Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

## **Electronic Supporting Information**

## Theoretical Study on Optical and Electronic Properties of Graphene Quantum Dots Doped with Heteroatoms

Jianguang Feng,<sup>a</sup> Hongzhou Dong,<sup>a</sup> Beili Pang,<sup>a</sup> Feifei Shao,<sup>a</sup> ChunKai Zhang,<sup>b</sup> Liyan Yu<sup>\*a</sup> and Lifeng Dong<sup>\*ac</sup>

<sup>a</sup> College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao

266042, China

<sup>b</sup> School of Computer Science and Technology, Harbin Institute of Technology

Shenzhen Graduate School, Shenzhen 518055, China

<sup>c</sup> Department of Physics, Hamline University, St. Paul 55104, USA

<sup>\*</sup>Corresponding authors: donglifeng@qust.edu.cn, liyanyu@qust.edu.cn, and ldong03@hamline.edu.



**Fig. S1** Density of state of pristine GODs and doped GQDs. (a) pristine GQD, (b) C42-N2, (c) C42-B2, (d) C42-P2, and (e) C42-S2, respectively. The solid lines represent total DOS (TDOS). The yellow-filled regions represent partial DOS (PDOS) of two benzene rings in pristine GQDs for (a), and two five-member rings containing heteroatoms in doped GQDs for (b)-(e), respectively. (The vertical dashed line indicates the position of the HOMO level. The DOS is plotted with a Gaussian width of 0.01a.u.)



**Fig. S2** Density of state of pristine GODs and doped GQDs. (a) pristine GQD, (b) C42-N2-*h*, (c) C42-B2-*h*, (d) C42-P2-*h*, and (e) C42-S2-*h*, respectively.



Fig. S3 Isosurfaces of HOMO and LUMO in N- and S-doped GQDs with different patterns in ground state. The positive and negative orbital lobes are displayed in red and green colors, respectively.



**Fig. S4** The NTO pairs for the prominent excited state of N- and S-doped GQDs. For this state the "hole" is on the left, and the "particle" is on the right; the values represent the associated eigenvalue ( $\lambda_i$ ).



Fig. S5 Representation of the charge difference density between the prominent excited state minus ground state for N- and S-doped GQDs. Lateral views are displayed at the bottom. (The blue and yellow colors represent hole and electron, respectively. The isovalue is  $4*10^{-4}$ ).

| gr | ound state | e geometry | / of C42  |
|----|------------|------------|-----------|
|    |            | C42        |           |
|    | Х          | Y          | Z         |
| С  | -2.842755  | 4.928235   | -0.00001  |
| С  | -2.860333  | 2.497661   | -0.000002 |
| С  | -3.537311  | 3.726867   | -0.000006 |
| С  | -4.995144  | 1.20438    | 0.000006  |
| С  | -2.87248   | 0.001412   | 0.000002  |
| С  | -3.591933  | 1.231772   | 0.000002  |
| С  | -4.996326  | -1.19947   | 0.000008  |
| С  | -2.862787  | -2.494848  | 0.000003  |
| С  | -3.593142  | -1.228241  | 0.000005  |
| С  | -2.847598  | -4.925439  | 0.000004  |
| С  | -3.540973  | -3.723388  | 0.000005  |
| С  | 1.459587   | 4.926826   | -0.000005 |
| С  | -1.455133  | 4.928031   | -0.000009 |
| С  | -0.728918  | 3.726704   | -0.000006 |
| С  | 1.43755    | 2.486983   | 0         |
| С  | 0.732694   | 3.726147   | -0.000004 |
| С  | -1.434999  | 2.488437   | -0.000003 |
| С  | -0.711403  | 1.233826   | -0.000001 |
| С  | 1.424431   | -0.0007    | 0.000001  |
| С  | 0.71288    | 1.233274   | 0         |
| С  | -1.423917  | 0.0007     | 0         |
| С  | -0.712615  | -1.233127  | 0         |
| С  | 1.435104   | -2.488395  | -0.000002 |
| С  | 0.711667   | -1.233974  | 0         |
| С  | -1.437444  | -2.487025  | 0         |
| С  | -0.732581  | -3.725986  | -0.000002 |
| С  | 1.454743   | -4.928258  | -0.000014 |
| С  | 0.729031   | -3.726865  | -0.000006 |
| С  | -1.459977  | -4.926599  | 0.000001  |
| С  | 3.54058    | 3.723962   | 0.000004  |
| С  | 2.863012   | 2.494718   | 0.000004  |
| С  | 3.59332    | 1.228491   | 0.000006  |
| С  | 5.689564   | -0.002796  | 0.000012  |
| С  | 4.996596   | 1.199305   | 0.000011  |
| С  | 2.872524   | -0.001412  | 0.000003  |
| С  | 3.59211    | -1.232022  | 0.000003  |
| С  | 4.995415   | -1.204215  | 0.000008  |
| С  | 2.860559   | -2.49753   | -0.000002 |
| С  | 3.536917   | -3.727441  | -0.000007 |
| н  | -4.619123  | 3.760836   | -0.000006 |
| н  | -5.564785  | 2.124754   | 0.000006  |
| н  | -5.56687   | -2.119283  | 0.000011  |
| н  | -4.622818  | -3.756294  | 0.000007  |
| С  | -5.689425  | 0.002796   | 0.000009  |
| Н  | -6.775459  | 0.00333    | 0.000012  |
| С  | 2.842247   | -4.92863   | -0.000014 |
| С  | 2.847091   | 4.925834   | -0.000001 |
| Н  | -3.38568   | 5.868839   | -0.000013 |
| н  | -0.943163  | 5.881537   | -0.000012 |
| н  | 0.948606   | 5.880843   | -0.000009 |
| н  | 3.390482   | 5.866183   | -0.000001 |
| н  | 4.622261   | 3.757177   | 0.000007  |
| н  | 5.567361   | 2.118782   | 0.000013  |
| н  | 6.775623   | -0.00333   | 0.000015  |
| н  | 5.565276   | -2.124252  | 0.000008  |
| н  | 4.618565   | -3.761719  | -0.000007 |
| н  | 3.384714   | -5.869513  | -0.00002  |
| н  | 0.942825   | -5.881773  | -0.00002  |
| н  | -0.948944  | -5.880607  | 0.000001  |
| н  | -3.391448  | -5.865508  | 0.000006  |

