ Vacuum permittivity, $\varepsilon_0$ Permittivity of oxide layer, $\varepsilon_{\text{PtO}}$ Permittivity of the IHP, $\varepsilon_{\text{IHP}}$ Permittivity of bulk solution, $\varepsilon_{\text{S}}$ Thickness of the oxide layer, $\delta_{\text{PtO}}$ Net charge number per oxide site, $\zeta_{\text{OH}}$ Thickness of the IHP, $\delta_{\text{IHP}}$ | Gas constant, R $= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Faraday constant, F $= 96485 \text{ C mol}^{-1}$ Temperature, T $= 298.15 \text{ K}$ Elementary charge, $e$ $= 1.6 \times 10^{-19} \text{ C}$ Avogadro's number, $N_{\text{A}}$ $= 6.02 \times 10^{23} \text{ mol}^{-1}$ Water dipole moment, $= 3.1 \text{ D}$ $= 1.6335 \times 10^{19} \text{ m}^{-2}$ Yacuum permittivity, $\epsilon_0$ $= 8.85 \times 10^{-12} \text{ F m}^{-1}$ Permittivity of oxide $= 1.0 \epsilon_0$ $= 1.0 \epsilon_0$ $= 1.0 \epsilon_0$ Permittivity of the IHP, $= 1.0 \epsilon_0$ $= 1.0 \epsilon_0$ $= 1.0 \epsilon_0$ Solution, $\epsilon_{\text{S}}$ Thickness of the oxide $= 0.18 \text{ nm}$ layer, $\epsilon_{\text{PtO}}$ Net charge number per oxide site, $\epsilon_{\text{OH}}$ Thickness of the IHP, $= 0.275 \text{ nm}$ $\epsilon_{\text{OHP}}$ Thickness of the OHP, $= 0.275 \text{ nm}$ $\epsilon_{\text{OHP}}$ Thickness of the OHP, $= 0.275 \text{ nm}$ $\epsilon_{\text{OHP}}$ Potential difference oxide oxi |  |

## A collection of ORR Tafel slopes of Pt electrocatalysts.

Table S2. A collection of ORR Tafel slopes of Pt electrocatalysts.

| Sample                                                | Method & condition                                                                                 | Tafel<br>slope /<br>mV dec <sup>-1</sup> | Potential range / V | Potential dependence | Reference |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|----------------------|-----------|
| Pt/Vulcan                                             | RDE, $0_2$ -saturated $0.1 \text{M HClO}_4$ , mass-transfer corrected                              | 60~90                                    | 0.75<br>- 0.95      | Decreasing           | 3         |
| Pt(111)                                               | RDE, $0_2$ -saturated $0.1 \text{M HClO}_4$                                                        | 77                                       | 0.7 - 0.9           | Not shown            | 4         |
| 50% wt<br>Pt/Vulcan                                   | IR-free voltage of a catalyst layer in $H_2/O_2$ gas condition at 100% RH and 80°C                 | 60 – 110                                 | 0.75<br>0.90        | Decreasing           | 5         |
| Pt(111)                                               | RDE, 0 <sub>2</sub> -saturated<br>0.1M HClO <sub>4</sub> at 296<br>K, intrinsic kinetic<br>current | ~60<br>- 118                             | 0.5 – 1.0           | Decreasing           | 6         |
| Pt-poly,<br>Pt <sub>3</sub> Ni,<br>Pt <sub>3</sub> Co | RDE, 0 <sub>2</sub> -saturated<br>0.1M HClO <sub>4</sub> at 293<br>K, mass-transfer<br>corrected   | 90 – 110                                 | 0.80<br>- 0.92      | Decreasing           | 7         |
| Pt disk<br>electrode                                  | RDE, $\mathrm{HClO_4}$ and $\mathrm{H_2SO_4}$                                                      | 60 – 120                                 | 0.4 - 1.0           | Decreasing           | 8         |

## Effect of ionic strength

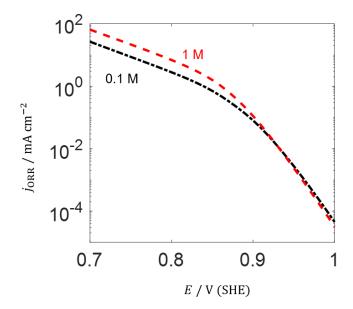



Figure S 2. Effect of ionic strength on the ORR for the case of pH=1.2 in Figure 3.

#### Rate constants

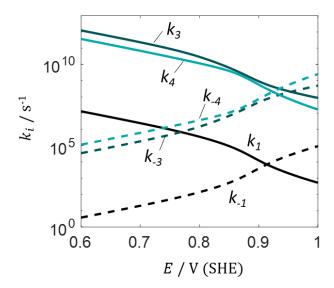



Figure S 3. Variations in the rate constants as a function of electrode potential for pH=1.2 in Figure 3.

