Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting information

Efficient nitrogen fixation to ammonia on MXenes

Mengmeng Shao,^a Yangfan Shao,^{ab} Wenzhou Chen,^a Kin Long Ao,^a Rui Tong,^a Qing Zhu,^a Iat Neng Chan,^a Weng Fai Ip,^c Xingqiang Shi^b and Hui Pan^{*a}

^a Institute of Applied Physics and Materials Engineering, University of Macau, Macao, P. R. China

^b Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China

^c Chemistry Supporting Group, Faculty of Science and Technology, University of Macau, Macao, P. R. China

* H. Pan (huipan@umac.mo); Tel: 853-88224427; Fax: 853-88222426

Fig. S1 The two possible pathways for N_2 -fixation to NH_3 on M_2X .

Fig. S2 The 5th step in "Enzymatic" pathway on Ta₂C.

Fig. S3 The 6^{th} step in "Enzymatic" pathway on W_2C (a) and Ti_2C (b).

Reaction	Distal						Enzymatic					
step	Mo ₂ C	W_2C	Ta ₂ C	Ta ₂ N	Ti ₂ C	Ti ₂ N	Mo ₂ C	W_2C	Ta ₂ C	Ta ₂ N	Ti ₂ C	Ti ₂ N
0	-476.65	-532.82	-530.55	-518.91	-420.54	-434.01	-476.65	-532.82	-530.55	-518.91	-420.54	-434.01
1	-480.29	-536.96	-534.31	-522.56	-424.20	-437.52	-480.29	-536.96	-534.31	-522.56	-424.20	-437.52
2	-484.21	-540.78	-537.89	-525.19	-426.43	-440.74	-484.31	-540.40	-537.73	-529.55	-427.59	-440.98
3	-489.09	-546.04	-543.04	-531.87	-432.03	-445.39	-487.56	-544.19	-540.97	-532.12	-429.93	-443.65
4	-493.11	-549.71	-546.69	-535.56	-436.04	-449.08	-490.53	-547.03	-543.38	-534.91	-436.34	-450.18
5	-496.04	-552.08	-549.76	-538.41	-438.92	-452.34	-496.56	-552.81		-538.46	-439.11	-452.74
6	-499.74	-555.82	-552.19	-541.82	-441.51	-454.62	-499.72	-556.31		-541.70	-441.67	-455.09

Table S1. The energies (eV) in each step of the distal and enzymatic reaction pathway, as shown in Fig. 4.

Note:

 $H_2 = -6.77 \text{ eV}$

The step 0 means the adsorption of N_2 on MXenes (M_2X), the steps 1-6 correspond to different states along the N_2 conversion mechanism (Fig. 3). And the reaction energy at each step (shown in Fig. 4) is calculated as follows:

$$E_{re} = E(M_2X + N_2H_m) - E(M_2X + N_2H_{m-1}) - \frac{1}{2}E(H_2)$$

4

Reaction	Distal						Enzymatic					
step	Mo ₂ C	W_2C	Ta ₂ C	Ta ₂ N	Ti ₂ C	Ti ₂ N	Mo ₂ C	W_2C	Ta ₂ C	Ta ₂ N	Ti ₂ C	Ti ₂ N
-1	1.113	1.113	1.113	1.113	1.113	1.113	1.113	1.113	1.113	1.113	1.113	1.113
0	1.272	1.39	1.394	1.395	1.342	1.343	1.272	1.390	1.394	1.395	1.342	1.343
1	1.359	1.415	1.396	1.395	1.409	1.406	1.359	1.415	1.396	1.395	1.409	1.406
2	1.410	1.434	1.437	1.436	1.426	1.412	1.407	1.413	1.432	3.099	1.456	1.453
3	2.663	2.591	2.715	2.695	3.256	2.714	1.455	1.460	1.472	3.049	1.482	1.465
4	2.74	2.690	3.681	3.933	3.355	2.989	1.468	1.471	1.470	3.952	3.284	3.115
5	2.822	3.431	4.370	4.160	3.347	2.911	4.494	2.882		4.734	3.339	3.238
6	3.571	2.962	2.977	5.408	4.012	5.278	3.658	3.365		3.492	3.723	3.547

Table S2. The N-N bond length (Å) of the adsorbed N₂ in each step of the distal and enzymatic reaction pathway, as shown in Fig. 5.

Note:

The step -1 correspond to the N-N bond length of free N₂ which is about 1.113 Å. And the step 0 means the N-N bond length of the adsorbed N₂

on MXenes.

Table S3. The charge transfer (the charge difference of the present step from that of the previous step) of N atoms in the catalyst (W₂C and Ti₂C)

Denstion		W ₂	2 C		Ti ₂ C				
step		N1		N2		N1	N2		
	Charge	Charge Transfer	Charge	Charge Transfer	Charge	Charge Transfer	Charge	Charge Transfer	
0	5.833		5.498		5.815		5.914		
1	5.870	0.037	5.708	0.210	5.968	0.154	5.999	0.085	
2	5.895	0.025	5.806	0.098	5.991	0.023	5.969	-0.030	
3	6.241	0.346	6.183	0.377	6.456	0.466	6.263	0.294	
4	6.347	0.106	6.172	-0.011	6.560	0.104	6.258	-0.006	
5	6.286	-0.061			6.505	-0.056			
6	6.245	-0.041			6.306	-0.199			

of the distal reaction pathway, as shown in Fig. 6a&c.

Note:

The charge transfer is the charge difference of the present step from that of the previous step, which is calculated as follows:

$$q(M_2X + N_2H_m) - q(M_2X + N_2H_{m-1})$$

Table S4. The charge transfer (the charge difference of the present step from that of the previous step) of N atoms in the catalyst (W_2C and Ti_2C)

Desetion		W	2 C		Ti ₂ C				
Reaction		N1	N2			N1	N2		
step	Charge	Charge Transfer	Charge	Charge Transfer	Charge	Charge Transfer	Charge Charge Transfer		
0	5.833		5.498		5.815		5.914		
1	5.870	0.037	5.708	0.210	5.968	0.154	5.999	0.085	
2	5.857	-0.013	5.808	0.100	6.057	0.089	5.989	-0.010	
3	5.886	0.029	5.844	0.036	6.045	-0.012	5.959	-0.030	
4	5.825	-0.061	5.819	-0.025	6.490	0.445	6.492	0.532	
5	6.247	0.422	6.253	0.433	6.492	0.001	6.313	-0.179	
6	6.168	-0.079	6.208	-0.045	6.340	-0.152	6.332	0.019	

of the enzymatic reaction pathway, as shown in Fig. 6b&d.

Note:

The charge transfer is the charge difference of the present step from that of the previous step, which is calculated as follows:

$$q(M_2X + N_2H_m) - q(M_2X + N_2H_{m-1})$$

Fig. S4 Charge transfer at each step for N₂-fixation on Mo₂C, Ti₂N, Ta₂C and Ta₂N in Distal (a, c, e, g) and Enzymatic (b, d, f, h) pathways.

From the Fig. S4, we can see most of the formation energy at each step strongly depends on the value of transferred charge on each N atom. However, at the 2^{nd} step on the "Distal" pathway of Mo₂C, the exothermic reaction corresponds to electron lose on N2 due to the extended N-N bond length (Fig. 5a) and charge transfer from N2 to N1.