Table S1 The Cartesian Coordinates of stationary points for the optimized

|        | C42-N2    |           |            | 0 | C                     | 42-N2-h              |            | C42-N2- <i>p</i> |                       |            |            |
|--------|-----------|-----------|------------|---|-----------------------|----------------------|------------|------------------|-----------------------|------------|------------|
|        | x         | Y         | 7          | ľ | x                     | Y                    | 7          |                  | x                     | Y          | 7          |
| С      | 5.700788  | -0.011712 | 0.000017   | С | 2.856921              | -2.480537            | -0.000025  | С                | -2.87629              | 5.046505   | 0.000008   |
| č      | 3.600239  | -1.238223 | 0.000004   | Ċ | 3.494358              | -3.729741            | -0.000052  | Č                | -0.742873             | 3.865281   | 0.000003   |
| С      | 5.006898  | -1.213053 | 0.000011   | С | 4.999683              | -1.192608            | -0.000015  | С                | -1.482832             | 5.059276   | 0.000007   |
| С      | 3.538122  | -3.740288 | -0.000006  | С | 2.875214              | 0.007006             | -0.000003  | С                | 1.480571              | 5.059946   | -0.00001   |
| С      | 1.448649  | -2.475257 | -0.000004  | С | 3.597068              | -1.221873            | -0.000015  | С                | 1.466746              | 2.632755   | 0.000002   |
| С      | 2.869755  | -2.496477 | -0.000002  | С | 4.99408               | 1.216353             | 0.000005   | С                | 0.741192              | 3.865628   | -0.000002  |
| С      | 1.436539  | -4.907786 | -0.000013  | С | 2.844991              | 2.494501             | 0.000015   | С                | 3.582752              | 3.849305   | -0.000007  |
| С      | -0.735551 | -3.684012 | -0.00001   | С | 3.591253              | 1.23921              | 0.000006   | С                | 3.63012               | 1.331115   | 0.000001   |
| С      | 0.733826  | -3.701392 | -0.000009  | С | 3.476222              | 3.746918             | 0.000027   | С                | 2.91394               | 2.617211   | -0.000001  |
| С      | -2.858583 | -4.889374 | -0.000019  | С | -1.424904             | -4.934127            | 0.000066   | С                | 5.634796              | -0.191462  | -0.000006  |
| С      | -1.452478 | -4.857126 | -0.000017  | С | 1.520841              | -4.878848            | -0.000037  | С                | 5.038508              | 1.089325   | -0.000004  |
| С      | 3.553592  | 3.725767  | 0.000012   | С | 0.749014              | -3.707492            | -0.000005  | С                | -2.914965             | 2.616067   | 0.000002   |
| С      | 5.011899  | 1.192464  | 0.000015   | С | -1.424811             | -2.492387            | 0.000016   | С                | -2.825031             | 0.179164   | 0.000004   |
| С      | 3.605314  | 1.223438  | 0.000009   | С | -0.710642             | -3.727415            | 0.000025   | С                | -3.630511             | 1.32962    | -0.000001  |
| С      | 1.458896  | 2.469331  | 0          | С | 1.43807               | -2.468253            | -0.000008  | С                | -1.467802             | 2.632098   | 0.000003   |
| С      | 2.880053  | 2.484687  | 0.000007   | С | 0.711723              | -1.223401            | 0          | С                | -0.711028             | 1.406258   | 0.000005   |
| С      | 1.425346  | -0.002889 | 0          | С | -1.427114             | -0.003455            | 0          | С                | -0.695368             | -1.064919  | 0.000009   |
| С      | -0.705218 | 1.235308  | -0.000003  | С | -0.710284             | -1.233024            | 0.000003   | С                | -1.398048             | 0.173903   | 0.000007   |
| C      | 0.729674  | 1.233431  | -0.000002  | C | 1.426217              | 0.00349              | 0          | C                | 0.710457              | 1.40657    | 0.000006   |
| C      | 0.724542  | -1.236411 | -0.000002  | C | 0.70582               | 1.226927             | 0.000003   | C                | 1.398086              | 0.174426   | 0.000008   |
| C      | -0.710285 | -1.232362 | -0.000002  | C | -1.436888             | 2.485466             | -0.000003  | C                | 1.353187              | -2.34199   | 0.000007   |
| C      | -2.864359 | 0.005868  | 0.000009   | C | -0.716254             | 1.229604             | 0          | C                | 0.695844              | -1.064722  | 0.00001    |
| C      | -1.42/852 | 0.002929  | 0          | C | 1.426126              | 2.4/5211             | 0.00001    | C                | 2.824977              | 0.180132   | 0.000006   |
| C      | -2.840896 | -2.453032 | 0.000002   | C | 0./31051              | 3./11165             | 0.000015   | C                | 3.433648              | -1.065317  | 0.000005   |
| C      | -4.99/810 | -1.201139 | 0.000036   |   | -1.4490/3             | 4.927125             | 0.000004   |                  | 3.040373              | -3.32/941  | 0          |
| Ċ      | -3.37420  | -1.22/914 | 0.000010   |   | -0.720010             | 3.723933<br>4.886206 | 0.000000   |                  | 2.734613              | -2.209401  | 0.000007   |
| c      | 1 456704  | 4 901865  | -0.000009  |   | -3 516208             | -3 7/1178            | 0.000029   |                  | -4.800085             | -1.331081  | -0.000002  |
| c      | 0.749101  | 3 698404  | -0.0000003 | c | -2 849359             | -2 505727            | 0.000004   | c                | -3 433164             | -1.066566  | 0.000000   |
| č      | -0 720324 | 3 687008  | -0.000015  | c | -3 586687             | -1 241047            | -0.0000020 | č                | -2 733862             | -2 270418  | 0.000004   |
| č      | -2.838362 | 4 901142  | -0.000041  | c | -4 989724             | -1 215532            | -0.00003   | č                | -3 055739             | -4 615139  | -0.000007  |
| č      | -1.432433 | 4.863049  | -0.000033  | č | -2.873191             | -0.006997            | -0.000008  | č                | -3.638993             | -3.329254  | -0.000004  |
| С      | -2.830776 | 2.464713  | -0.000006  | С | -3.59264              | 1.223592             | -0.000026  | С                | -1.35215              | -2.342436  | 0.000007   |
| С      | -3.499987 | 3.704932  | -0.000026  | С | -4.995515             | 1.191375             | -0.000053  | С                | -0.737254             | -3.624637  | 0.000004   |
| С      | -3.569254 | 1.242556  | 0.000012   | С | -2.861504             | 2.491829             | -0.000015  | С                | -1.645285             | -4.725915  | -0.000001  |
| С      | -4.992792 | 1.221526  | 0.000031   | С | -3.534555             | 3.723944             | -0.000014  | С                | 0.738632              | -3.624409  | 0.000004   |
| н      | 5.573572  | -2.135262 | 0.000012   | н | 4.577402              | -3.798722            | -0.000072  | С                | 1.647153              | -4.725379  | -0.000001  |
| Н      | 4.61998   | -3.780488 | -0.000005  | н | 5.569629              | -2.113436            | -0.00002   | Н                | -0.980609             | 6.019552   | 0.000012   |
| н      | 0.920662  | -5.858479 | -0.000016  | н | 5.559876              | 2.139712             | 0.000012   | н                | 0.977943              | 6.019999   | -0.000018  |
| Н      | -0.916015 | -5.793605 | -0.000024  | н | 4.558859              | 3.821542             | 0.000032   | н                | 4.668116              | 3.874637   | -0.000009  |
| С      | 2.834205  | -4.927212 | -0.000011  | н | 1.046478              | -5.854931            | -0.000049  | н                | 5.719302              | 1.935732   | -0.000008  |
| Н      | 3.359478  | -5.877414 | -0.000014  | н | -0.903879             | -5.883396            | 0.000087   | С                | 2.874106              | 5.047739   | -0.000013  |
| С      | -5.667766 | 0.011534  | 0.000043   | Н | -4.597872             | -3.782893            | 0.000082   | Н                | 3.414394              | 5.990277   | -0.000019  |
| C<br>  | 2.854559  | 4.91553   | 0.000011   | H | -5.558461             | -2.136523            | -0.000036  | C                | 3.057557              | -4.61407   | -0.000004  |
| Н      | 6.787347  | -0.013987 | 0.000022   | н | -5.568594             | 2.109663             | -0.000075  | C                | -5.634663             | -0.193497  | -0.000011  |
| H      | 5.582333  | 2.112339  | 0.00002    | н | -4.616324             | 3.76026              | -0.000019  | H                | -3.416896             | 5.98886    | 0.000011   |
| н      | 4.6356    | 3./6146/  | 0.000017   | н | -0.932/42             | 5.878923             | 0.000009   | н                | -6./1/884             | -0.26/936  | -0.000018  |
| п      | 0.044972  | 5 85 4601 | 0.000016   | п | 2 821005              | 3.800009             | 0.000037   | п                | -3.032333             | -3.322374  | -0.000012  |
| н<br>н | 0.2440/3  | 5.054091  | -0.000004  |   | 2.031993<br>-2 837780 | 4.91039              | -0.000030  | н                | -1.230101<br>1 240361 | -5.733/199 | -0 00004   |
| н      | -0.09207  | 5 845821  | -0.000042  | н | -2.031109             | 7.724773<br>5 865338 | -0.000000  | н                | 3 65/36               | -5.755415  |            |
| н      | -4 579447 | 3 698021  | -0.000037  |   | -2.3009               | -4 93878/            | 0.000000   | н                | 6 718043              | -0.265308  | -0.000009  |
| н      | -5.569104 | 2.135446  | 0.000031   | н | -3.352041             | -5.881808            | 0.000123   | н                | 5.798499              | -3.244727  | -0.0000011 |
| н      | -6.755373 | 0.013803  | 0.00006    | Ċ | -5.68484              | -0.013743            | -0.000057  | N                | 4,924963              | -2.738304  | -0.000005  |
| н      | -5.577766 | -2.112746 | 0.000049   | й | -6.770798             | -0.016343            | -0.000082  | н                | -5.797214             | -3.246773  | -0.000017  |
| н      | -4.59472  | -3.679124 | -0.000011  | N | 2.855794              | -4.902433            | -0.000062  | Ν                | -4.923854             | -2.740046  | -0.000009  |
| н      | -3.393828 | -5.831867 | -0.000028  | C | 5.689024              | 0.013475             | -0.000005  | С                | -5.038791             | 1.087496   | -0.000008  |
| Ν      | -1.404921 | 2.440539  | -0.000008  | н | 6.774835              | 0.015949             | -0.000004  | C                | -3.5844               | 3.847621   | 0.000004   |
| Ν      | -1.415014 | -2.434807 | -0.000003  |   |                       |                      |            | н                | -4.669732             | 3.872458   | 0.000004   |
| С      | 2.878863  | -0.005889 | 0.000004   |   |                       |                      |            | н                | -5.719753             | 1.933717   | -0.000013  |

 $\label{eq:table_source} Table \, S2 \ \text{The Cartesian Coordinates of stationary points for the optimized}$ 

