Supporting Information

Revealing Reaction Mechanisms of Nanoconfined Li₂S:

Implications for Lithium-Sulfur Batteries

Zhixiao Liu,¹ Huiqiu Deng,^{1,2,*} Wangyu Hu,¹ Fei Gao,^{1,3} Shiguo Zhang,¹ Perla B. Balbuena,^{4,*} Partha P. Mukherjee^{5,*}

 ¹College of Materials Science and Engineering, Hunan University, Changsha 410082, China
²School of Physics and Electronics, Hunan University, Changsha 410082, China
³Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI 48109, USA
⁴Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
⁵School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA

**Correspondence*: hqdeng@hnu.edu.cn (H. Deng); balbuena@tamu.edu (P. B. Balbuena); pmukherjee@purdue.edu (P. P. Mukherjee)

Figure S1. (a) Temperature profile used for melt-and-quench AIMD. (b) Atomistic structure of $(3 \times 3 \times 3)$ crystalline Li₂S supercell. (c) Atomistic structure of amorphous Li₂S. (d) Radial distribution functions of Li-S pair, Li-Li pair and S-S pair in amorphous and crystalline Li₂S.

Figure S1(a) shows the temperature profile during the melt-and-quench

simulation treatment. The time duration at each temperature is 1.8 ps. When the temperature is lower than 1500 K, the AIMD time step is 3 ps, and the time step is decreased to 2 ps when the temperature is higher than 1500 K. After the AIMD simulation, the structure was then optimized by conventional DFT simulation. The melt-and-quench treatment was started from a crystalline Li_2S ($3 \times 3 \times 3$) supercell including 324 atoms as shown in Figure S1(b). Figure S1(c) shows the atomic structure of the amorphous phase after the melt-and-quench treatment. The radial distribution function of Li-S, Li-Li and S-S pairs are plotted in Figure S1(d)

Figure S2. The population of the Li coordination numbers in different $Li_x S_{10}$ clusters.

Figure S3. The binding energies of $Li_x S_{10}$ clusters.

The binding energy is calculated as

$$E_{b} = \frac{E_{Li_{x}}S_{10} - x \cdot \mu_{Li} - 10 \cdot \mu_{S}}{x + 10}$$
(S1)

Here μ_{Li} is the energy per Li atom in the body centered cubic Li crystal, and μ_S is the energy per S atom in the crystalline α -S₈. The negative binding energy indicates that forming a Li_xS₁₀ cluster by combining Li atoms and S atoms is thermodynamically favored.

Figure S4. The reaction barrier of S_5^2 disproportionation to S_2^2 and S_3^2 in the Li₆S₁₀ cluster. The initial state was adapted from the AIMD simulation at 1 ps, and the final state was adapted from the AIMD simulation at 2ps. The minimum energy barrier was searched using the climbing image nudge elastic band method.¹

Figure S5. Opening the cyclo- S_{10} ring is an endothermic process with an energy increase of 1.22 eV.

References

(1) Henkelman, G.; Uberuaga, B. P.; Jonsson, H. Journal of Chemical Physics 2000, 113, 9901.