Competition between Salt Bridge and Non-Zwitterionic Structure in Deprotonated Amino Acid Dimers

Sven Heiles^{a,b*}, Giel Berden^c, Jos Oomens^{c,d} and Evan R. Williams^{a*}

^a Department of Chemistry, University of California, Berkeley, California 94720-1460,

United States

^b Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen,

35392 Giessen, Germany

^c Radboud University Nijmegen, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands

^d Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904. 1098 XH Amsterdam. The Netherlands

Electronic Supporting Information

*Address correspondence to Dr. Sven Heiles and Prof. Evan R. Williams:

Institute of Inorganic and Analytical Chemistry Justus Liebig University Giessen, Giessen, Germany email: sven.heiles@anorg.chemie.uni-giessen.de

Department of Chemistry University of California, Berkeley, USA e-mail: erw@berkeley.edu

Figure S1. ΔG in kJ/mol for the isomers of [2Pro-H]⁻ at the B3LYP/GCR level of theory with respect to NZ I as a function of temperature.

Figure S2. IRMPD spectra of (a) [Asp+Glu-H]⁻ and (b) [2Glu-2H+Na]⁻ at 298 K.

Figure S3. Comparison between experiment and theory for $[2Pro-H]^-$ at the ω B97-D/GCR level of theory. Harmonic frequencies were scaled with a uniform scaling factor of 0.975 and corresponding structures are shown to the right of every calculated spectrum.

Figure S4. Comparison between experiment and theory for [2Pro-H]⁻ at the B3LYP/GCR level of theory. Harmonic frequencies were scaled with a uniform scaling factor of 0.987 and corresponding structures are shown to the right of every calculated spectrum.

Dimer	Level of theory	$\Delta G(0 \text{ K}) / \text{kJ/mol}$	ΔG(298 K) / kJ/mol
-ĦJ-	B3LYP/GCR	2	3
/2Cys-	ωB97-D/GCR	4	-5
1	B3LYP/GCR	21	19
[2Cys-3H	ωB97-D/GCR	27	16
-11	B3LYP/GCR	-2	1
[2Glu-H	ωB97-D/GCR	-7	-9
	B3LYP/GCR	-8	-5
[H-d	ωB97-D/GCR	-19	-14
[2Pro	MP2/GCR//B3LYP/GCR	-16	-18
	B3LYP/GCR	-13	-18
[2Phe-H]	ωB97-D/GCR	-4	-1

Table S1. Relative Gibbs free energy difference of the SB isomer of some negative amino acid dimer with respect to NZ structure at 0 and 298 K at different levels of theory (in kJ/mol).

B3LYP/GCR

28

20

Figure S5. Gibbs free energy difference between NZ minus SB isomers of negative amino acid dimers at 298 K (ΔG_{298}) from B3LYP/GCR computations as a function of amino acid (AA = Cys, Glu, Pro, Phe, His) gas phase basicity difference relative to the cysteine gas phase basicity, $\Delta GB(AA-Cys)$.^{1,2} For [2Cys-3H]⁻ the GB value of Cys was used. In a) $\Delta GB(AA-Cys)$ values are taken from ref. 1 in b) from ref. 2.

Figure S6. Comparison between experiment and theory for [2Phe-H]⁻ at the B3LYP/GCR level of theory. Harmonic frequencies were scaled with a uniform scaling factor of 0.987 and corresponding structures are shown to the right of every calculated spectrum.

Figure S7. Comparison between experiment and theory for $[2Phe-H]^-$ at the ω B97-D/GCR level of theory. Harmonic frequencies were scaled with a uniform scaling factor of 0.975 and corresponding structures are shown to the right of every calculated spectrum.

Figure S8. Comparison between experiment and theory for [2Cys-H]⁻ at the B3LYP/GCR level of theory. Harmonic frequencies were scaled with a uniform scaling factor of 0.987 and corresponding structures are shown to the right of every calculated spectrum.

Figure S9. Comparison between experiment and theory for $[2Cys-H]^{-}$ at the ω B97-D/GCR level of theory. Harmonic frequencies were scaled with a uniform scaling factor of 0.975 and corresponding structures are shown to the right of every calculated spectrum.

Figure S10. Comparison between experiment and theory for [2Cys-3H]⁻ at the B3LYP/GCR level of theory. Harmonic frequencies were scaled with a uniform scaling factor of 0.987 and corresponding structures are shown to the right of every calculated spectrum.

