Supplementary Information for "Tuneable Fluorescence Enhancement over Nanostructured ZnO Arrays with Controlled Morphology"

Tiesheng Wang, ^a Anthony Centeno, ^b Daniel Price, ^a Jing S. Pang, ^a Mary P.

Ryan, ^a Fang Xie*^a

^a Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom

^b Department of Electrical and Electronic Engineering, Xi'an Jiaotong Liverpool
University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu,
215123, China

* E-mail: <u>f.xie@imperial.ac.uk</u>

	aligned NR forests	NFs
KCl concentration	100 mM, 150 mM, 250 mM,	50 mM, 100 mM, 250 mM,
used	300 mM	300 mM

Supplementary Figures

*Figure S1. Wurtzite ZnO crystal structure showing a, b and c axis are reconstructed from reference*¹ *with Mercury 3.9. The calculated morphology of the structure (in blue) is shown on the bottom.*

Figure S2. SEM images and rod diameter distributions of aligned NR forests growing in solution with different KCl concentration: a) 100 mM, b) 150 mM, c) 250 mM and d) 300 mM.

Figure S3. SEM images and rod diameter distributions of NFs growing in solution with different KCl concentration: a) 50 mM, b) 100 mM, c) 250 mM and d) 300 mM.

Figure S4. The mean diameter of NRs versus KCl concentration. The mean diameter can be approximated as a linear function of KCl concentration (mean diameter = m.concentration+c). For aligned NR forests $m=0.192\pm0.021$ and $C=35.9\pm4.3$. For nanoflower $m=0.112\pm0.013$ and $C=38.6\pm2.4$.

Figure S5. Relative diffuse reflectance versus diameter of NRs top surface for NFs.

Reference

1 H. Sowa and H. Ahsbahs, J. Appl. Crystallogr., 2006, **39**, 169–175.