ground state geometry of N-GQDs

|        | ground state geometry of B-GQDs |           |           |        |           |           |           |   |                      |                 |           |
|--------|---------------------------------|-----------|-----------|--------|-----------|-----------|-----------|---|----------------------|-----------------|-----------|
|        | (                               | С42-В2    |           |        | C         | 42-B2-h   |           |   | C4                   | 42-B2- <i>p</i> |           |
|        | Х                               | Y         | Z         |        | Х         | Y         | Z         |   | Х                    | Y               | Z         |
| С      | 5.689167                        | 0.152664  | -0.003542 | С      | 2.944035  | -2.506833 | -0.000135 | С | -2.865474            | 5.014704        | 0.000034  |
| С      | 3.565562                        | 1.332765  | -0.001306 | С      | 3.719507  | -3.700545 | -0.000274 | С | -0.738109            | 3.824248        | 0.000007  |
| C      | 4.967786                        | 1.339056  | -0.002758 | C      | 5.05921   | -1.195801 | -0.000038 | C | -1.475208            | 5.021542        | 0.000026  |
| C      | 3.447822                        | 3.814059  | 0.000217  | C      | 2.928772  | 0.000131  | -0.000004 | C | 1.474162             | 5.021806        | -0.000024 |
| C      | 1.361993                        | 2.535466  | 0.000106  | C      | 5.050004  | -1.225516 | -0.000061 | C | 1.455339             | 2.591832        | -0.000004 |
| C      | 2.189911                        | 2.3/02/0  | -0.000367 |        | 2.039188  | 1.196096  | 0.000037  | C | 0.757271             | 3.824401        | -0.000008 |
| c      | -0.787652                       | 3 827372  | 0.001347  | c      | 3 656019  | 1 225817  | 0.000058  | c | 3 618933             | 1 307841        | -0.000022 |
| c      | 0.638986                        | 3 801724  | 0.000992  | c      | 3 719292  | 3 700968  | 0.000031  | c | 2.893642             | 2.586297        | -0.000009 |
| č      | -2.964871                       | 4.904226  | 0.00269   | č      | -1.441294 | -4.924098 | 0.000243  | č | 5.647495             | -0.113579       | -0.000001 |
| С      | -1.587807                       | 5.004302  | 0.002561  | C      | 1.403592  | -5.02915  | -0.000204 | С | 5.02218              | 1.150375        | -0.000004 |
| С      | 3.647344                        | -3.623662 | 0.001684  | С      | 0.764482  | -3.7577   | -0.000061 | С | -2.894192            | 2.585824        | 0.000008  |
| С      | 5.032443                        | -1.070722 | -0.002642 | С      | -1.389325 | -2.484835 | 0.000058  | С | -2.839837            | 0.120209        | 0         |
| С      | 3.631903                        | -1.139612 | -0.001035 | С      | -0.701465 | -3.730166 | 0.000082  | С | -3.619242            | 1.30709         | 0         |
| С      | 1.496015                        | -2.458684 | 0.000419  | С      | 1.501431  | -2.514731 | -0.00006  | С | -1.455908            | 2.591529        | 0.000004  |
| С      | 2.924114                        | -2.422939 | 0.000323  | С      | 0.777257  | -1.247621 | -0.000011 | С | -0.709375            | 1.354656        | 0.000002  |
| С      | 1.448527                        | 0.038899  | -0.000195 | С      | -1.361104 | -0.000053 | -0.000004 | С | -0.699809            | -1.109794       | 0.000004  |
| С      | -0.671897                       | -1.242332 | -0.000226 | С      | -0.651871 | -1.237339 | 0.000005  | С | -1.405075            | 0.121642        | 0.000003  |
| C      | 0.752157                        | -1.215166 | -0.000069 | C      | 1.481571  | 0.000085  | -0.000003 | C | 0.709023             | 1.354793        | 0.000002  |
| C      | 0.685922                        | 1.253774  | -0.000066 | C      | 0.777165  | 1.247733  | 0.000012  | C | 1.40514              | 0.121885        | 0.000004  |
| C      | -0.737495                       | 1.204516  | -0.000112 | C      | -1.38955  | 2.484719  | -0.000031 | C | 1.385947             | -2.378502       | 0.000006  |
| C      | -2.938190                       | -0.078847 | -0.000807 |        | -0.0519/5 | 1.23/303  | -0.000007 | C | 0.700017             | -1.109/00       | 0.000005  |
| c      | -1.454574                       | -0.056519 | -0.000322 |        | 0.764122  | 2.314922  | 0.000055  | C | 2.039734             | 1 106053        | 0.000003  |
| c      | -5 114596                       | 1.061247  | -0.002462 | c      | -1 441736 | 4 923994  | -0.000005 | c | 3 623254             | -3 469778       | 0.000000  |
| č      | -3.711979                       | 1.130739  | -0.000949 | č      | -0.701805 | 3.730123  | -0.00001  | č | 2.771659             | -2.348151       | 0.000009  |
| Č      | -3.68772                        | 3.661193  | 0.001529  | Ċ      | 1.403073  | 5.029413  | 0.000149  | Ċ | 4.88838              | -1.293064       | 0.000005  |
| С      | 1.644182                        | -4.936279 | 0.002326  | С      | -3.506592 | -3.710744 | 0.000257  | С | -4.888111            | -1.293996       | -0.000011 |
| С      | 0.841919                        | -3.761876 | 0.001227  | С      | -2.81543  | -2.490171 | 0.000111  | С | -3.494013            | -1.106634       | -0.000004 |
| С      | -0.581173                       | -3.864054 | 0.000951  | С      | -3.540694 | -1.225077 | 0.000014  | С | -2.771335            | -2.348662       | -0.000003 |
| С      | -2.697216                       | -5.056355 | 0.00127   | С      | -4.944287 | -1.19905  | -0.000051 | С | -2.975251            | -4.712065       | -0.000011 |
| С      | -1.31677                        | -5.082287 | 0.00155   | С      | -2.814242 | -0.00013  | -0.000023 | С | -3.622355            | -3.470229       | -0.00001  |
| C      | -2.906771                       | -2.602722 | -0.000465 | C      | -3.540823 | 1.224745  | -0.000087 | C | -1.385393            | -2.378789       | 0.000002  |
| C      | -3.48596                        | -3.854076 | 0.000344  | C      | -4.94442  | 1.198539  | -0.000146 | C | -0.735617            | -3.654392       | 0.000001  |
| C      | -3.646122                       | -1.328199 | -0.00138  | C      | -2.815659 | 2.489924  | -0.000085 | C | -1.563908            | -4.792965       | -0.000006 |
| с<br>п | -5.050482                       | -1.333/08 | -0.002781 | L<br>L | -3.306911 | 3.710455  | -0.000125 | C | 0./30111             | -3.654469       | 0.000005  |
| п<br>н | 3.520015<br>4 5201              | 2.209293  | -0.0055   | п      | 4.795559  | -3.092020 | -0.000330 | н | -0.969203            | -4.79287        | 0.000007  |
| н      | 0.84289                         | 5 959781  | 0.000001  | н      | 5 635795  | 2 110002  | 0.000092  | н | 0.968023             | 5 979453        | -0.000036 |
| н      | -1.15519                        | 6.001584  | 0.003524  | н      | 4.795324  | 3.692431  | 0.000229  | н | 4.651892             | 3.839469        | -0.000027 |
| С      | 2.752925                        | 5.027168  | 0.001105  | н      | 0.851237  | -5.952823 | -0.000251 | н | 5.661164             | 2.027277        | -0.000008 |
| н      | 3.301495                        | 5.963904  | 0.001515  | н      | -0.946838 | -5.885273 | 0.00032   | С | 2.864471             | 5.015195        | -0.000031 |
| С      | -5.783091                       | -0.154994 | -0.00345  | н      | -4.588106 | -3.732814 | 0.000329  | н | 3.405366             | 5.956826        | -0.000045 |
| С      | 3.018415                        | -4.872282 | 0.002681  | н      | -5.51351  | -2.118966 | -0.00005  | С | 2.976369             | -4.711535       | 0.00001   |
| Н      | 6.774712                        | 0.181713  | -0.004876 | Н      | -5.513761 | 2.118376  | -0.000207 | С | -5.647522            | -0.114794       | -0.000014 |
| н      | 5.634448                        | -1.969941 | -0.003427 | н      | -4.588423 | 3.732449  | -0.000162 | н | -3.406507            | 5.956267        | 0.000049  |
| н      | 4.729338                        | -3.608605 | 0.002154  | н      | -0.947355 | 5.885206  | -0.000066 | н | -6.734579            | -0.148506       | -0.000021 |
| Н      | 3.61632                         | -5.778339 | 0.003715  | H      | 0.85046   | 5.95292   | 0.000176  | Н | -3.541926            | -5.640212       | -0.000017 |
| н      | 1.161024                        | -5.905942 | 0.00301   | C      | -2.827194 | 4.91779   | -0.00012  | н | -1.109948            | -5.779316       | -0.000008 |
| н      | -0.830979                       | -6.054/68 | 0.002248  | н      | -3.3/6095 | 5.854826  | -0.000158 | н | 1.1114/2             | -5.//9495       | 0.000007  |
| н      | -5.255972                       | -0.002175 | 0.001801  | с<br>п | -2.82070  | -4.918019 | 0.000338  | н | 5.542955<br>6.734552 | -5.03977        | 0.000011  |
| н      | -4.504090                       | -3.999090 | -0 003525 |        | -5.575508 | -0.000206 | -0.000472 | н | 6 125/1              | -0.14091        | 0.000002  |
| н      | -6 869522                       | -0 18404  | -0.003525 | н      | -6 726446 | -0.000290 | -0.000134 | R | 5 093108             | -2.864865       | 0.000013  |
| н      | -5.694953                       | 1.977145  | -0.003002 | Ē      | 5.756244  | 0.000154  | 0.000018  | н | -6.124527            | -3.467033       | -0.000028 |
| н      | -4.772991                       | 3.748173  | 0.002     | Ĥ      | 6.842095  | 0.00015   | 0.000032  | В | -5.092349            | -2.866121       | -0.000017 |
| н      | -3.551677                       | 5.819851  | 0.003724  | В      | 2.799123  | 4.779844  | 0.000191  | Ċ | -5.022383            | 1.149358        | -0.000008 |
| В      | -1.38949                        | -2.562328 | -0.000032 | В      | 2.799636  | -4.779644 | -0.000289 | С | -3.568533            | 3.813236        | 0.000023  |
| В      | -1.524811                       | 2.484093  | 0.000289  |        |           |           |           | н | -4.6526              | 3.838624        | 0.00003   |
| С      | 2.884589                        | 0.077391  | -0.000767 |        |           |           |           | н | -5.661603            | 2.02603         | -0.000012 |