Figure S11. Comparison between experiment and theory for $[2Cys-3H]^{-}$ at the ω B97-D/GCR level of theory. Harmonic frequencies were scaled with a uniform scaling factor of 0.975 and corresponding structures are shown to the right of every calculated spectrum.

Figure S12. Comparison between experiment and theory for [2Glu-H]⁻ at the B3LYP/GCR level of theory. Harmonic frequencies were scaled with a uniform scaling factor of 0.987 and corresponding structures are shown to the right of every calculated spectrum.

Figure S13. Comparison between experiment and theory for $[2\text{Glu-H}]^-$ at the ω B97-D/GCR level of theory. Harmonic frequencies were scaled with a uniform scaling factor of 0.975 and corresponding structures are shown to the right of every calculated spectrum.

Figure S14. Comparison between experiment and theory for [2Glu-2H+Na]⁻ at the B3LP/GCR level of theory (in kJ/mol). Harmonic frequencies were scaled with a uniform scaling factor of 0.987 and corresponding structures are shown to the right of every calculated spectrum. The label "2SB" donates isomers with two incorporated salt bridges.

Figure S15. Comparison between experiment and theory for [2His-H]⁻ at the B3LP/GCR level of theory (in kJ/mol). Harmonic frequencies were scaled with a uniform scaling factor of 0.987 and corresponding structures are shown to the right of every calculated spectrum.

Table S2. Comparison of the most intense experimental IRMPD transitions with predicted harmonic vibrations from B3LYP/6-311++G** calculations for $[2Pro-H]^-$ and peak assignments. Harmonic calculated frequencies were scaled with a uniform scaling factor of 0.987.

Experiment /	Vibration	Wavenumber /	Vibration	Wavenumber /
cm ⁻¹	(SBII)	cm ⁻¹	(NZII)	cm ⁻¹
1691	v(SB)	1688	ν(C=O)	1784
1604	v _{asym} (-COO ⁻), δ(-NH ₃ +)	1625, 1603	vasym(-COO⁻)	1689
			δ(С-О-Н)	1512
1360	v _{sym} (-COO ⁻)	1377	ν _{sym} (COO ⁻)	1386
1317	"Free" ν _{sym} (- COO ⁻)	1321	Ring bending modes	1365, 1356
1290-1210	$\mathrm{NH_{3}^{+},NH_{2},}$	1146	OHO	1179, 1118,
	CH ₂ wagging		stretch	1109
			combined with	
			$NH_2 + CH_2$	
			wagging	

1210-1080	NH_2, CH_2	962	$NH_2 + CH_2$	975, 904
	wagging		wagging and	
			rocking	

Table S3. Comparison of the most intense experimental IRMPD transitions with predicted harmonic vibrations from B3LYP/6-311++G** calculations for [2Phe-H]⁻ and peak assignments. Harmonic calculated frequencies were scaled with a uniform scaling factor of 0.987.

Experiment /	Vibration	Wavenumber /	Vibration	Wavenumber /
cm ⁻	(SBII)	cm ⁻	(NZIII)	cm -
1714	v(SB)	1691	v(C=O)	1860
			coupled with	
			ν(0-H)	
1602	vasym(-COO ⁻)	1583	v(C=O)	1693
			coupled with	
			v(O-H)	
1489	$\delta(-NH_3^+)$, ring	1502, ~1500	$v_{asym}(-COO^{-}),$	1538, ~1500
	bending		ring bending	
	modes		modes	
1440-1390	ν _{sym} (-COO ⁻)	1379	ν _{sym} (-COO ⁻)	1424
1390-1270	"Free" v _{sym} (-	1316	δ(C-O-H)	1350
	C00-)			
1270-1190	CH ₂ wagging	1294	ν(C-OH), CH ₂	1231
			wagging	
1190-1060	$NH_3^+ + CH_2$	1150	v(C-OH), CH ₂	1221
	wagging		wagging	
	- 00 0		00 0	

Table S4. Comparison of the most intense experimental IRMPD transitions with predicted harmonic vibrations from B3LYP/6-311++G** calculations for [2Cys-H]⁻ and peak assignments. Harmonic calculated frequencies were scaled with a uniform scaling factor of 0.987.

