1

## Combined use of Mössbauer spectroscopy, XPS, HRTEM, dielectric and anelastic spectroscopy for estimating incipient phase separation in lead titanate-based multiferroics

Floriana Craciun<sup>\*a</sup>, Francesco Cordero<sup>a</sup>, Bogdan S. Vasile<sup>b</sup>, Victor Fruth<sup>c</sup>, Maria Zaharescu<sup>c</sup>, Irina Atkinson<sup>c</sup>, Roxana Trusca<sup>b</sup>, Lucian Diamandescu<sup>d</sup>, Liviu C. Tanase<sup>d</sup>, Pietro Galizia<sup>e</sup>, Marin Cernea<sup>d</sup>, and Carmen Galassi<sup>e</sup>

<sup>a</sup>Istituto di Struttura della Materia-CNR (ISM-CNR), Area di Ricerca di Roma-Tor Vergata, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
<sup>b</sup>Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, Bucharest 011061, Romania
<sup>c</sup>Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania

<sup>d</sup>National Institute of Materials Physics, Atomistilor 405 A, 077125 Bucharest-Magurele, Romania <sup>e</sup>CNR-ISTEC, Istituto di Scienza e Tecnologia dei Materiali Ceramici, via Granarolo 64, I-48018 Faenza, Italy

\*Contact author: floriana.craciun@isc.cnr.it (Floriana Craciun)

## **Contents**

- XRD pattern and SEM image of the as-calcined powder
- SEM images of the materials microstructures
- An example of the fitting of the XRD patterns
- A typical TEM image of domain boundaries
- Tables listing lattice plane distances obtained from HRTEM and XRD for the PNTF-4 and PNTF-

5 materials



**Fig. S1.** a) Typical XRD patterns showing the effect of calcination time on the phase composition for the sample PNTF-3. The arrows indicate the reduction of the secondary phase amount with increasing calcination time; b) a SEM image of the powder. The white segment represents  $2 \,\mu m$ .



**Fig. S2.** a) SEM image of sample PNT; b)-d) SEM images of samples PNTF-3, PNTF-4 and PNTF-5, respectively. On all images the white segment (approximately of the same length) represents 5 µm.



**Fig. S3.** An example of fitting of the XRD pattern for PNTF-5 material by using Rigaku PDXL software connected to ICDD PDF-2 database (PDF card-01-070-4258). The curve displayed on the bottom graph represents the difference between the experimental and the calculated pattern.



**Fig. S4** a) A typical image of  $90^{0}$  a-a domain boundaries revealed on PNTF-4 material. The inset shows a SAED image taken on this area (the viewing direction is [100]); b) two adjacent grains showing ferroelectric domains with 90 a-a domain boundaries (region A) and  $90^{0}$  a-c domain boundaries (region B).

Table S1. Comparison between the lattice plane distances obtained from HRTEM and XRD for the PNTF-4 material.

|          | d (200) (Å) | d (110) (Å) | d (111) (Å) |
|----------|-------------|-------------|-------------|
| HRTEM    | 1.92        | 2.76        | 2.22        |
| XRD      | 1.9538      | 2.7632      | 2.2881      |
| Diff (%) | 1.76        | 0.1         | 3.07        |

Table S2. Comparison between the lattice plane distances obtained from HRTEM and XRD for the PNTF-5 material.

|          | d (001) (Å) | d (110) (Å) | d (111) (Å) |
|----------|-------------|-------------|-------------|
| HRTEM    | 4.13        | 2.76        | 2.29        |
| XRD      | 4.083       | 2.7633      | 2.2884      |
| Diff (%) | 1.15        | 0.1         | 0.06        |