Table S3 The Cartesian Coordinates of stationary points for the optimized

|        |           |                      | 1         | ground state geometry of P-GQI |           |           | f P-GQDs  | S      |           |                     |           |
|--------|-----------|----------------------|-----------|--------------------------------|-----------|-----------|-----------|--------|-----------|---------------------|-----------|
|        | (         | C42-P2               |           |                                | C         | 42-P2-h   |           |        | C         | 42-P2-p             |           |
|        | Х         | Y                    | Z         |                                | Х         | Y         | Z         |        | Х         | Y                   | Z         |
| С      | -0.341592 | 5.771513             | -0.238867 | С                              | -2.437685 | -2.73058  | -0.206753 | С      | -2.860973 | 5.215658            | -0.000007 |
| С      | 1.014079  | 3.754963             | -0.214834 | С                              | -3.553533 | -3.488102 | -0.583647 | С      | -0.735765 | 4.02699             | -0.000004 |
| C      | 0.894144  | 5.147479             | -0.338619 | C                              | -1.167361 | -4.793413 | 0.392262  | C      | -1.469007 | 5.223131            | -0.000003 |
| C      | 3.497578  | 3.886592             | -0.208694 | C                              | 0.037711  | -2.691144 | 0.136392  | C      | 1.470562  | 5.222611            | 0.000011  |
| C      | 2.423938  | 1.681903             | -0.204615 | C                              | -1.181842 | -3.421547 | 0.104598  | C      | 1.449855  | 2.789264            | 0.000001  |
| C      | 2.326/43  | 3.101/56             | -0.229573 | C                              | 1.2263    | -4./56644 | 0.016583  | C      | 0.736824  | 4.026/91            | 0.000002  |
| C      | 4.8/39/0  | 0.229349             | -0.101    |                                | 2.338/39  | -2.034903 | 0.213873  | C      | 3.302004  | 4.013007            | 0.000023  |
| c      | 3.939930  | 1.007453             | -0.025108 | c                              | 3 734175  | -3.362300 | 0.526221  | c      | 2 885414  | 2 784404            | 0.000012  |
| c      | 4 999088  | -2 394391            | 0.845433  | c                              | -4 931924 | 1 516759  | 0.233098  | c      | 5 68037   | 0 169441            | 0.000013  |
| c      | 4 993849  | -1.003738            | 0.580032  | c                              | -4 906928 | -1 224196 | -0 58013  | c      | 5 020892  | 1 393677            | 0.000042  |
| č      | -3 896743 | 3 469757             | 0.393118  | c                              | -3 712032 | -0 596216 | -0 206166 | c      | -2.884819 | 2.78528             | -0.00001  |
| č      | -1.486633 | 5.021184             | -0.010996 | č                              | -2.504338 | 1.561059  | 0.154145  | č      | -2.850336 | 0.320294            | -0.000006 |
| С      | -1.429907 | 3.622301             | 0.094284  | С                              | -3.727896 | 0.840234  | 0.09697   | С      | -3.604963 | 1.514108            | -0.000009 |
| С      | -2.58511  | 1.402509             | 0.258706  | С                              | -2.472693 | -1.304896 | -0.120063 | С      | -1.449161 | 2.789753            | -0.000008 |
| С      | -2.648585 | 2.82488              | 0.267366  | С                              | -1.22899  | -0.565776 | 0.005329  | С      | -0.712344 | 1.549661            | -0.00001  |
| С      | -0.081827 | 1.53573              | 0.004022  | С                              | -0.027349 | 1.586116  | 0.035628  | С      | -0.704739 | -0.919576           | -0.00001  |
| С      | -1.122846 | -0.654541            | 0.263075  | С                              | -1.246737 | 0.856805  | 0.052243  | С      | -1.412731 | 0.317343            | -0.000009 |
| С      | -1.264813 | 0.749626             | 0.169341  | С                              | 0.020816  | -1.251947 | 0.031197  | С      | 0.712625  | 1.549415            | -0.000009 |
| С      | 1.182536  | 0.886741             | -0.156579 | С                              | 1.247982  | -0.528518 | 0.011473  | С      | 1.412612  | 0.316984            | -0.000018 |
| С      | 1.200019  | -0.522816            | -0.268411 | С                              | 2.439576  | 1.644936  | -0.187438 | С      | 1.396174  | -2.182439           | -0.000017 |
| С      | 0.158115  | -2.843734            | -0.033066 | С                              | 1.214999  | 0.895616  | -0.03146  | С      | 0.70441   | -0.919788           | -0.000018 |
| С      | 0.079163  | -1.342111            | -0.01292  | С                              | 2.520162  | -1.232111 | 0.043344  | С      | 2.850316  | 0.319784            | -0.000014 |
| С      | 2.68102   | -2.83532             | 0.132843  | С                              | 3.739198  | -0.488069 | -0.080953 | С      | 3.516317  | -0.922419           | -0.000031 |
| C      | 1.454583  | -4.944958            | 0.107928  | C                              | 4.822971  | 1.694532  | -0.670286 | C      | 3.58712   | -3.331564           | -0.000009 |
| C      | 1.41456   | -3.536293            | 0.105902  | C                              | 3.678198  | 0.961188  | -0.319081 | C      | 2.803706  | -2.151889           | -0.00003  |
| C      | 3.875808  | -3.235727            | 0.715423  | C                              | 4.998642  | -1.08/86  | 0.044794  | C      | 4.929227  | -1.02034            | -0.000007 |
| C      | -3.031103 | 0.675527             | 0.340402  |                                | -5./01225 | 3.000943  | 0.308088  | C      | -4.929490 | -1.019225           | 0.000003  |
| C      | -3.83/109 | 0.073337             | 0.246927  |                                | -2.529425 | 2.912222  | 0.347092  | C      | -3.310037 | -0.921744           | 0.000002  |
| c      | -4 729227 | -2 900986            | -0.801622 | c                              | -1 263468 | 5 125858  | 0.290949  | c      | -2 924783 | -4 57301            | 0.000005  |
| č      | -4 87211  | -1 528479            | -0.480069 | c                              | -0.051103 | 3 032725  | 0.094364  | c      | -3 587866 | -3 331094           | 0.000011  |
| č      | -2.352891 | -3.104054            | -0.177346 | č                              | 1.157665  | 3.774337  | -0.025356 | č      | -1.396719 | -2.182097           | 0         |
| č      | -3.516499 | -3.614935            | -0.73852  | Č                              | 1.123973  | 5.170689  | 0.106494  | Ċ      | -0.728507 | -3.435804           | 0.000007  |
| С      | -1.017708 | -3.662883            | -0.196378 | С                              | 2.409682  | 3.066257  | -0.2748   | С      | -1.534518 | -4.606123           | 0.000014  |
| С      | -0.904258 | -5.066218            | -0.258789 | С                              | 3.585221  | 3.756518  | -0.603793 | С      | 0.727864  | -3.436059           | 0.000005  |
| Н      | 1.763871  | 5.763771             | -0.524797 | Н                              | -3.416912 | -4.556113 | -0.714715 | С      | 1.533719  | -4.606479           | 0.000033  |
| Н      | 3.430641  | 4.966214             | -0.21069  | н                              | -2.093444 | -5.352202 | 0.448352  | н      | -0.962511 | 6.180387            | 0.000002  |
| Н      | 5.860936  | 1.475762             | -0.070088 | н                              | 2.133324  | -5.303939 | 0.835973  | н      | 0.964426  | 6.180064            | 0.00001   |
| Н      | 5.824942  | -0.427248            | 0.982935  | н                              | 3.670626  | -4.46426  | 0.321508  | н      | 4.645692  | 4.041619            | 0.000029  |
| С      | 4.757252  | 3.311352             | -0.153663 | н                              | -5.785122 | -0.601076 | -0.708854 | н      | 5.634785  | 2.287608            | 0.000078  |
| Н      | 5.643673  | 3.938782             | -0.147233 | Н                              | -5.869181 | 0.975531  | 0.378904  | C      | 2.862551  | 5.214673            | 0.000021  |
| C      | 0.313934  | -5.710652            | -0.092378 | H                              | -3.806246 | 4.674202  | 0.74465   | Н      | 3.404922  | 6.155871            | 0.000027  |
| C<br>H | -5.083072 | 2./56216             | 0.440123  | н                              | -2.183881 | 5.6/6434  | 0.549626  | C      | 2.924028  | -4.5/340/           | 0.000033  |
| н<br>ц | -0.415218 | 6.850372<br>5.544506 | -0.340704 | н                              | 2.039138  | 5.748081  | 0.060418  | с<br>и | -5.680465 | 0.17059<br>6 157033 | -0.000004 |
| п<br>н | -2.451110 | 3.344300<br>4 548186 | 0.034903  | п                              | 5.575105  | 4.65250   | -0.725240 | н      | -5.405045 | 0.137033            | -0.000007 |
| н      | -6 0297   | 3 277337             | 0.548275  | н                              | 5.870076  | -0 444157 | 0.029768  | н      | -3 482603 | -5 50411            | 0.000019  |
| н      | -5.977483 | 0.807446             | 0.370308  | P                              | 5.349493  | -2.771292 | 0.22253   | н      | -1.055646 | -5.579998           | 0.000017  |
| н      | -5.776451 | -1.034861            | -0.832226 | C                              | 4.77374   | 3.073896  | -0.823896 | н      | 1.054851  | -5.580361           | 0.000063  |
| н      | -5.57167  | -3.389433            | -1.282099 | н                              | 5.667284  | 3.618055  | -1.114757 | н      | 3.481878  | -5.504477           | 0.000059  |
| Н      | -3.48338  | -4.573295            | -1.254534 | С                              | -4.946159 | 2.884029  | 0.587627  | н      | 6.765444  | 0.145801            | 0.000071  |
| Н      | -1.806823 | -5.656465            | -0.376945 | Н                              | -5.886169 | 3.388396  | 0.79048   | н      | 6.463139  | -3.453178           | 0.000117  |
| н      | 0.373278  | -6.794277            | -0.116144 | С                              | -0.074293 | 5.838418  | 0.322013  | Р      | 5.258666  | -2.756452           | -0.000061 |
| Н      | 2.416154  | -5.437506            | 0.207169  | Н                              | -0.082323 | 6.919485  | 0.424699  | н      | -6.464339 | -3.451947           | 0.000006  |
| н      | 3.932235  | -4.209219            | 1.200443  | Р                              | -5.146018 | -2.903181 | -0.929451 | С      | -5.020718 | 1.394689            | -0.000009 |
| Н      | 5.875662  | -2.803745            | 1.338602  | С                              | 0.024868  | -5.449372 | 0.666681  | С      | -3.560829 | 4.016302            | -0.000011 |
| С      | -0.165634 | 2.976503             | -0.030366 | н                              | 0.018928  | -6.504998 | 0.920586  | Н      | -4.644482 | 4.043391            | -0.000013 |
| Р      | -2.503267 | -1.643147            | 0.850233  |                                |           |           |           | Н      | -5.634542 | 2.288646            | -0.000013 |
| Р      | 2.698977  | -1.331839            | -0.846494 |                                |           |           |           | P      | -5.259681 | -2.755537           | 0.000013  |