Experiment /	Vibration	Wavenumber /	Vibration	Wavenumber /
cm ⁻¹	(SBIII)	cm^{-1}	(NZI)	cm ⁻¹
1714	v(SB)	1709	ν(C=O)	1784
1594	$v_{asym}(-COO^{-})$	1585	$v_{asym}(-COO^{-})$	1686
1450-1380	$\delta(-NH_3^+)$, NH ₂ + CH ₂ wagging	1484, 1394	δ(С-О-Н)	1513

1380-1150	ν _{sym} (-COO ⁻), "Free" ν _{sym} (- COO ⁻)	1356, 1310	ν _{sym} (COO ⁻)	1384
890-810	Molecule breathing mode	861	NH ₂ + CH ₂ wagging and rocking	1160 - 1120

Table S5. Comparison of the most intense experimental IRMPD transitions with predicted harmonic vibrations from B3LYP/6-311++G** calculations for $[2Cys-3H]^-$ and peak assignments. Harmonic calculated frequencies were scaled with a uniform scaling factor of 0.987.

Experiment /	Vibration	Wavenumber /	Vibration	Wavenumber /
cm ⁻¹	(SBI)	cm ⁻¹	(NZII)	cm ⁻¹
1714	v(SB)	1717	ν(C=O)	1732
1594	vasym(-COO⁻)	1585	$v_{asym}(-COO^{-})$	1628
1402	δ(-NH3+)	1496	δ(С-О-Н)	1456
1341	v _{sym} (-COO ⁻)	1349	ν _{sym} (COO ⁻)	1357
1255	"Free" v _{sym} (- COO ⁻)	1307		
1182	$NH_3^+ + CH_2$ wagging	1272	$NH_2 + CH_2$ wagging	1294
1100	NH ₃ ⁺ + CH ₂ wagging and rocking	1001	Molecule breathing mode	932
890-810	C - C stretch	846	CH ₂ rocking	803

Table S6. Comparison of the most intense experimental IRMPD transitions with predicted harmonic vibrations from B3LYP/6-311++G** calculations for [2Glu-H]⁻ and peak assignments. Harmonic calculated frequencies were scaled with a uniform scaling factor of 0.987.

Experiment / cm ⁻¹	Vibration (SBII)	Wavenumber / cm ⁻¹	Vibration (NZII)	Wavenumber / cm ⁻¹
1743	ν(C=O), ν(C=O), ν(SB)	1727, 1708, 1696	ν(C=O), ν(C=O), ν(C=O)	1747, 1731, 1671
1586	$v_{asym}(-COO^{-})$	1570	$v_{asym}(-COO^{-})$	1529
1490-1420	δ(-NH ₃ +)	1506	v _{sym} (COO ⁻)	1400
1420-1300	v _{sym} (-COO ⁻), CH ₂ wagging,	1403, 1361 1324	NH ₂ + CH ₂ wagging and rocking	1272

Free" v_{sym}(-COO⁻)

xyz coordinates in Å at the B3LYP/GCR level of theory (Figure 3)

Structure: Atomic number x coordinate

e y coordinate

z coordinate

[2Cys-H]⁻ - NZ

7	3.230637625	-1.128024744	1.251354261
6	3.360325673	0.174722134	0.581980124
6	1.999173169	0.871366133	0.266244056
8	0.997465574	0.067457475	0.254003519
6	4.122925568	0.022194522	-0.737446198
16	5.851659505	-0.678563825	-0.496095508
8	2.004544233	2.082011372	0.038805397
1	3.097647386	-0.977344865	2.246183126
1	3.929369531	0.852181610	1.223229359
1	3.585033778	-0.640595402	-1.416472776
1	4.253162198	0.993354192	-1.210534211
1	5.421610865	-1.606566672	0.395562439
7	-3.812737481	1.623176714	-0.943961874
6	-3.624459658	0.861238356	0.294973227
6	-2.244844659	0.164731980	0.444262647
8	-2.141019823	-0.909907663	1.024636979
6	-4.783465240	-0.097154376	0.535230269
16	-4.948303170	-1.453008353	-0.763669722
8	-1.282959013	0.874926690	-0.064938326
1	-3.922056418	0.962811058	-1.710920908
1	-3.655238415	1.584799221	1.124243945
1	-4.682111567	-0.589866231	1.498066764
1	-5.729633407	0.440323442	0.485848591
1	-3.799927895	-2.081627114	-0.420548333
1	2.353501824	-1.533759204	0.925982669
1	-2.949828267	2.127380061	-1.129443232
1	-0.238752468	0.505381274	0.087833279

