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Lateral interaction effect
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Figure S 1. Effect of {y,5 on the coverage of adsorbed oxygen
intermediates (left) with &, = 10 k] mol™!. Effect of &, on the coverage
of adsorbed oxygen intermediates (right) with &y = 10 k] mol™!. Other

parameters are given in Figure 2 of the main-text.



Interfacial parameters

Table S1. Parameters of the electrified interface in calculation of oy;.

Category Item Value Note
General  Gas constant, R 8.314 ] K™! mol™! Constant
Faraday constant, F 96485 C mol™! Constant
Temperature, T 298.15 K Typical value
Elementary charge, e 1.6 x 1071 C Constant
Avogadro's number, Ny 6.02 X 1022 mol™! Constant
Water dipole moment, 31D Typical value
Pw
Pt atom density, Ny 1.6335 x 10 m™2 Calculated using
4/\3a3, with
ap; = 3.924
Vacuum permittivity, &, 8.85x 107'2 F m~! Constant
Dielectric  Permittivity of oxide 1.0 g Nothing but
and layer, &pio vacuum inside the
structural oxide layer
Permittivity of the IHP, 06.0 g 1
€IHp
Permittivity of the OHP, 30.0 g 1
€oHP
Permittivity of bulk 78.5 g Constant (bulk
solution, & water)
Thickness of the oxide 0.18 nm DFT calculation?
layer, Opio
Net charge number per 0.02 DFT calculation?
oxide site, ¢oy
Thickness of the IHP, 0.275 nm Constant (the
Siup diameter of water
dipole)
Thickness of the OHP, 0.515 nm 1
Soup
Potential difference 03V 1

between bulk and

interfacial metal, Agpy




A collection of ORR Tafel slopes of Pt electrocatalysts.

Table S2. A collection of ORR Tafel slopes of Pt electrocatalysts.

Tafel . Potential
Method & Potential
Sample " slope / dependence Reference
condition _, range/V
mV dec
RDE, 0,-saturated
0.1M HCIO,, 0.75 )
Pt/Vulcan 60~90 Decreasing 3
mass-transfer —0.95
corrected
RDE, 0,-saturated
Pt(111) 77 0.7—-0.9 Not shown 4
0.1M HCIO,
IR-free voltage of a
catalyst layer in
S50% wt H, /0 60— 110 0.75 b i 5
as - ecreasin
Pt/Vulcan 2/V2 & ~0.90 &
condition at 100%
RH and 80°C
RDE, 0,-saturated
0.1M HCIO, at 296 ~60 )
Pt(111) T . 0.5-1.0 Decreasing 6
K, intrinsic kinetic — 118
current
RDE, 0,-saturated
Pt-poly,
i 0.1M HCIO, at 293 0.80 i
Pt3Ni, 90 — 110 Decreasing 7
K, mass-transfer —-0.92
Pt;Co
corrected
Pt disk RDE, HCIO, and .
60— 120 0.4—1.0 Decreasing 8
electrode H,S0,




Effect of ionic strength
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Figure S 2. Effect of ionic strength on the ORR for the case of pH=1.2 in
Figure 3.



Rate constants
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Figure S 3. Variations in the rate constants as a function of electrode

potential for pH=1.2 in Figure 3.



Oxide coverage as a function of the chemisorption energy
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Figure S 4. Normalized total oxide coverage, 0ox = (Boy + 00)/Omax, @S &
function of hydroxyl binding energy. The data are calculated at E =

0.9 V (RHE) using the same parameter set as in Figure 7.



Relation between ORR activity and G

According to the definition we obtain,

L ks E,-3 _Ea,3> - ( AG3> (S1)
K = = I exp (252 = [ exp (—
F(E —E3%) + 8Goy — 8G
— [H+] exp <_ ( 3 )RT OH 0>.

Based on the scaling relation, E5;? of a catalyst having a different AGJy

. P .
relative to AGyy, is expressed as,

Fed — EPt,eq n ((O - 1)(A68H B AG(I))It-io ) (SQ)
3 3 F )
where E:ft'eq =095 V as in Table 1.
Substituting Eq.(S2) into Eq.(S1) leads to,

F(E — E5*9) 8Go — 8Go F (S3)
ART eXp( RT ) exp | o7 (Yo

K3 = [H"]exp (—
— 1)(AG3y — AGoy )

1
= K; " exp (ﬁ (o — D(AGS, — AGg )

F(E-EFe1 B
7 o)

Similarly, we have,

(468 — AGELY) (S4
RT ’

Ki = K. exp (

_rPteq
e = 0 ),

For step (1),



— AGQ.; — AGP®° (S5)
. exp( B1doon (AGSy OH >'

RT

0 Pte
EQ;-B1F(E-E; "

with k" = k{ exp <_ — )) [01[H7].

For step (3),

. _ Pt Bs(o — D(AGS, — AGS (S6)
k3 = k3 exp RT ,
—Eg9__ _Pteq
with kgr,’t'* = kg exp( Faz ﬁ3Z§E Es )> 6, [H].

For step (4),

Kt = kP o Ba(AGSy — AGS (S7)
4 4 p RT )
~EQ ,—B,F(E-EL "1
with k% = k? exp( < ﬁ4R(T u )> Ooul[H*].

Combining Egs. (S3)-(S7) into the relation vgorr = (K3)V(K;)*k{ gives,

V(o -D+u—7) (S8)
VORR = UgRR exp< RT l (AGSH - AGglt{'O ’
with vdrg = (K;t’*)v(l(ft’*)#kft'* and
Biloon, =1 (S9)

(i=1-B:Go—1), i=3
_ﬁ4' i=4



Rate determining term
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Figure S 5. Rate-determining term of the
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ORR rate expression for

(2GS, — AG5’) = 0 and 0.2 eV. Labels for the curves are the same as in

Figure 5.
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