 $\label{eq:stables} \textbf{Table S4} \ \textbf{The Cartesian Coordinates of stationary points for the optimized}$ 

|        | C42-82               |                 |               | C42-S2-h |                      |                       | 1 D-0 D2      | C42-S2-n |               |                          |               |
|--------|----------------------|-----------------|---------------|----------|----------------------|-----------------------|---------------|----------|---------------|--------------------------|---------------|
|        |                      | _42 <b>-5</b> 2 | -             |          | U                    | 42-52-n               | -             |          | U             | 4 <i>2-</i> 5 <i>2-p</i> | -             |
| C      | X<br>5 740605        | Y<br>0.026806   | L<br>0.626490 | C        | X<br>2 272591        | Y<br>2 772691         | L<br>0.222265 | C        | X<br>2 867204 | Y<br>5 244267            | L<br>0.017064 |
| C      | -5./49005            | -0.030800       | 0.020489      |          | 2.373381             | -2.772081             | 0.222505      | C        | -2.80/294     | 3.244307                 | -0.01/064     |
| c      | -3.09003<br>5.066442 | -1.234003       | 0.202774      |          | 1.005588             | -3.334423             | 0.074711      | C        | -0.75052      | 5 255518                 | -0.001073     |
| c      | -3.680374            | -1.237442       | -0.200080     |          | -0.085626            | -4.700071             | -0.200409     | c        | 1 477786      | 5 255042                 | -0.011149     |
| c      | -1 5/3105            | -2 517741       | -0.299989     |          | -0.085020            | -2.071294             | -0.200409     | c        | 1.477780      | 2 823464                 | -0.011149     |
| c      | -2.967701            | -2.517741       | -0.018972     |          | -1 306643            | -4 706339             | -0.783859     | c        | 0.737793      | 4 061293                 | -0.001753     |
| c      | -1 627064            | -2.300848       | -0.54813      | c        | -2 562366            | -2 595713             | -0.255647     | c        | 3 568296      | 4.040009                 | -0.0017969    |
| c      | 0 574353             | -3.870226       | -0.27186      | c        | -1 323075            | -3 342361             | -0.418526     | c        | 3 612535      | 1 531559                 | -0.017707     |
| č      | -0.864651            | -3 761759       | -0 27278      | č        | -3 758743            | -3 30071              | -0 264904     | c        | 2 891299      | 2 813419                 | -0.009097     |
| Č      | 2.796896             | -4.743615       | -0.948849     | č        | 4.941346             | 1.394489              | -0.525172     | č        | 5.65716       | 0.122024                 | -0.051558     |
| C      | 1.39639              | -4.792271       | -0.893356     | C        | 4.833385             | -1.248389             | 0.704269      | C        | 5.0175        | 1.380689                 | -0.044817     |
| С      | -3.727266            | 3.637462        | -0.298504     | С        | 3.700325             | -0.643234             | 0.253376      | С        | -2.89028      | 2.814278                 | -0.008853     |
| С      | -5.081813            | 1.172545        | 0.47436       | С        | 2.531155             | 1.527143              | -0.194472     | С        | -2.827834     | 0.353169                 | 0.014612      |
| С      | -3.705786            | 1.206824        | 0.2035        | С        | 3.742756             | 0.77352               | -0.173928     | С        | -3.61196      | 1.532713                 | -0.010719     |
| С      | -1.575306            | 2.497938        | -0.008424     | С        | 2.413518             | -1.319084             | 0.163059      | С        | -1.451142     | 2.823896                 | 0.003322      |
| С      | -2.999553            | 2.468871        | -0.017971     | С        | 1.231421             | -0.583208             | 0.033761      | С        | -0.70654      | 1.591767                 | 0.01871       |
| С      | -1.547754            | -0.009838       | 0.063222      | С        | 0.072197             | 1.607713              | -0.016089     | С        | -0.703117     | -0.889447                | 0.03133       |
| С      | 0.554787             | 1.177468        | 0.289079      | С        | 1.262981             | 0.867618              | -0.036164     | С        | -1.40396      | 0.353584                 | 0.024956      |
| С      | -0.843195            | 1.23081         | 0.12436       | С        | -0.046861            | -1.245708             | -0.037432     | С        | 0.707235      | 1.591511                 | 0.018866      |
| С      | -0.82739             | -1.241401       | 0.124153      | С        | -1.253961            | -0.486108             | -0.006347     | С        | 1.404185      | 0.353157                 | 0.02547       |
| С      | 0.569792             | -1.170246       | 0.289016      | С        | -2.389452            | 1.700536              | 0.227815      | С        | 1.383172      | -2.157857                | 0.02199       |
| С      | 2.832656             | 0.018193        | 0.389915      | С        | -1.197657            | 0.946485              | 0.062168      | С        | 0.702912      | -0.8897                  | 0.031737      |
| С      | 1.343145             | 0.008613        | 0.316191      | С        | -2.521277            | -1.158211             | -0.047613     | С        | 2.828014      | 0.352257                 | 0.015325      |
| С      | 2.978815             | -2.501121       | 0.111913      | С        | -3.73241             | -0.395385             | 0.10687       | С        | 3.47186       | -0.897184                | 0.035952      |
| С      | 4.998626             | -1.167312       | 0.374547      | С        | -4.790936            | 1.796199              | 0.693481      | С        | 3.593228      | -3.26929                 | -0.078216     |
| С      | 3.590014             | -1.202574       | 0.322556      | С        | -3.652441            | 1.041638              | 0.35151       | С        | 2.771995      | -2.119257                | 0.034406      |
| C      | 3.500757             | -3.59012        | -0.557184     | C        | -4.995749            | -0.984226             | 0.000561      | C        | 4.863618      | -1.013476                | 0.003609      |
| C      | -1.689862            | 4.891737        | -0.547375     | C        | 3.830751             | 3.523075              | -0.73345      | C        | -4.863966     | -1.012316                | 0.003467      |
| C      | -0.912805            | 3.750517        | -0.272451     | C        | 2.589619             | 2.933279              | -0.420733     | C        | -3.472008     | -0.89613                 | 0.034852      |
| C      | 0.524/38             | 3.877192        | -0.2/218      | C        | 1.36441              | 5.122106              | -0.310939     | C        | -2.772674     | -2.11815                 | 0.03245       |
| C      | 2.755755             | 4.778244        | -0.950850     |          | 1.377494             | 2.052421              | -0.405500     | C        | -2.952215     | -4.340038                | -0.114/2/     |
| C      | 2.046508             | 4.000970        | -0.894809     |          | 1.074228             | 2 91 954              | -0.065471     | C        | -3.393033     | -5.207700                | -0.082393     |
| c      | 2.940398             | 2.559175        | -0.558364     |          | -1.074228            | 5 213515              | -0.067226     | c        | -0.706768     | -3 /32836                | -0.020857     |
| c      | 3 574362             | 1 248519        | 0 322521      | c        | -2 343085            | 3 13132               | 0.313305      | c        | -0.700708     | -4 604148                | -0.027857     |
| c      | 4 983332             | 1 2312          | 0.374507      | c        | -3 506658            | 3 830675              | 0.638587      | c        | 0 705421      | -3 433131                | -0.029399     |
| н      | -5 608445            | -2.166331       | 0.602905      | н        | 3 326953             | -4 610531             | 0.76836       | č        | 1 572463      | -4 604709                | -0.095761     |
| н      | -4.761738            | -3.668683       | -0.348517     | н        | 2.020454             | -5.324359             | -0.695191     | н        | -0.972136     | 6.214766                 | -0.013557     |
| н      | -1.11653             | -5.853168       | -0.725453     | н        | -2.223847            | -5.228217             | -1.027773     | н        | 0.974316      | 6.21445                  | -0.013783     |
| н      | 0.898776             | -5.575344       | -1.461832     | н        | -3.778769            | -4.379082             | -0.339065     | н        | 4.652642      | 4.063838                 | -0.023474     |
| С      | -3.013238            | -4.873329       | -0.567287     | н        | 5.769781             | -0.71493              | 0.808228      | н        | 5.656435      | 2.256304                 | -0.074337     |
| Н      | -3.577248            | -5.776124       | -0.784108     | н        | 5.854441             | 0.812078              | -0.590988     | С        | 2.869137      | 5.243464                 | -0.017722     |
| С      | 5.685485             | 0.036378        | 0.419794      | Н        | 3.893909             | 4.584114              | -0.944437     | Н        | 3.413542      | 6.18329                  | -0.023666     |
| С      | -3.07545             | 4.834698        | -0.565906     | н        | 2.309668             | 5.653608              | -0.556251     | С        | 2.950478      | -4.541738                | -0.113292     |
| н      | -6.80875             | -0.04365        | 0.866297      | н        | -1.908225            | 5.813095              | -0.002007     | С        | -5.656941     | 0.123613                 | -0.050789     |
| Н      | -5.635497            | 2.0944          | 0.604501      | Н        | -3.479541            | 4.907781              | 0.757334      | Н        | -3.411396     | 6.184374                 | -0.022747     |
| Н      | -4.808368            | 3.607917        | -0.346635     | н        | -5.742733            | 1.310259              | 0.873237      | н        | -6.740307     | 0.073628                 | -0.089497     |
| Н      | -3.65101             | 5.73026         | -0.782364     | Н        | -5.90338             | -0.399719             | 0.023072      | н        | -3.531725     | -5.457944                | -0.171972     |
| н      | -1.191418            | 5.83863         | -0.724894     | С        | -4.718863            | 3.17031               | 0.852705      | н        | -1.113706     | -5.585915                | -0.153603     |
| н      | 0.826862             | 5.58496         | -1.463953     | н        | -5.601788            | 3.733135              | 1.139603      | н        | 1.111483      | -5.586288                | -0.153492     |
| H      | 3.253967             | 5.555326        | -1.500317     |          | 4.985573             | 2.761843              | -0.812423     | H        | 3.529769      | -5.459149                | -0.170527     |
| H      | 4.483431             | 3.55029         | -0.900594     |          | 5.926718             | 3.227195              | -1.090729     | H        | 6.740446      | 0.071609                 | -0.091171     |
| H      | 5.518304             | 2.1/3696        | 0.402975      |          | 0.206221             | 5.85/064              | -0.291321     | H        | 5.684866      | -2.7/1457                | 1.41655       |
| H<br>U | 6./69394<br>5.54550  | 0.043283        | 0.495448      | H<br>C   | 0.235364             | 6.939774<br>5.200222  | -0.3/6855     | H        | -5.686424     | -2./66862                | 1.419534      |
| п      | 2.24339<br>1 520706  | -2.102890       | 0.40304       |          | -0.115498            | -3.399332<br>6.434054 | -0.892031     |          | -3.01/014     | 1.382207                 | -0.0441/2     |
| п      | 4.328700             | -5.495519       | -0.099303     | n<br>c   | -0.120413            | -0.420920             | -1.21232      | Р        | -3.300840     | 4.04114/                 | -0.01/302     |
| S      | 1 320035             | 2 707012        | -1.47/3/4     | S        | -5.50424<br>4 957795 | -2.043273             | 1 225508      | н        | -4.001100     | 2 257002                 | -0.022401     |
| s      | 1 355358             | -2 6907         | 0.820300      | 5        | 7./3//73             | -2.721071             | 1.223370      | s        | -5 281244     | -2.251995<br>-2.804337   | 0.072950      |
| C      | -2.989085            | -0.019035       | 0.124448      |          |                      |                       |               | s        | 5.280377      | -2.805713                | 0.055878      |
| ~      | =                    |                 |               |          |                      |                       |               |          |               |                          |               |