[2Cys-H]⁻ - SB

7	3.615535961	-0.568655713	1.599038459
6	3.032376708	0.614013986	0.960591121
6	1.487132029	0.551893566	0.769965982
8	0.849979278	-0.223559094	1.527378380

6	3.769831650	0.977508401	-0.322178772
16	3.630529925	-0.316369213	-1.687176748
8	0.990004042	1.322229929	-0.102535702
1	2.928972021	-0.910108150	2.268314942
1	3.188312336	1.467165322	1.639419582
1	3.393402300	1.912165335	-0.726938816
1	4.841275068	1.052411584	-0.135908381
1	2.303500486	-0.144623059	-1.887335012
7	-1.602427108	0.928334594	0.509449528
6	-2.549499711	0.155137918	-0.357626234
6	-3.951584871	0.900215220	-0.261385860
8	-4.879501956	0.365544982	-0.878909564
6	-2.666637895	-1.297968901	0.054259250
16	-1.156059491	-2.372192179	-0.278537593
8	-3.916525158	1.951387217	0.433156144
1	-1.281167713	0.401385370	1.326426144
1	-2.198383610	0.225536664	-1.388234943
1	-2.925412054	-1.384510856	1.111666939
1	-3.466950396	-1.747176290	-0.528671512
1	-0.278855494	-1.683061826	0.505433372
1	3.687797690	-1.301025932	0.894833569
1	-0.683583511	1.208269277	0.064005261
1	-2.209504190	1.737637692	0.792780136

[2Cys-3H]⁻ - NZ

7	3.009878794	-1.083387108	-0.744844388
6	1.980853162	-0.128412070	-0.329537275
6	2.613769865	1.273415094	-0.145340503
8	3.817186781	1.430775196	-0.261121411
6	1.314376037	-0.583397920	0.973078248
16	0.365236824	-2.201285541	0.825935126
8	1.799051584	2.266043971	0.127928336
1	3.821787268	-0.572580373	-1.076591977
1	1.189865866	-0.005480711	-1.079328465
1	2.085998217	-0.856481374	1.697927627
1	0.643454772	0.153336181	1.408976771
7	-3.033019130	0.867100623	-1.346237689
6	-2.711668256	0.620913037	0.064769991
6	-1.440552441	1.331059801	0.610313617
8	-1.295376459	1.356600969	1.841514258
6	-2.619561003	-0.882442469	0.334681317
16	-1.297967121	-1.782222924	-0.674676641
8	-0.635710440	1.771044132	-0.275831831
1	-2.166758845	0.752322883	-1.869686587
1	-3.552260216	0.974833559	0.673698034

2767
0139
1312
7512
9297

[2Cys-3H]⁻ - SB

-3.541173925	-0.832877777	1.311310488
-2.812642421	-0.999916738	0.051769926
-1.367149463	-1.559974178	0.190625176
-0.925744633	-1.801515262	1.320592587
-2.826870490	0.298594006	-0.751101193
-2.019830953	1.782449759	0.100413471
-0.749893491	-1.700625884	-0.921619311
-3.386089476	-1.669800804	1.867647308
-3.360677737	-1.726741349	-0.564134861
-2.320318596	0.172341928	-1.704505182
-3.853074919	0.637001391	-0.908632988
1.773378667	-1.145694045	-1.020389629
2.251667495	0.119787339	-0.369673271
3.503921087	-0.279263095	0.542131549
3.811224464	-1.495407136	0.454003705
1.164767497	0.830359774	0.414134550
0.077373589	1.825618979	-0.782665135
4.014906507	0.652174323	1.170994381
2.429789838	-1.841218574	-0.585266022
2.651849948	0.781250300	-1.142435896
0.529226327	0.136904255	0.962231488
1.633440075	1.537255574	1.092319669
-3.070482039	-0.101224802	1.841564957
0.712196960	-1.413797357	-0.874566642
1.932567514	-1.133535855	-2.023729422
	$\begin{array}{r} -3.541173925\\ -2.812642421\\ -1.367149463\\ -0.925744633\\ -2.826870490\\ -2.019830953\\ -0.749893491\\ -3.386089476\\ -3.360677737\\ -2.320318596\\ -3.853074919\\ 1.773378667\\ 2.251667495\\ 3.503921087\\ 3.811224464\\ 1.164767497\\ 0.077373589\\ 4.014906507\\ 2.429789838\\ 2.651849948\\ 0.529226327\\ 1.633440075\\ -3.070482039\\ 0.712196960\\ 1.932567514\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

