Supporting information

An investigation on the role of W doping in BiVO4 photoanodes used for solar water splitting

Xin Zhao,^{‡a} Jun Hu,^{‡*ab} Shi Chen^c and Zhong Chen^{*a}

^a School of Materials Science and Engineering, Nanyang Technological University,

50 Nanyang Avenue, 639798, Singapore, Singapore. E-mail: ASZChen@ntu.edu.sg

^b School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China.

E-mail: hujun@nwu.edu.cn

^c School of Physical and Mathematical Sciences, Nanyang Technological University,

637371, Singapore, Singapore

‡ These two authors contributed equally to this work.

Theoretical calculation methods

1

Adsorption and surface energies calculation.

The adsorption energy (E_{ads}) between surface and adsorbed particles was computed by equation 1.

$$E_{ads} = E_{molecule + surface} - E_{molecule} - E_{surface}$$
(1)

"where $E_{molecure + surface}$ is the total energy of the system, including the adsorption molecules and the BiVO₄ facet; $E_{molecule}$ is the optimized energy of adsorption molecules, which can be derived from the reference species including H₂O and H₂. For example, $E_{OH} = E_{H2O} - 0.5E_{H2}$. The energy of H₂O and H₂ are -468.71 eV and -31.55 eV respectively.¹ $E_{surface}$ is the energy of BiVO₄ facet." In the definitions, the higher negative value of E_{ads} indicates a more stable adsorption on the plane. All the calculated energies reported herein include Zero-Point Energy (ZPE) correction.² The surface energy (γ) can be calculated by the following equation 2:

$$\gamma = \frac{1}{2A} (E_{slab} - nE_{bulk}) \tag{2}$$

where E_{slab} is the total energy of the slab model, E_{bulk} is the total energy per unit cell of the bulk, *n* is the number of unit cells that the slab model contains, and *A* is the surface area of the slab model.

Element	Арр	Intensity	Weight%	Weight%	Atomic%
	Conc.	Corrn.		Sigma	
ОК	6.48	0.6502	17.42	0.56	64.14
V K	7.90	0.9643	14.31	0.27	16.55
W M	0.81	0.7874	1.80	0.28	0.58
Bi M	34.50	0.9075	66.46	0.57	18.73
Total			100.00		100.00

Table S1. Composition measurement by EDX.

Fig. S1. The Spin density map of WBVO.

Spin density map of W-doped $BiVO_4$ shows the localization of an electron on V. The spin density isosurface (0.05 e bohr⁻³) of an isolated band is shown in blue.

_

Table S2. Formation energy of W substitution.

Fig. S2. Two different sites of interstitial substitution of V by W.

The formation energy (E_F) of W replacing V atom can be estimated by equation 3;

$$E_F = E_{WBVO} - E_{PBVO} - E_w + E_v \tag{3}$$

And the formation energy (E_f) of W interstitial substitution can be estimated by equation 4;

$$E_F = E_{WBVO} - (E_{BVO} + E_W) \tag{4}$$

where E_{WBVO} is the total energy of W-doped bulk and surface, E_{PBVO} is the total energy of BiVO₄ bulk and surface, E_{w} is the one-atom energy of W (Space Group: 229) and E_{v} is the one-atom energy of V (Space Group: 229). Based on the calculation, interstitial W is unlikely to occur due to its high formation energy.

References

- J. Hu, W. Chen, X. Zhao, H. Su and Z. Chen, ACS Appl. Mater. Interfaces, 2018, 10, 5475-5484.
- 2. Z.-Q. Huang, B. Long and C.-R. Chang, Catal. Sci. Technol., 2015, 5, 2935-2944.