 Table S5 The Cartesian Coordinates of stationary points for the optimized

 ground state geometry of S-GODs

|          | Singlet | Absorption  | Wavelength | Oscillator       |
|----------|---------|-------------|------------|------------------|
|          | states  | energy (eV) | (nm)       | strengths( $f$ ) |
|          | 1       | 2.90        | 428.24     | 0.0000           |
|          | 2       | 3.03        | 409.46     | 0.0000           |
|          | 3       | 3.31        | 374.98     | 0.0000           |
|          | 4       | 3.31        | 374.96     | 0.0000           |
|          | 5       | 3.41        | 363.51     | 1.0023           |
| Pristine | 6       | 3.41        | 363.50     | 1.0018           |
| GQD      | 7       | 3.58        | 346.24     | 0.0000           |
|          | 8       | 3.58        | 346.23     | 0.0000           |
|          | 9       | 3.82        | 324.80     | 0.0000           |
|          | 10      | 3.97        | 312.32     | 0.0000           |
|          | 11      | 3.97        | 312.31     | 0.0000           |
|          | 12      | 4.16        | 298.25     | 0.0002           |
|          | 13      | 4.16        | 298.24     | 0.0002           |
|          | 14      | 4.23        | 293.26     | 0.0000           |
|          | 15      | 4.29        | 289.22     | 0.0000           |
|          | 16      | 4.31        | 287.52     | 0.0000           |
|          | 17      | 4.37        | 283.69     | 0.0008           |
|          | 18      | 4.37        | 283.68     | 0.0008           |
|          | 19      | 4.42        | 280.38     | 0.0000           |
|          | 20      | 4.42        | 280.38     | 0.0000           |

**Table S6** Absorption energy, wavelengths, and oscillator strengths for the first 20 singlet states. The values were obtained using B3LYP/6-31G\* for the optimized ground state geometry. Water was taken into account as a solvent by using the polarizable continuum model.

|        | Singlet<br>states | Absorption<br>energy (eV) | Wavelength (nm) | Oscillator<br>strengths( <i>f</i> ) |
|--------|-------------------|---------------------------|-----------------|-------------------------------------|
|        | 1                 | 0.27                      | 4559.16         | 0.0054                              |
|        | 2                 | 0.69                      | 1789.30         | 0.0258                              |
|        | 3                 | 0.84                      | 1479.22         | 0.0573                              |
|        | 4                 | 1.30                      | 948.82          | 0.1754                              |
|        | 5                 | 1.65                      | 753.04          | 0.0103                              |
|        | 6                 | 1.82                      | 681.50          | 0.0013                              |
|        | 7                 | 2.01                      | 617.87          | 0.0552                              |
|        | 8                 | 2.38                      | 520.74          | 0.1736                              |
|        | 9                 | 2.77                      | 447.50          | 0.0839                              |
| C42-N2 | 10                | 2.96                      | 418.90          | 0.1054                              |
|        | 11                | 3.11                      | 399.09          | 0.0752                              |
|        | 12                | 3.28                      | 377.91          | 0.1016                              |
|        | 13                | 3.30                      | 375.19          | 0.0043                              |
|        | 14                | 3.33                      | 372.13          | 0.0588                              |
|        | 15                | 3.39                      | 365.36          | 0.1286                              |
|        | 16                | 3.45                      | 359.72          | 0.2155                              |
|        | 17                | 3.45                      | 359.29          | 0.2304                              |
|        | 18                | 3.63                      | 341.85          | 0.0006                              |
|        | 19                | 3.74                      | 331.17          | 0.0310                              |
|        | 20                | 3.83                      | 323.39          | 0.0909                              |

**Table S7** Absorption energy, wavelengths, and oscillator strengths for the first 20singlet states of C42-N2.

|          | Singlet | Absorption  | Wavelength | Oscillator        |
|----------|---------|-------------|------------|-------------------|
|          | states  | energy (eV) | (nm)       | strengths( $_f$ ) |
|          | 1       | 2.89        | 428.87     | 0.0070            |
|          | 2       | 3.01        | 411.92     | 0.0006            |
|          | 3       | 3.32        | 373.70     | 0.1899            |
|          | 4       | 3.33        | 372.72     | 0.1253            |
|          | 5       | 3.41        | 363.43     | 0.7655            |
|          | 6       | 3.43        | 361.85     | 0.7799            |
|          | 7       | 3.56        | 348.08     | 0.0013            |
|          | 8       | 3.58        | 345.92     | 0.0146            |
|          | 9       | 3.86        | 321.44     | 0.0001            |
| C42-N2-h | 10      | 3.93        | 315.85     | 0.0083            |
|          | 11      | 3.95        | 314.01     | 0.0117            |
|          | 12      | 4.14        | 299.73     | 0.0058            |
|          | 13      | 4.18        | 296.37     | 0.0029            |
|          | 14      | 4.22        | 294.05     | 0.0023            |
|          | 15      | 5.24        | 291.69     | 0.0005            |
|          | 16      | 4.28        | 289.89     | 0.0004            |
|          | 17      | 4.30        | 288.46     | 0.0000            |
|          | 18      | 4.31        | 287.61     | 0.0068            |
|          | 19      | 4.31        | 287.45     | 0.0295            |
|          | 20      | 4.35        | 285.23     | 0.0085            |