[2Glu-H]⁻ - NZ

7	-3.746011428	-1.301796544	1.490929858
6	-3.038381887	-1.531322009	0.222154937
6	-1.510492439	-1.291538542	0.283692556
8	-0.805320752	-1.938888318	-0.522688738
6	-3.674655752	-0.698595450	-0.918316910
6	-3.922974293	0.790565500	-0.616797457
6	-2.698875295	1.660895459	-0.371741821
8	-2.654968153	2.521638215	0.481290995
8	-1.117688729	-0.439123552	1.138648107
1	-3.487564261	-2.036781661	2.143267879

1	-3.165989245	-2.581809961	-0.051979635
1	-3.050386511	-0.798596169	-1.809124738
1	-4.648769950	-1.147377887	-1.141403407
1	-4.445455543	1.229842307	-1.476284839
1	-4.579755317	0.908452958	0.246103674
1	-3.372131722	-0.448524255	1.903094039
8	-1.711847309	1.399092100	-1.231528109
1	-0.844012714	1.756264649	-0.906801669
7	3.820244582	1.268889900	1.449245177
6	3.079776948	1.515235299	0.206986943
6	1.554102939	1.320237498	0.292074456
8	0.821519401	1.933523108	-0.481405926
6	3.664365537	0.679539917	-0.960352759
6	3.874427143	-0.819745667	-0.688905743
6	2.629061409	-1.664957857	-0.428217724
8	2.626751154	-2.584954393	0.365448262
8	1.604310295	-1.298599974	-1.183080499
8	1.179519293	0.477450854	1.211221470
1	0.173256975	0.112312104	1.141275665
1	3.532374761	1.946246634	2.149302816
1	3.218548385	2.565276466	-0.064242926
1	3.020708600	0.810570658	-1.832729003
1	4.642478010	1.110739119	-1.198067023
1	4.362626074	-1.257154011	-1.568943010
1	4.554370084	-0.977544891	0.150039131
1	3.542708453	0.365030437	1.823727803
1	0.707106305	-1.669189636	-0.867968026

[2Glu-H]⁻ - SB

7	-1.217599993	-0.263229483	0.920683312
6	-2.596630305	-0.343672480	0.336729400
6	-2.832462929	-1.804668713	-0.204825715
8	-1.942377175	-2.645073378	0.125367184
6	-2.842863399	0.735237585	-0.721520189
6	-2.896171781	2.196109877	-0.206639009
6	-1.545495954	2.631727977	0.335754985
8	-1.257169179	2.516465849	1.522352697
8	-3.877672076	-1.973027140	-0.837348181
1	-0.952767848	-1.189146251	1.286742133
1	-3.296515110	-0.209964766	1.168372999
1	-2.080010960	0.656319615	-1.503120608
1	-3.798641048	0.482337748	-1.183382420
1	-3.175697694	2.845411837	-1.040178449
1	-3.644246675	2.290909985	0.584605086
1	-0.474379804	-0.024215062	0.205603606

8	-0.714007839	3.029288519	-0.601239896
7	4.302508462	1.494878992	-0.161978009
6	3.268832454	0.517057885	-0.539404690
6	1.821767590	1.070690701	-0.473645254
8	0.894394711	0.247359842	-0.677376606
6	3.484434215	-0.772182185	0.281822588
6	2.790572953	-2.047713508	-0.223469760
6	1.385952409	-2.268950705	0.307717875
8	1.045224129	-1.965245720	1.440148490
8	0.598094701	-2.887136086	-0.561816681
8	1.684525712	2.310395491	-0.261445052
1	3.427859814	0.266841183	-1.597391773
1	4.565315608	-0.943520102	0.281425433
1	3.189415009	-0.600838858	1.323089813
1	2.763840726	-2.087105072	-1.313653079
1	3.369128060	-2.919105620	0.110584227
1	3.994475825	2.404219096	-0.498878166
1	-0.355109808	-2.895056177	-0.246255078
1	-1.147509850	0.459073817	1.641678868
1	4.292859580	1.592469775	0.851522271
1	0.284712649	2.822852281	-0.364474819

