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Raman spectra 

 

 
Figure S1. Raman spectra of investigated Pyr14TFSI/EC/DMC blends with 1 M LiTFSI as conducting salt in the range from 865 to 950 cm-1. 

 

 
Figure S2. Raman spectra of investigated Pyr14TFSI/EC/DMC blends with 1 M LiTFSI as conducting salt in the range from 710 to 765 cm-1. 
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Figure S3. Raman spectra of investigated Pyr14TFSI/EC/DMC blends with 1 M LiPF6 as conducting salt in the range from 865 to 950 cm-1. 

 

 

 

Figure S4. Raman spectra of investigated Pyr14TFSI/EC/DMC blends with 1 M LiPF6 as conducting salt in the range from 710 to 765 cm-1. 
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Radial Distribution Function 

 

Figure S5. Radial distribution functions (RDFs) between Li+ ions and the nitrogen atoms of TFSI for different fractions of Pyr14TFSI. The 
dashed lines correspond to the integrated curves, from which the coordination numbers have been extracted at 4.16 Å for the population 

of bidentate coordinations and at 5.0 Å for the sum of mono- and bidentate coordinations. 
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Self-diffusion coefficients 

 

Figure S6. Self-diffusion coefficients of all cationic species present in blends of Pyr14TFSI, EC and DMC with 1 M LiTFSI and 1 M LiPF6 as 
conducting salts at 25°C.  Experimental data points.  Simulation data points. The solid and dashed lines are guides to the eye. 

 

 
Figure S7. Self-diffusion coefficients of all anionic species present in blends of Pyr14TFSI, EC and DMC with 1 M LiTFSI and 1 M LiPF6 as 
conducting salts at 25°C.  Experimental data points.  Simulation data points. The solid and dashed lines are guides to the eye. 
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Figure S8. Self-diffusion coefficients of all neutral species present in blends of Pyr14TFSI, EC and DMC with 1 M LiTFSI and 1 M LiPF6 as 
conducting salts at 25°C.  Experimental data points.  Simulation data points. The solid and dashed lines are guides to the eye. 
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Impedance measurements 

Cell design and calibration 

The cells comprise coaxial impedance electrodes of stainless steel with an outer diameter of 6 mm. The outer ring electrode 
and the PEEK isolator have thicknesses of 1 mm and 1.5 mm, respectively. The electrode in the middle has a diameter of 
1 mm. The cell was calibrated with a 0.01 M KCl solution as conductance standard according to ISO 7888 (Sigma-Aldrich). 

 
Figure S9. Arrhenius plot of ionic conductivities of Pyr14TFSI/EC/DMC blends with 1 M LiPF6 as conducting salt measured from -10 to 40 °C 

using impedance. The data points are fitted using VTF function. 

 
Figure S10. Arrhenius plot of ionic conductivities of Pyr14TFSI/EC/DMC blends with 1 M LiTFSI as conducting salt measured from -10 to 40 °C 

using impedance. The data points are fitted using VTF function.  
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Viscosities 

 

Experimental 

Viscosity measurements were performed with an Anton Paar MCR 301 rheometer in a dry room (water content below 30 
ppm). The device was equipped with a temperature system CTD 450 and a CP50-0.5/TG measuring system with a diameter 
of 49.947 mm, a cone angle of 0.473° and a distance of 68 µm between cone and lower plate. The viscosities were measured 
in a temperature range of -10 °C to 40 °C in steps of 10 °C; viscosities were also measured at 25 °C. The shear rates were 
increased with increasing temperature from 800 s-1 to 2800 s-1. 

 

Figure S11. Arrhenius plot of viscosities of Pyr14TFSI/EC/DMC blends (0, 30 and 70% Pyr14TFSI) with 1 M LiTFSI and 1 M LiPF6 as conducting 
salts measured from -10 to 40 °C. The data points are fitted using VTF functions. 
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Figure S12. Arrhenius plot of viscosities of Pyr14TFSI/EC/DMC blends with 1 M LiPF6 as conducting salt measured from -10 to 40 °C. The data 
points are fitted using VTF functions. The viscosities of solutions containing 100% Pyr14TFSI could not be measured at low temperatures due 

to partial solidification. 