**Table S8** Absorption energy, wavelengths, and oscillator strengths for the first 20singlet states of C42-N2-h.

|                  | Singlet<br>states | Absorption<br>energy (eV) | Wavelength (nm) | Oscillator<br>strengths( <i>f</i> ) |
|------------------|-------------------|---------------------------|-----------------|-------------------------------------|
|                  | 1                 | 2.76                      | 449.85          | 0.0023                              |
|                  | 2                 | 2.79                      | 444.54          | 0.1089                              |
|                  | 3                 | 3.26                      | 380.86          | 0.6370                              |
|                  | 4                 | 3.26                      | 380.79          | 0.9164                              |
|                  | 5                 | 3.37                      | 367.40          | 0.0728                              |
|                  | 6                 | 3.57                      | 347.08          | 0.0280                              |
|                  | 7                 | 3.61                      | 343.60          | 0.0753                              |
|                  | 8                 | 3.72                      | 333.30          | 0.0115                              |
|                  | 9                 | 3.79                      | 326.95          | 0.0745                              |
| C42-N2- <i>p</i> | 10                | 3.83                      | 323.39          | 0.0603                              |
|                  | 11                | 3.96                      | 312.99          | 0.0001                              |
|                  | 12                | 3.97                      | 312.25          | 0.0568                              |
|                  | 13                | 4.07                      | 304.66          | 0.0007                              |
|                  | 14                | 4.10                      | 303.01          | 0.0344                              |
|                  | 15                | 4.16                      | 297.74          | 0.0056                              |
|                  | 16                | 4.23                      | 293.02          | 0.0233                              |
|                  | 17                | 4.24                      | 292.62          | 0.0464                              |
|                  | 18                | 4.28                      | 289.58          | 0.0383                              |
|                  | 19                | 4.30                      | 288.66          | 0.0654                              |
|                  | 20                | 4.34                      | 285.50          | 0.0054                              |

**Table S9** Absorption energy, wavelengths, and oscillator strengths for the first 20singlet states of C42-N2-p.

|        | Singlet | Absorption  | Wavelength | Oscillator                |
|--------|---------|-------------|------------|---------------------------|
|        | states  | energy (eV) | (nm)       | <pre>strengths( f )</pre> |
|        | 1       | 0.1014      | 12222.99   | 0.0009                    |
|        | 2       | 0.8069      | 1536.51    | 0.0070                    |
|        | 3       | 0.9953      | 1245.71    | 0.0488                    |
|        | 4       | 1.17        | 1063.32    | 0.2017                    |
|        | 5       | 1.90        | 653.57     | 0.0159                    |
|        | 6       | 1.98        | 627.20     | 0.0210                    |
|        | 7       | 2.12        | 585.80     | 0.1311                    |
|        | 8       | 2.20        | 564.00     | 0.0298                    |
|        | 9       | 2.28        | 544.57     | 0.0000                    |
| C42-B2 | 10      | 2.48        | 499.11     | 0.0000                    |
|        | 11      | 2.71        | 457.48     | 0.3605                    |
|        | 12      | 2.88        | 431.25     | 0.0238                    |
|        | 13      | 2.90        | 428.14     | 0.0000                    |
|        | 14      | 3.00        | 413.95     | 0.0034                    |
|        | 15      | 3.09        | 401.04     | 0.1246                    |
|        | 16      | 3.18        | 389.58     | 0.0265                    |
|        | 17      | 3.30        | 375.95     | 0.0001                    |
|        | 18      | 3.33        | 372.22     | 0.0695                    |
|        | 19      | 3.41        | 363.90     | 0.2014                    |
|        | 20      | 3.46        | 358.18     | 0.0170                    |

**Table S10** Absorption energy, wavelengths, and oscillator strengths for the first 20singlet states of C42-B2.

|          | Singlet | Absorption<br>energy (eV) | Wavelength (nm) | Oscillator<br>strengths( f ) |
|----------|---------|---------------------------|-----------------|------------------------------|
|          | 1       | 2.82                      | 439.04          | 0.0421                       |
|          | 2       | 2.90                      | 428.16          | 0.0000                       |
|          | 3       | 2.93                      | 423.11          | 0.0029                       |
|          | 4       | 2.93                      | 422.49          | 0.0024                       |
|          | 5       | 3.08                      | 403.17          | 0.0059                       |
|          | 6       | 3.09                      | 401.15          | 0.0000                       |
|          | 7       | 3.12                      | 397.83          | 0.0000                       |
|          | 8       | 3.16                      | 392.01          | 0.0631                       |
|          | 9       | 3.30                      | 375.34          | 0.8771                       |
| C42-B2-h | 10      | 3.33                      | 372.27          | 0.7529                       |
|          | 11      | 3.56                      | 347.86          | 0.0042                       |
|          | 12      | 3.64                      | 340.23          | 0.0013                       |
|          | 13      | 3.67                      | 338.13          | 0.0000                       |
|          | 14      | 3.71                      | 333.81          | 0.0002                       |
|          | 15      | 3.75                      | 330.52          | 0.0001                       |
|          | 16      | 3.85                      | 321.98          | 0.0115                       |
|          | 17      | 3.92                      | 316.21          | 0.0023                       |
|          | 18      | 3.94                      | 315.01          | 0.0052                       |
|          | 19      | 3.95                      | 314.22          | 0.0000                       |
|          | 20      | 3.98                      | 311.39          | 0.0104                       |

**Table S11** Absorption energy, wavelengths, and oscillator strengths for the first 20singlet states of C42-B2-h.

|                  | Singlet<br>states | Absorption<br>energy (eV) | Wavelength (nm) | Oscillator<br>strengths( <i>f</i> ) |
|------------------|-------------------|---------------------------|-----------------|-------------------------------------|
|                  | 1                 | 1.95                      | 635.71          | 0.0002                              |
|                  | 2                 | 2.08                      | 596.84          | 0.0070                              |
|                  | 3                 | 2.33                      | 531.67          | 0.0153                              |
|                  | 4                 | 2.49                      | 497.67          | 0.0171                              |
|                  | 5                 | 2.56                      | 484.53          | 0.1902                              |
|                  | 6                 | 2.79                      | 443.83          | 0.0538                              |
|                  | 7                 | 3.19                      | 389.20          | 0.2709                              |
|                  | 8                 | 3.25                      | 381.85          | 0.0824                              |
|                  | 9                 | 3.29                      | 376.69          | 0.0001                              |
| C42-B2- <i>p</i> | 10                | 3.41                      | 363.68          | 0.0014                              |
|                  | 11                | 3.46                      | 358.28          | 0.0000                              |
|                  | 12                | 3.49                      | 355.63          | 0.0775                              |
|                  | 13                | 3.50                      | 354.57          | 0.0030                              |
|                  | 14                | 3.65                      | 340.03          | 0.4067                              |
|                  | 15                | 3.69                      | 336.10          | 0.0027                              |
|                  | 16                | 3.73                      | 332.13          | 0.4369                              |
|                  | 17                | 3.79                      | 327.52          | 0.0015                              |
|                  | 18                | 3.81                      | 325.43          | 0.0020                              |
|                  | 19                | 3.83                      | 323.55          | 0.0842                              |
|                  | 20                | 3.84                      | 322.63          | 0.6276                              |

 Table S12 Absorption energy, wavelengths, and oscillator strengths for the first 20 singlet states of C42-B2-p.

|        | Singlet | Absorption  | Wavelength | Oscillator     |
|--------|---------|-------------|------------|----------------|
|        | states  | energy (ev) | (nm)       | succession (f) |
|        | 1       | 0.34        | 3697.24    | 0.0288         |
|        | 2       | 1.41        | 881.49     | 0.0079         |
|        | 3       | 1.43        | 867.11     | 0.0016         |
|        | 4       | 1.63        | 759.29     | 0.0274         |
|        | 5       | 1.84        | 672.12     | 0.0312         |
|        | 6       | 1.87        | 664.77     | 0.0090         |
| C42-P2 | 7       | 2.21        | 562.06     | 0.0068         |
|        | 8       | 2.28        | 542.91     | 0.0207         |
|        | 9       | 2.40        | 515.80     | 0.1793         |
|        | 10      | 2.72        | 455.79     | 0.0151         |
|        | 11      | 2.89        | 429.05     | 0.0021         |
|        | 12      | 3.09        | 401.33     | 0.0048         |
|        | 13      | 3.14        | 395.10     | 0.0048         |
|        | 14      | 3.16        | 392.74     | 0.0078         |
|        | 15      | 3.16        | 392.30     | 0.0100         |
|        | 16      | 3.23        | 384.21     | 0.0026         |
|        | 17      | 3.30        | 376.54     | 0.0052         |
|        | 18      | 3.48        | 355.90     | 0.0434         |
|        | 19      | 3.51        | 352.93     | 0.0551         |
|        | 20      | 3.54        | 350.65     | 0.0980         |

**Table S13** Absorption energy, wavelengths, and oscillator strengths for the first 20singlet states of C42-P2.

|          | Singlet | Absorption  | Wavelength | Oscillator       |
|----------|---------|-------------|------------|------------------|
|          | states  | energy (eV) | (nm)       | strengths( $f$ ) |
|          | 1       | 2.73        | 453.90     | 0.0010           |
|          | 2       | 2.83        | 438.81     | 0.0521           |
|          | 3       | 3.16        | 391.82     | 0.1902           |
|          | 4       | 3.17        | 391.41     | 0.7924           |
|          | 5       | 3.21        | 385.77     | 0.5377           |
|          | 6       | 3.26        | 380.31     | 0.0888           |
| C42-P2-h | 7       | 3.42        | 362.48     | 0.0488           |
|          | 8       | 3.48        | 356.07     | 0.0797           |
|          | 9       | 3.56        | 348.41     | 0.0298           |
|          | 10      | 3.59        | 345.32     | 0.1504           |
|          | 11      | 3.81        | 325.25     | 0.0074           |
|          | 12      | 3.89        | 318.90     | 0.0195           |
|          | 13      | 3.91        | 317.39     | 0.0162           |
|          | 14      | 3.99        | 310.92     | 0.0204           |
|          | 15      | 4.02        | 308.37     | 0.0423           |
|          | 16      | 4.08        | 303.63     | 0.0315           |
|          | 17      | 4.13        | 300.56     | 0.0434           |
|          | 18      | 4.15        | 298.68     | 0.0006           |
|          | 19      | 4.20        | 294.71     | 0.0030           |
|          | 20      | 4.22        | 293.47     | 0.0257           |