[2His-H]⁻ - NZ

7	-3.378422027	-2.028145563	1.463187305
6	-2.385299408	-2.083634168	0.389707459
6	-1.012281408	-1.435533759	0.695691233
8	-0.911191356	-0.781580046	1.784794668
6	-2.963870392	-1.489516239	-0.918369596
6	-3.452796321	-0.075561564	-0.825540613
7	-2.652265473	1.025271119	-0.589390380
6	-4.721176371	0.443934170	-0.970610723
6	-3.458190690	2.121240694	-0.599065573
7	-4.718941460	1.814134963	-0.831357618
8	-0.115408152	-1.591981599	-0.158749751
1	-2.893876386	-2.095524856	2.353619288
1	-2.162020362	-3.135872684	0.176898886
1	-2.192397828	-1.580509003	-1.687796536
1	-3.813383404	-2.106903181	-1.223884722
1	-1.649394929	1.055274731	-0.382644572
1	-5.630863914	-0.103312809	-1.171645864
1	-3.070382141	3.113968879	-0.427590342
7	3.447108208	2.048705953	1.399392874
6	2.415645067	2.100314230	0.367452231
6	1.049286668	1.481790225	0.713551924

8	0.086015195	1.719966322	-0.014192925
6	2.935891876	1.455344124	-0.946616347
6	3.409748274	0.038139780	-0.832125144
7	2.597608007	-1.057904813	-0.614516128
6	4.681641913	-0.483658514	-0.939748662
6	3.402011727	-2.153056885	-0.597776691
7	4.671559237	-1.851820007	-0.795239196
8	1.038646032	0.711489899	1.762190373
1	3.036082874	2.258242381	2.303631418
1	2.204483836	3.149965040	0.136018123
1	2.142346646	1.540288383	-1.694469808
1	3.781526493	2.055750686	-1.292185569
1	1.579756516	-1.093574041	-0.435047387
1	5.597512716	0.061168424	-1.119071007
1	3.007299898	-3.144475994	-0.434376120
1	-3.805278238	-1.104456717	1.465857091
1	3.799281865	1.097138207	1.469842499
1	0.157503948	0.066117604	1.801971535

[2His-H]⁻ - SB

7	3.084405625	-3.002199658	1.158154807
6	3.024030177	-1.560765097	0.877256976
6	1.567402626	-1.010420184	0.869461770
8	1.431407830	0.266898498	0.927788976
6	3.735942415	-1.269272195	-0.475630395
6	4.354016181	0.090052341	-0.609814664
7	3.720818892	1.246291591	-0.216163793
6	5.565672098	0.507224750	-1.116026572
6	4.557463968	2.284976469	-0.488491208
7	5.683633256	1.878687414	-1.040329771
8	0.629273221	-1.820257803	0.795814686
1	2.297193945	-3.435666679	0.677257219
1	3.576531824	-1.040316771	1.665025863
1	4.527771445	-2.013760973	-0.579895992
1	3.026168356	-1.449705959	-1.294410100
1	2.809639159	1.221677853	0.261077717
1	6.354308492	-0.104450716	-1.529132800
1	4.301720751	3.309564073	-0.262915929
7	-1.236613631	0.481755036	1.078702183
6	-1.908916581	1.308099037	0.027116288
6	-3.113141030	2.051135791	0.726928248
8	-3.030374944	2.096482765	1.974119804
6	-2.279789780	0.482491576	-1.215470288
6	-3.378277262	-0.514471528	-1.008616148
7	-4.672700090	-0.127344612	-0.730397756

6	-3.425510924	-1.889676137	-1.062558314
6	-5.420765233	-1.257573508	-0.619582003
7	-4.704194076	-2.344929514	-0.821621494
8	-3.991924553	2.502614869	-0.038549231
1	-1.484645566	-0.508484252	1.011266836
1	-1.190233186	2.077448035	-0.268239189
1	-2.573270195	1.197275119	-1.989095553
1	-1.393419551	-0.043960548	-1.581285663
1	-4.915247902	0.847298861	-0.541857957
1	-2.610652993	-2.569304724	-1.262767828
1	-6.475273969	-1.233532359	-0.388768542
1	2.882411288	-3.147150790	2.143443964
1	-1.618216720	0.880318037	1.960061972
1	-0.168979073	0.500851866	1.038829068