### Oxide coverage as a function of the chemisorption energy

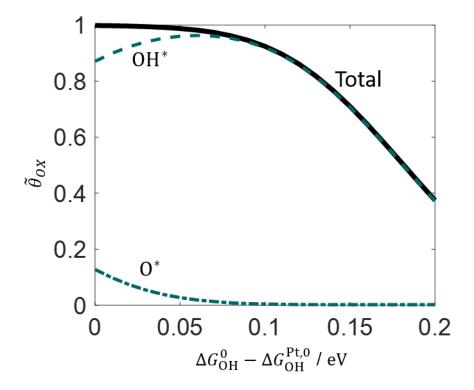



Figure S 4. Normalized total oxide coverage,  $\tilde{\theta}_{OX} = (\theta_{OH} + \theta_{O})/\theta_{max}$ , as a function of hydroxyl binding energy. The data are calculated at  $E = 0.9 \ V$  (RHE) using the same parameter set as in Figure 7.

## Relation between ORR activity and $G_{OH}^0$

According to the definition we obtain,

$$K_3^* = \frac{k_3^*}{k_{-3}} = [H^+] \exp\left(\frac{E_{a,-3} - E_{a,3}}{RT}\right) = [H^+] \exp\left(-\frac{\Delta G_3}{RT}\right)$$

$$= [H^+] \exp\left(-\frac{F(E - E_3^{eq}) + \delta G_{OH} - \delta G_O}{RT}\right).$$
(S1)

Based on the scaling relation,  $E_3^{\rm eq}$  of a catalyst having a different  $\Delta G_{\rm OH}^0$  relative to  $\Delta G_{\rm OH}^{\rm Pt,0}$  is expressed as,

$$E_3^{\text{eq}} = E_3^{\text{Pt,eq}} + \frac{(\zeta_0 - 1)(\Delta G_{\text{OH}}^0 - \Delta G_{\text{OH}}^{\text{Pt,0}})}{F}.$$
 (S2)

where  $E_3^{\text{Pt,eq}} = 0.95 \text{ V}$  as in Table 1.

Substituting Eq.(S2) into Eq.(S1) leads to,

$$K_{3}^{*} = [\mathrm{H}^{+}] \exp\left(-\frac{F\left(E - E_{3}^{\mathrm{Pt,eq}}\right)}{4RT}\right) \exp\left(\frac{\delta G_{0} - \delta G_{0\mathrm{H}}}{RT}\right) \exp\left(\frac{F}{eRT}(\zeta_{0})\right)$$

$$-1)\left(\Delta G_{0\mathrm{H}}^{0} - \Delta G_{0\mathrm{H}}^{\mathrm{Pt,0}}\right)$$

$$= K_{3}^{\mathrm{Pt,*}} \exp\left(\frac{1}{RT}(\zeta_{0} - 1)\left(\Delta G_{0\mathrm{H}}^{0} - \Delta G_{0\mathrm{H}}^{\mathrm{Pt,0}}\right)\right),$$
with  $K_{3}^{\mathrm{Pt,*}} = [\mathrm{H}^{+}] \exp\left(-\frac{F\left(E - E_{3}^{\mathrm{Pt,eq}}\right)}{RT}\right) \exp\left(\frac{\delta G_{0} - \delta G_{0\mathrm{H}}}{RT}\right).$  (S3)

Similarly, we have,

$$K_4^* = K_4^{\text{Pt,*}} \exp\left(\frac{\left(\Delta G_{\text{OH}}^0 - \Delta G_{\text{OH}}^{\text{Pt,0}}\right)}{RT}\right),\tag{S4}$$

with 
$$K_4^{\text{Pt,*}} = [\text{H}^+] \exp\left(-\frac{F\left(E - E_4^{\text{Pt,eq}}\right)}{RT}\right) \exp\left(\frac{-\delta G_{\text{OH}}}{RT}\right)$$
.

