Supporting Information of

High negative Poisson's ratio in a flexible two-dimensional Tungsten Carbide monolayer

Donghai Wu^a, Shuaiwei Wang^a, Shouren Zhang^a, Jinyun Yuan^a*, Baocheng Yang^a, Houyang Chen^b*

^a Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China

^b Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260-4200, USA

^{*} To whom correspondence should be addressed. Email: yuanjinyun0916@iccas.ac.cn(J.Y.); hchen23@buffalo.edu(H.C.).

Section S1. Description of surface functionalized W₂C

As reported, the MXene materials are usually produced by selective etching the A element layer from parent layered MAX phases employing strong HF solutions and the intrinsic MXenes possess high hydrophilic nature.¹ Thus, the synthesis process would inevitably lead to the incomplete or mixed F, O and OH functional groups presenting on their surface, which may affect their configurations and performances.¹, ² In fact, numerous researchers have reported that these terminations could tune various properties of the intrinsic MXenes including mechanical, electronic, magnetic, and energy storage capacity, etc.²⁻⁶ Hence, surface functionalized W₂C MXene, W_2CT_2 (T = O, F and OH), are also investigated. The most stable configurations of these W₂CT₂ are displayed in Figure S2. Apparently, the three functionalized groups lie at completely different position on the both sides of W₂C sheet. F atoms are located on the top of the side W atoms, O atoms prefer to stay above the top sites of the middle C atoms, and OH groups stabilize above the hollow site consist of three neighboring C atoms, which are in good accordance with the previous work.^{3, 5} Formation energies (Table S1) and phonon spectrums (Figure S1) demonstrate the functionalized W₂CO₂, W₂CF₂, and W₂C(OH)₂ are stable in both thermodynamics and kinetics.

Figure S1. Phonon spectra of the strain-free (a) W₂C, (b) W₂CF₂, (c) W₂CO₂, and (d) W₂C(OH)₂.

Figure S2. Top and side views of the most stable configurations for (a) W_2CF_2 , (b) W_2CO_2 , and (c) $W_2C(OH)_2$.

Figure S3. Stress–strain curves of (a) Hf_2C and (b) Ta_2C under uniaxial stretching, together with the corresponding Poisson's ratios of (c) Hf_2C and (d) Ta_2C .

Figure S4. Stress–strain curves of W_2CT_2 : (a) W_2CF_2 , (b) W_2CO_2 , (c) $W_2C(OH)_2$, and the corresponding Poisson's ratios of (d) W_2CF_2 , (e) W_2CO_2 , (f) $W_2C(OH)_2$.

Figure S5. The projected DOS of W_2CT_2 : (a) W_2CF_2 , (b) W_2CO_2 , and (c) $W_2C(OH)_2$.

Figure S6. The total DOS of the strained W_2C : uniaxial tension along the zigzag direction of (a) 0.10 and (b) 0.34, as well as along the armchair direction of (c) 0.10 and (d) 0.21.

Figure S7. COHP curves of W-C bonds and their corresponding integrals (inserts) under uniaxial tension along the zigzag (a) and armchair (b) directions.

Figure S8. ELF maps of the section made up of C atoms, metal atoms and terminal groups: (a) W_2CF_2 , (b) W_2CO_2 , and (c) $W_2C(OH)_2$.

Table S1 The formation energies (E_f) of intrinsic W₂C and the surface functionalized W₂CT₂(T=F, O, and OH.

Species	W ₂ C	W_2CF_2	W ₂ CO ₂	$W_2C(OH)_2$
$E_{\rm f}({\rm eV})$	-4.90	-7.76	-9.66	-8.72

References

- M. Naguib, V. N. Mochalin, M. W. Barsoum and Y. Gogotsi, *Adv. Mater.*, 2014, 26, 992-1005.
- 2. Y. Liu, H. Xiao and W. A. Goddard, J. Am. Chem. Soc., 2016, 138, 15853-15856.
- H. Weng, A. Ranjbar, Y. Liang, Z. Song, M. Khazaei, S. Yunoki, M. Arai, Y. Kawazoe,
 Z. Fang and X. Dai, *Phys. Rev. B*, 2015, **92**, 075436.
- 4. Z. Guo, J. Zhou, C. Si and Z. Sun, Phys. Chem. Chem. Phys., 2015, 17, 15348-15354.
- X. H. Zha, K. Luo, Q. Li, Q. Huang, J. He, X. Wen and S. Du, *EPL-Europhys. Lett.*, 2015, 111, 26007.
- 6. M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka and Y. Kawazoe, *Adv. Funct. Mater.*, 2013, **23**, 2185-2192.