[2Phe-H]⁻ - NZ

7	-4.695331928	-1.645928137	-0.942763786
6	-3.395253343	-1.243259784	-1.483513635
6	-2.191066848	-1.759336192	-0.657246977
8	-2.352418505	-2.506906460	0.295211024
6	-3.340356744	0.283450759	-1.727082614
6	-3.527015894	1.138289364	-0.488256941
6	-2.476438057	1.340590966	0.419655961
6	-4.762344495	1.744828560	-0.224114860
6	-2.667231715	2.124892946	1.555844203
6	-4.952580549	2.531379981	0.912547657
6	-3.901935567	2.723330160	1.808001211
8	-1.048567283	-1.340751932	-1.134469095
1	-4.590142878	-2.581188717	-0.556178953
1	-3.281519821	-1.713353297	-2.469590409
1	-4.123670906	0.529604702	-2.450910361
1	-2.375284589	0.506824822	-2.184285520
1	-1.501312257	0.891085827	0.258709968
1	-5.583000443	1.597512026	-0.920361362
1	-1.837130255	2.261960214	2.240114971
1	-5.918216341	2.992881885	1.095131840
1	-4.043471453	3.334404043	2.694041969
1	-4.905735460	-1.062233221	-0.135865650
7	2.430931670	-2.042762235	2.728674054
6	2.634294517	-0.937222134	1.766060171
6	1.343637507	-0.664602150	0.951061627
8	0.715447025	0.382324252	1.149650766
6	3.839790557	-1.298995461	0.875450339
6	4.295118841	-0.202546638	-0.061567121
6	5.410484727	0.585742831	0.246574431

6	3.612384093	0.058356417	-1.257458584
6	5.836663686	1.601651292	-0.608741573
6	4.033575681	1.073364654	-2.113393475
6	5.148369316	1.849017821	-1.795179651
8	1.025287658	-1.619357600	0.150982134
1	1.697007843	-1.774222971	3.379712809
1	2.859819949	-0.033481594	2.338337290
1	4.662359637	-1.579761379	1.540139184
1	3.563294917	-2.185951563	0.296677596
1	5.951537787	0.398126882	1.169870734
1	2.737412273	-0.533574950	-1.502204573
1	6.704967049	2.198781468	-0.347757566
1	3.485307178	1.261601140	-3.030862161
1	5.474722383	2.639615576	-2.463155316
1	2.052136583	-2.832672068	2.208219208
1	-0.166974530	-1.506580709	-0.509417917

[2Phe-H]⁻ - SB

7	-3.452930894	-0.741163578	2.486711919
6	-2.549764540	-1.391304376	1.529332673
6	-1.283060758	-0.560717219	1.156605311
8	-1.003524665	0.400247674	1.941157178
6	-3.316835594	-1.909174010	0.294529459
6	-4.061924585	-0.850496132	-0.491916116
6	-3.391117145	-0.020424277	-1.402735450
6	-5.441899822	-0.674104833	-0.330465809
6	-4.082444146	0.950056316	-2.124592989
6	-6.136346504	0.298282072	-1.051009314
6	-5.457298075	1.115010664	-1.952658036
8	-0.607616645	-0.924656864	0.169345790
1	-3.992537603	-0.032309812	1.994426303
1	-2.142039509	-2.283783302	2.024595238
1	-2.588040406	-2.398483754	-0.354004605
1	-4.032097094	-2.664959410	0.634839830
1	-2.320838897	-0.140936937	-1.528697799
1	-5.975878771	-1.309177100	0.369895314
1	-3.545073155	1.581857229	-2.824517677
1	-7.205703380	0.415897493	-0.906985494
1	-5.992034735	1.873092072	-2.515588320
1	-2.864207669	-0.212185056	3.126824596
7	1.349040352	1.274861218	1.057354879
6	2.510449712	0.882882326	1.918116685
6	3.553543356	2.067816498	1.865649447
8	3.103397107	3.117280030	1.335956164
6	3.077660218	-0.500109740	1.562917822