For step (1),

$$k_1^* = k_1^{\text{Pt,*}} \exp\left(\frac{-\beta_1 \zeta_{\text{OOH}} \left(\Delta G_{\text{OH}}^0 - \Delta G_{\text{OH}}^{\text{Pt,0}}\right)}{RT}\right),$$
 (S5)

with 
$$k_1^{\text{Pt,*}} = k_1^0 \exp\left(\frac{-E_{\text{a,i}}^0 - \beta_1 F\left(E - E_1^{\text{Pt,eq}}\right)}{RT}\right) [O_2][H^+].$$

For step (3),

$$k_3^* = k_3^{\text{Pt,*}} \exp\left(\frac{\beta_3(\zeta_0 - 1)(\Delta G_{\text{OH}}^0 - \Delta G_{\text{OH}}^{\text{Pt,0}})}{RT}\right),$$
 (S6)

with 
$$k_3^{\text{Pt,*}} = k_3^0 \exp\left(\frac{-E_{a,3}^0 - \beta_3 F\left(E - E_3^{\text{Pt,eq}}\right)}{RT}\right) \theta_0[H^+].$$

For step (4),

$$k_4^* = k_4^{\text{Pt,*}} \exp\left(\frac{\beta_4 \left(\Delta G_{\text{OH}}^0 - \Delta G_{\text{OH}}^{\text{Pt,0}}\right)}{RT}\right),$$
 (S7)

with 
$$k_4^{\text{Pt,*}} = k_4^0 \exp\left(\frac{-E_{a,4}^0 - \beta_4 F\left(E - E_4^{\text{Pt,eq}}\right)}{RT}\right) \theta_{\text{OH}}[H^+].$$

Combining Eqs. (S3)-(S7) into the relation  $v_{\text{ORR}} = (K_3^*)^{\nu} (K_4^*)^{\mu} k_i^*$  gives,

$$v_{\text{ORR}} = v_{\text{ORR}}^{0} \exp\left(\frac{\left(\nu(\zeta_{\text{O}} - 1) + \mu - \zeta_{i}\right)}{RT} \left(\Delta G_{\text{OH}}^{0} - \Delta G_{\text{OH}}^{\text{Pt,0}}\right)\right), \tag{S8}$$

with  $v_{\text{ORR}}^0 = (K_3^{\text{Pt,*}})^{\nu} (K_4^{\text{Pt,*}})^{\mu} k_i^{\text{Pt,*}}$  and

$$\zeta_{i} = \begin{cases}
\beta_{1}\zeta_{\text{OOH}}, & i = 1 \\
-\beta_{3}(\zeta_{0} - 1), & i = 3, \\
-\beta_{4}, & i = 4
\end{cases}$$
(S9)

#### Rate determining term

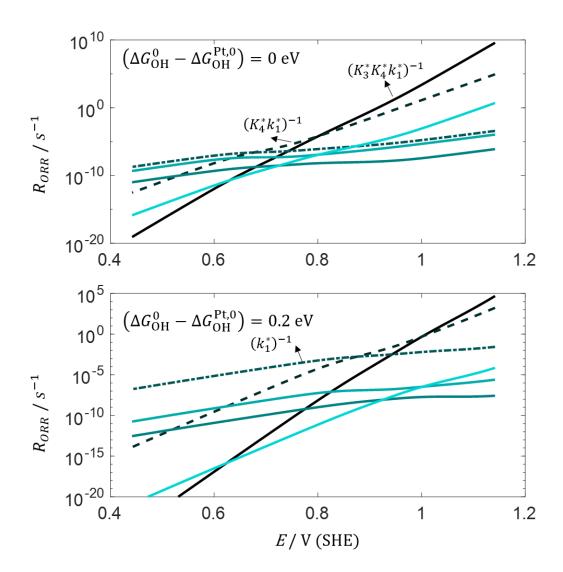



Figure S 5. Rate-determining term of the ORR rate expression for  $\left(\Delta G_{\rm OH}^0 - \Delta G_{\rm OH}^{\rm Pt,0}\right) = 0$  and 0.2 eV. Labels for the curves are the same as in Figure 5.

#### References

- 1. J. Huang, A. Malek, J. Zhang and M. H. Eikerling, *The Journal of Physical Chemistry C*, 2016, **120**, 13587-13595.
- 2. A. Malek and M. H. Eikerling, *Electrocatalysis*, 2017, DOI: 10.1007/s12678-017-0436-0.
- 3. E. J. Coleman and A. C. Co, ACS Catalysis, 2015, 5, 7299-7311.
- 4. A. M. Gomez-Marin, R. Rizo and J. M. Feliu, *Catalysis Science & Technology*, 2014, **4**, 1685-1698.
- 5. N. P. Subramanian, T. Greszler, J. Zhang, W. Gu and R. R. Makharia, ECS Transactions, 2011, 41,

985-1007.

- 6. J. X. Wang, J. Zhang and R. R. Adzic, *The Journal of Physical Chemistry A*, 2007, **111**, 12702-12710.
- 7. N. Markovic, T. Schmidt, V. Stamenkovic and P. Ross, *FUEL CELLS-WEINHEIM-*, 2001, **1**, 105-116.
- 8. D. B. Sepa, M. V. Vojnovic and A. Damjanovic, *Electrochimica Acta*, 1981, **26**, 781-793.