**Table S14** Absorption energy, wavelengths, and oscillator strengths for the first 20singlet states of C42-P2-h.

|          | Singlet | Absorption  | Wavelength | Oscillator       |
|----------|---------|-------------|------------|------------------|
|          | states  | energy (eV) | (nm)       | strengths( $f$ ) |
|          | 1       | 2.48        | 499.13     | 0.1840           |
|          | 2       | 2.57        | 483.25     | 0.0479           |
|          | 3       | 2.99        | 414.49     | 0.5699           |
|          | 4       | 3.05        | 406.38     | 0.3999           |
|          | 5       | 3.08        | 403.17     | 0.0445           |
|          | 6       | 3.42        | 362.15     | 0.0684           |
| C42-P2-p | 7       | 3.47        | 357.73     | 0.0150           |
|          | 8       | 3.47        | 357.35     | 0.0504           |
|          | 9       | 3.51        | 353.44     | 0.0147           |
|          | 10      | 3.61        | 343.51     | 0.0605           |
|          | 11      | 3.72        | 333.64     | 0.1679           |
|          | 12      | 3.73        | 332.58     | 0.1707           |
|          | 13      | 3.76        | 330.18     | 0.0031           |
|          | 14      | 3.80        | 326.29     | 0.4717           |
|          | 15      | 3.86        | 321.46     | 0.0001           |
|          | 16      | 3.87        | 320.03     | 0.0433           |
|          | 17      | 3.88        | 319.18     | 0.1448           |
|          | 18      | 4.01        | 309.17     | 0.0535           |
|          | 19      | 4.10        | 301.98     | 0.1140           |
|          | 20      | 4.14        | 299.05     | 0.0522           |

**Table S15** Absorption energy, wavelengths, and oscillator strengths for the first 20singlet states of C42-P2-p.

|        | Singlet | Absorption  | Wavelength | Oscillator       |
|--------|---------|-------------|------------|------------------|
|        | states  | energy (eV) | (nm)       | strengths( $f$ ) |
|        | 1       | 1.47        | 844.13     | 0.0297           |
|        | 2       | 1.63        | 760.03     | 0.0213           |
|        | 3       | 1.68        | 738.80     | 0.0204           |
|        | 4       | 1.77        | 699.56     | 0.0192           |
|        | 5       | 2.12        | 583.80     | 0.1320           |
|        | 6       | 2.16        | 572.69     | 0.0547           |
|        | 7       | 2.47        | 501.53     | 0.0026           |
| C42-S2 | 8       | 2.62        | 473.47     | 0.0270           |
|        | 9       | 2.64        | 470.34     | 0.0082           |
|        | 10      | 2.73        | 454.10     | 0.0002           |
|        | 11      | 2.96        | 419.48     | 0.0028           |
|        | 12      | 3.08        | 402.59     | 0.0080           |
|        | 13      | 3.09        | 401.46     | 0.0353           |
|        | 14      | 3.11        | 399.30     | 0.0000           |
|        | 15      | 3.17        | 390.68     | 0.1011           |
|        | 16      | 3.29        | 377.21     | 0.0350           |
|        | 17      | 3.34        | 371.70     | 0.0344           |
|        | 18      | 3.44        | 359.92     | 0.1676           |
|        | 19      | 3.51        | 353.13     | 0.3884           |
|        | 20      | 3.84        | 350.38     | 0.1874           |

**Table S16** Absorption energy, wavelengths, and oscillator strengths for the first 20singlet states of C42-S2.

|          | Singlet | Absorption  | Wavelength | Oscillator       |
|----------|---------|-------------|------------|------------------|
|          | states  | energy (eV) | (nm)       | strengths( $f$ ) |
|          | 1       | 0.12        | 10649.67   | 0.0017           |
|          | 2       | 1.00        | 1245.55    | 0.0703           |
|          | 3       | 1.33        | 931.98     | 0.0580           |
|          | 4       | 1.72        | 719.56     | 0.0768           |
|          | 5       | 2.10        | 592.90     | 0.0014           |
|          | 6       | 2.21        | 562.27     | 0.0708           |
|          | 7       | 2.28        | 544.26     | 0.1024           |
| C42-S2-h | 8       | 2.50        | 495.48     | 0.0691           |
|          | 9       | 2.59        | 478.20     | 0.4259           |
|          | 10      | 2.63        | 470.59     | 0.0181           |
|          | 11      | 2.78        | 446.70     | 0.0586           |
|          | 12      | 2.98        | 416.52     | 0.0642           |
|          | 13      | 3.07        | 403.05     | 0.0980           |
|          | 14      | 3.20        | 387.89     | 0.0117           |
|          | 15      | 3.29        | 376.77     | 0.0153           |
|          | 16      | 3.39        | 365.86     | 0.0033           |
|          | 17      | 3.46        | 358.03     | 0.0128           |
|          | 18      | 3.48        | 356.21     | 0.1026           |
|          | 19      | 3.5194      | 352.29     | 0.0176           |
|          | 20      | 3.6009      | 344.32     | 0.1500           |

**Table S17** Absorption energy, wavelengths, and oscillator strengths for the first 20singlet states of C42-S2-h.

|          | Singlet | Absorption  | Wavelength | Oscillator        |
|----------|---------|-------------|------------|-------------------|
|          | states  | energy (eV) | (nm)       | strengths( $_f$ ) |
|          | 1       | 0.65        | 1893.77    | 0.0590            |
|          | 2       | 0.71        | 1740.58    | 0.0036            |
|          | 3       | 1.48        | 839.03     | 0.0204            |
|          | 4       | 1.60        | 775.68     | 0.3044            |
|          | 5       | 1.82        | 682.88     | 0.0334            |
|          | 6       | 1.93        | 643.96     | 0.0139            |
| C42-S2-p | 7       | 2.05        | 606.06     | 0.0071            |
|          | 8       | 2.15        | 575.84     | 0.0269            |
|          | 9       | 2.21        | 559.88     | 0.0737            |
|          | 10      | 2.50        | 495.32     | 0.0385            |
|          | 11      | 2.71        | 457.11     | 0.1080            |
|          | 12      | 2.77        | 447.63     | 0.1286            |
|          | 13      | 2.94        | 421.74     | 0.0437            |
|          | 14      | 3.12        | 397.51     | 0.0101            |
|          | 15      | 3.14        | 395.43     | 0.6457            |
|          | 16      | 3.20        | 388.41     | 0.2987            |
|          | 17      | 3.44        | 360.05     | 0.2484            |
|          | 18      | 3.58        | 346.52     | 0.0003            |
|          | 19      | 3.62        | 342.19     | 0.0301            |
|          | 20      | 3.67        | 337.56     | 0.0171            |

**Table S18** Absorption energy, wavelengths, and oscillator strengths for the first 20singlet states of C42-S2-p.

| GQDs             | Dominant   | Excitation | Wavelength | Oscillator  | Transition                | Associated                 |
|------------------|------------|------------|------------|-------------|---------------------------|----------------------------|
|                  | Excitation | energy(eV) | (nm)       | strength(f) | coefficients              | eigenvalues( $\lambda_i$ ) |
| C42-N2           | S17        | 3.45       | 359.29     | 0.23        | H-3→L+2 -0.29             | 0.62                       |
|                  |            |            |            |             | H-2→L+1 0.53              | 0.28                       |
|                  |            |            |            |             | H-1→L+2 -0.27             |                            |
| C42-N2-h         | <b>S</b> 5 | 3.41       | 363.43     | 0.77        | H-1→L+1 0.47              |                            |
|                  |            |            |            |             | H→L 0.39                  | 0.48                       |
|                  |            |            |            |             | H →L+2 0.30               | 0.48                       |
|                  | <b>S</b> 6 | 3.43       | 361.85     | 0.78        | H-2→L 0.29                |                            |
|                  |            |            |            |             | H-1→L -0.38               | 0.57                       |
|                  |            |            |            |             | H-1→L+2 -0.28             | 0.36                       |
|                  |            |            |            |             | H→L+1 0.42                |                            |
| C42-N2- <i>p</i> | <b>S</b> 4 | 3.26       | 380.79     | 0.92        | H-1→L 0.51                | 0.52                       |
|                  |            |            |            |             | H→L+1 -0.45               | 0.41                       |
| C42-S2           | 19         | 3.51       | 353.13     | 0.39        | H-4→L 0.50                | 0.59                       |
|                  |            |            |            |             | H-2→L+1 -0.37             | 0.30                       |
| C42-S2-h         | 9          | 2.59       | 478.20     | 0.43        | $H \rightarrow L+5  0.60$ | 0.80                       |
| C42-S2- <i>p</i> | 15         | 3.14       | 395.43     | 0.65        | H-2→L -0.47               | 0.47                       |
|                  |            |            |            |             | H-1→L+1 0.49              | 0.46                       |

 Table S19 Excitation energies, wavelengths, oscillator strengths, transition coefficients, and associated eigenvalues of the prominent excitation in N- and S-doped GQDs.