6	3.528522368	-0.654782650	0.124229534
6	2.693168648	-1.264885420	-0.821385175
6	4.784716608	-0.187363156	-0.288663814
6	3.109576158	-1.416943698	-2.145366534
6	5.199691742	-0.344976186	-1.608890085
6	4.365994551	-0.964286102	-2.541816856
8	4.659636265	1.830957184	2.376292692
1	1.384568877	0.814755428	0.146428528
1	2.134483335	0.844854123	2.943977538
1	3.925901202	-0.651768137	2.233603158
1	2.326689503	-1.263926515	1.786930000
1	1.706121564	-1.606278916	-0.522390520
1	5.419192745	0.314279555	0.434010535
1	2.447734897	-1.889593105	-2.863838424
1	6.175378039	0.021565742	-1.911551893
1	4.692058247	-1.086122623	-3.569857831
1	0.390453814	1.014660637	1.467668424
1	1.518677046	2.295918692	0.927442577

[2Pro-H]⁻ - NZ

6	5.208577483	-0.618775204	0.421374506
7	4.437025581	0.623212238	0.237327891
6	3.275920661	0.324035384	-0.626992605
6	1.947312303	0.630168180	0.097737243
8	0.923551172	0.514511133	-0.693111064
6	3.382884113	-1.182057330	-1.003589642
6	4.238246951	-1.774076987	0.125968161
8	1.935578096	0.935731401	1.284467790
1	6.045293476	-0.645713829	-0.291330803
1	5.638610805	-0.653727069	1.426843880
1	3.289510836	0.937064425	-1.533280818
1	2.399490445	-1.641541981	-1.105733504
1	3.903573943	-1.289419677	-1.961744030
1	4.742923557	-2.702267707	-0.160330640
1	3.616814954	-1.979815648	1.003184532
6	-4.624272320	0.897135073	-0.863657175
7	-4.030198000	1.192149091	0.446277478
6	-3.485395298	-0.094705756	0.923932037
6	-2.022638395	-0.378927489	0.461608497
8	-1.606438799	-1.539956869	0.487928236
6	-4.495534222	-1.156645393	0.420304810
6	-5.389266481	-0.407315654	-0.601244495
8	-1.367604323	0.676867797	0.130880647
1	-5.272090932	1.716572432	-1.192410139
1	-3.861579177	0.733145228	-1.643983869

1	-3.440860214	-0.082371606	2.018815095
1	-3.948533869	-1.987528334	-0.026593044
1	-5.092228799	-1.563485904	1.240674889
1	-6.365885376	-0.179154492	-0.162690952
1	-5.560216112	-0.981099928	-1.516774197
1	4.042758788	0.918196160	1.128834085
1	-3.244638069	1.830977632	0.346491131
1	-0.090242643	0.565704926	-0.235673163

[2Pro-H]⁻ - SB

6	4.926809539	-0.333526830	0.692251014
7	3.978312184	0.786188886	0.814697937
6	2.975802165	0.690713824	-0.271545510
6	1.529040778	0.537893090	0.253809196
8	0.626406660	0.630837164	-0.636306035
6	3.408182850	-0.518932705	-1.138123012
6	4.896538390	-0.682315468	-0.800528127
8	1.359742401	0.326951724	1.472908080
1	5.926063973	-0.042629139	1.036819280
1	4.616465227	-1.213887751	1.279536773
1	2.997221356	1.602031171	-0.879544154
1	2.858426129	-1.414613063	-0.829699216
1	3.207947463	-0.359744241	-2.198843202
1	5.499032430	0.038090428	-1.365269583
1	5.283758130	-1.684133437	-1.009527787
6	-1.818697699	-0.411531971	1.502903363
7	-1.870030665	0.405177823	0.250713779
6	-2.752750454	-0.305247240	-0.744427652
6	-4.064654512	0.541422122	-0.922290600
8	-4.076494508	1.620399383	-0.270028763
6	-2.991995231	-1.713052436	-0.154653626
6	-1.967738804	-1.843755638	0.987412392
8	-4.919329556	0.038946664	-1.667485725
1	-0.872380161	-0.211739438	2.007119675
1	-2.664465773	-0.124798688	2.133210141
1	-2.221276070	-0.344552647	-1.695652483
1	-4.015163191	-1.779828055	0.224019569
1	-2.879419844	-2.490467227	-0.911680787
1	-1.001943054	-2.190276706	0.607143781
1	-2.286498727	-2.532583861	1.774259804
1	3.461236669	0.733197243	1.689072924
1	-2.382011681	1.302254518	0.383243638
1	-0.866916252	0.550604336	-0.114132808

References

- 1 A. G. Harrison, Mass Spectrom. Rev., 1997, 16, 201–217.
- 2 E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data, 1998, 27, 413-656.