 

 
Figure S13. Arrhenius plot of viscosities of Pyr14TFSI/EC/DMC blends with 1 M LiTFSI as conducting salt measured from -10 to 40 °C. The 

data points are fitted using VTF functions. The viscosities of solutions containing 100% Pyr14TFSI could not be measured at low 
temperatures due to partial solidification. 
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Degree of ion dissociation 

 

 

Figure S14. Dissociation degree of the conducting salts LiTFSI and LiPF6 in blends of Pyr14TFSI, EC and DMC at 25 °C.  Experimental data 
points.  Simulation data points. The solid and dashed lines are guides to the eye. 
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Thermal stability 

 

Experimental 

Thermal gravimetric analysis (TGA) 

Thermal gravimetric analysis (TGA) measurements were performed with a TGA Q5000 measuring device. The samples were 
prepared in sealed aluminum pans, which were tared before use. After an equilibration at 30 °C and an isothermal step for 
10 minutes, the temperature was raised up to 575 °C with 10 °C per minute and the weights of the samples were measured. 
Nitrogen was used as balance and sample gas. 
 

Differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC) measurements were performed with a DSC Q2000 measuring device. The samples 
were prepared in hermetic aluminum pans. After an equilibration at 40 °C and an isothermal step for two minutes, heat flow 
was measured three times from 40 °C to -150 °C to again 40 °C. Helium and nitrogen were both used as ambient gases with 
25 ml/min. 
 
 
 

 

Figure S15. Weight loss in % of the investigated Pyr14TFSI/EC/DMC samples with increasing temperature (30 - 575 °C) resulting from TGA 
measurements. 
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Figure S16. Heat flows in mW in the temperature range from 150 to 230 K for blends of 1 M LiPF6 in Pyr14TFSI/EC/DMC resulting from DSC 

measurements. 

 

 
Figure S17. Heat flows in mW in the temperature range from 150 to 230 K for blends of 1 M LiTFSI in Pyr14TFSI/EC/DMC resulting from DSC 

measurements. 
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Table ST1. VTF activation energies derived from fitting viscosity and impedance data and glass transition temperatures of Pyr14TFSI/EC/DMC blends 
with 1 M LiPF6 and 1 M LiTFSI as conducting salts. 

 Amount of Pyr14TFSI / wt-% Tg / K BVisco / K BImp/ K BViscoR / kJmol-1 BImpR / kJmol-1 

1 
M

 L
iP

F 6
 

0 175 ±4 120 ±9 128 ±9 1.00 ±0.07 1.06 ±0.07 
10 182 ±4 103 ±8 121 ±9 0.86 ±0.07 1.01 ±0.07 
30 185 ±4 127 ±11 135 ±11 1.06 ±0.09 1.12 ±0.09 
40 187 ±3 132 ±8 139 ±8 1.10 ±0.07 1.16 ±0.07 
50 192 ±2 144 ±6 139 ±6 1.20 ±0.05 1.16 ±0.05 
70 196 ±2 180 ±9 164 ±7 1.50 ±0.07 1.36 ±0.06 

100 198 ±1 345 ±8 263 ±6 2.87 ±0.10 2.19 ±0.08 

1 
M

 L
iT

FS
I 

0 176 ±3 101 ±6 110 ±7 0.84 ±0.06 0.91 ±0.07 
10 179 ±2 99 ±3 112 ±5 0.82 ±0.04 0.93 ±0.05 
30 184 ±2 114 ±4 133 ±5 0.95 ±0.04 1.11 ±0.04 
40 185 ±1 126 ±5 136 ±5 1.05 ±0.05 1.13 ±0.06 
50 191 ±2 137 ±6 137 ±6 1.14 ±0.06 1.14 ±0.06 
70 195 ±2 169 ±8 158 ±7 1.41 ±0.08 1.31 ±0.07 

100 198 ±0 301 ±6 231 ±5 2.50 ±0.08 1.92 ±0.06 
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Electrochemical stability 

 

Experimental 

Linear sweep voltammetry (LSV) 

In order to determine the electrochemical stability window (ESW), linear sweep voltammetry (LSV) measurements were 
performed with a VMP3 (BioLogic Science Instruments) from 0 to 6 V with a scan rate of 0.1 mV s−1. A three-electrode 
Swagelok cell was used with platinum (Ø 1 mm) as working electrode and lithium metal as counter (Ø 12 mm) and reference 
(Ø 5 mm) electrode. Freudenberg FS 2190 was used as separator. The measurements were performed at room temperature. 
 
 

 
Figure 18. Linear sweep voltammetry profiles of the investigated Pyr14TFSI/EC/DMC blends with 1 M LiPF6 and 1 M LiTFSI as conducting 

salts at room temperature with a scan rate of 0.1 mV/s. 
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